Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl4-Induced Liver Fibrosis in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animal Ethics and Procedures
2.3. Synthesis and Characterization of Polymeric Nanomicelles
2.4. Experimental Design
2.5. Determination of Serum Biomarker for Liver Damage
2.6. Histological Preparation and Examination
2.7. RNA Preparation and RT-qPCR Analysis
2.8. Protein Extraction and Western Blotting Analysis
2.9. Image Acquisition
2.10. Statistical Analysis
3. Results
3.1. Body and Liver Weight and Hepatic Index
3.2. GLY-NM Normalizes Liver Morphology and Function after CCl4-Induced HF
3.3. Drug Effects on HSCs Activation, Protein and Gene Liver Expression in CCl4-Induced HF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.; Xia, B.; Fu, Q.; Huang, X.; Wang, F.; Chen, Z.; Lv, Y. Matrix Mechanics as Regulatory Factors and Therapeutic Targets in Hepatic Fibrosis. Int. J. Biol. Sci. 2019, 15, 2509–2521. [Google Scholar] [CrossRef]
- Hernandez-Gea, V.; Friedman, S.L. Pathogenesis of Liver Fibrosis. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 425–456. [Google Scholar] [CrossRef]
- Parola, M.; Pinzani, M. Liver Fibrosis: Pathophysiology, Pathogenetic Targets and Clinical Issues. Mol. Asp. Med. 2019, 65, 37–55. [Google Scholar] [CrossRef]
- Hynes, R.O. The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef]
- Affo, S.; Yu, L.X.; Schwabe, R.F. The Role of Cancer-Associated Fibroblasts and Fibrosisin Liver Cancer. Annu. Rev. Pathol. Mech. Dis. 2017, 12, 153–186. [Google Scholar] [CrossRef]
- Baglieri, J.; Brenner, D.A.; Kisseleva, T. The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2019, 20, 1723. [Google Scholar] [CrossRef]
- Ni, Y.; Li, J.M.; Liu, M.K.; Zhang, T.T.; Wang, D.P.; Zhou, W.H.; Hu, L.Z.; Lv, W.L. Pathological Process of Liver Sinusoidal Endothelial Cells in Liver Diseases. World J. Gastroenterol. 2021, 23, 7666–7677. [Google Scholar] [CrossRef]
- Griffin, C.T.; Gao, S. Building Discontinuous Liver Sinusoidal Vessels. J. Clin. Investig. 2017, 127, 790–792. [Google Scholar] [CrossRef]
- Elvevold, K.; Smedsrød, B.; Martinez, I. First Published December 6. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, 391–400. [Google Scholar] [CrossRef]
- Natarajan, V.; Harris, E.N.; Kidambi, S. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis. Biomed. Res. Int. 2017, 2017, 4097205. [Google Scholar] [CrossRef]
- Seki, E.; Schwabe, R.F. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways. Hepatology 2015, 61, 1066–1079. [Google Scholar] [CrossRef] [PubMed]
- Bansal, M.B.; Chamroonkul, N. Antifibrotics in Liver Disease: Are We Getting Closer to Clinical Use? Hepatol. Int. 2019, 13, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.-K.; Zhao, Z.-M.; Liu, C. Treatment of Liver Fibrosis: A 20-Year Bibliometric and Knowledge-Map Analysis. Front. Pharm. 2022, 13, 942841. [Google Scholar] [CrossRef]
- Han, C.Y.; Koo, J.H.; Kim, S.H.; Gardenghi, S.; Rivella, S.; Strnad, P.; Hwang, S.J.; Kim, S.G. Hepcidin Inhibits Smad3 Phosphorylation in Hepatic Stellate Cells by Impeding Ferroportin-Mediated Regulation of Akt. Nat. Commun. 2016, 7, 13817. [Google Scholar] [CrossRef]
- Dewidar, B.; Meyer, C.; Dooley, S.; Meindl-Beinker, N. Tgf-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis—Updated 2019. Cells 2019, 8, 1419. [Google Scholar] [CrossRef]
- Fabregat, I.; Caballero-Díaz, D. Transforming Growth Factor-β-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis. Front. Oncol. 2018, 8, 357. [Google Scholar] [CrossRef]
- Dooley, S.; ten Dijke, P. TGF-β in Progression of Liver Disease. Cell Tissue Res. 2012, 347, 245–256. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ in Cancer. Cell 2008, 134, 215–230. [Google Scholar] [CrossRef]
- Khomich, O.; Ivanov, A.V.; Bartosch, B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2020, 9, 24. [Google Scholar] [CrossRef]
- Giannelli, G.; Villa, E.; Lahn, M. Transforming Growth Factor-β as a Therapeutic Target in Hepatocellular Carcinoma. Cancer Res. 2014, 74, 1890–1894. [Google Scholar] [CrossRef]
- Harding, J.J.; Do, R.K.; Yaqubie, A.; Cleverly, A.; Zhao, Y.; Gueorguieva, I.; Lahn, M.; Benhadji, K.A.; Kelley, R.K.; Abou-Alfa, G.K. Phase 1b Study of Galunisertib and Ramucirumab in Patients with Advanced Hepatocellular Carcinoma. Cancer Med. 2021, 10, 3059–3067. [Google Scholar] [CrossRef]
- Kelley, R.K.; Gane, E.; Assenat, E.; Siebler, J.; Galle, P.R.; Merle, P.; Hourmand, I.O.; Cleverly, A.; Zhao, Y.; Gueorguieva, I.; et al. A Phase 2 Study of Galunisertib (TGF-B1 Receptor Type i Inhibitor) and Sorafenib in Patients with Advanced Hepatocellular Carcinoma. Clin. Transl. Gastroenterol. 2019, 10, e00056. [Google Scholar] [CrossRef]
- Melisi, D.; Oh, D.Y.; Hollebecque, A.; Calvo, E.; Varghese, A.; Borazanci, E.; Macarulla, T.; Merz, V.; Zecchetto, C.; Zhao, Y.; et al. Safety and Activity of the TGFβ Receptor i Kinase Inhibitor Galunisertib plus the Anti-PD-L1 Antibody Durvalumab in Metastatic Pancreatic Cancer. J. Immunother. Cancer. 2021, 9, e002068. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, J.; van Grunsven, L.A.; Tacke, F. Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Liver Fibrosis. Expert Opin. Pharm. 2020, 21, 1637–1650. [Google Scholar] [CrossRef]
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020, 9, 875. [Google Scholar] [CrossRef]
- Hammad, S.; Cavalcanti, E.; Werle, J.; Caruso, M.L.; Dropmann, A.; Ignazzi, A.; Ebert, M.P.; Dooley, S.; Giannelli, G. Galunisertib Modifies the Liver Fibrotic Composition in the Abcb4Ko Mouse Model. Arch. Toxicol. 2018, 92, 2297–2309. [Google Scholar] [CrossRef]
- Surendran, S.P.; Thomas, R.G.; Moon, M.J.; Jeong, Y.Y. Nanoparticles for the Treatment of Liver Fibrosis. Int. J. Nanomed. 2017, 12, 6997–7006. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Chavali, M.S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics 2020, 5, 27. [Google Scholar] [CrossRef]
- Jiménez Calvente, C.; Sehgal, A.; Popov, Y.; Kim, Y.O.; Zevallos, V.; Sahin, U.; Diken, M.; Schuppan, D. Specific Hepatic Delivery of Procollagen A1(I) Small Interfering RNA in Lipid-like Nanoparticles Resolves Liver Fibrosis. Hepatology 2015, 62, 1285–1297. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Ong, Z.Y.; Xu, K.; Ee, P.L.R.; Zheng, S.; Hedrick, J.L.; Yang, Y.Y. Polymer- and Lipid-Based Nanoparticle Therapeutics for the Treatment of Liver Diseases. Nano Today 2010, 5, 296–312. [Google Scholar] [CrossRef]
- Melgert, B.N.; Olinga, P.; Jack, V.K.; Molema, G.; Meijer, D.K.F.; Poelstra, K. Dexamethasone Coupled to Albumin Is Selectively Taken up by Rat Nonparenchymal Liver Cells and Attenuates LPS-Induced Activation of Hepatic Cells. J. Hepatol. 2000, 32, 603–611. [Google Scholar] [CrossRef]
- Li, Y.; Shang, W.; Liang, X.; Zeng, C.; Liu, M.; Wang, S.; Li, H.; Tian, J. The Diagnosis of Hepatic Fibrosis by Magnetic Resonance and Near-Infrared Imaging Using Dual-Modality Nanoparticles. RSC Adv. 2018, 8, 6699–6708. [Google Scholar] [CrossRef]
- Thurner, G.C.; Debbage, P. Molecular Imaging with Nanoparticles: The Dwarf Actors Revisited 10 Years Later. Histochem. Cell. Biol. 2018, 150, 733–794. [Google Scholar] [CrossRef]
- Moosavian, S.A.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorg. Chem. Appl. 2021, 2021, 4041415. [Google Scholar] [CrossRef]
- Kaps, L.; Schuppan, D. Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells 2020, 9, 2027. [Google Scholar] [CrossRef]
- Li, W.; Zhou, C.; Fu, Y.; Chen, T.; Liu, X.; Zhang, Z.; Gong, T. Targeted Delivery of Hyaluronic Acid Nanomicelles to Hepatic Stellate Cells in Hepatic Fibrosis Rats. Acta Pharm. Sin. B 2020, 10, 693–710. [Google Scholar] [CrossRef]
- Petros, R.A.; Desimone, J.M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug. Discov. 2010, 9, 615–627. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Liu, Q.; Zhou, J.; Huang, H.; Huang, Y.; Zhang, Z.; Wu, T.; Tang, Q.; Huang, C.; et al. SB431542-Loaded Liposomes Alleviate Liver Fibrosis by Suppressing Tgf-β Signaling. Mol. Pharm. 2020, 17, 4152–4162. [Google Scholar] [CrossRef]
- Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; et al. Smart Micro/Nanoparticles in Stimulus-Responsive Drug/Gene Delivery Systems. Chem. Soc. Rev. 2016, 45, 1457–1501. [Google Scholar] [CrossRef]
- Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-Based Diagnostics and Therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef]
- Hanafy, N.A.N.; Quarta, A.; Ferraro, M.M.; Dini, L.; Nobile, C.; de Giorgi, M.L.; Carallo, S.; Citti, C.; Gaballo, A.; Cannazza, G.; et al. Polymeric Nano-Micelles as Novel Cargo-Carriers for LY2157299 Liver Cancer Cells Delivery. Int. J. Mol. Sci. 2018, 19, 748. [Google Scholar] [CrossRef]
- Alhassan, A.J.; Sule, M.S.; Aliyu, S.A.; Aliyu, M.D. Ideal hepatotoxicity model in rats using carbon tetrachloride (CCL 4) 1. Bayero J. Pure Appl. Sci. 2009, 2, 185–187. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liu, R.X.; Hou, F.; Cui, L.J.; Li, C.Y.; Chi, C.; Yi, E.; Wen, Y.; Yin, C.H. Fibronectin Expression Is Critical for Liver Fibrogenesis in Vivo and in Vitro. Mol. Med. Rep. 2016, 14, 3669–3675. [Google Scholar] [CrossRef]
- Feldman, A.T.; Wolfe, D. Tissue Processing and Hematoxylin and Eosin Staining. Methods Mol. Biol. 2014, 1180, 31–43. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis HHS Public Access. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, A.; Kim, J.; Lee, J.; Lee, S.Y.; Kim, C. Optimization of RNA Extraction from Formalin-Fixed Paraffin-Embedded Blocks for Targeted next-Generation Sequencing. J. Breast Cancer 2017, 20, 393–399. [Google Scholar] [CrossRef]
- Guo, H.; Liu, W.; Ju, Z.; Tamboli, P.; Jonasch, E.; Mills, G.B.; Lu, Y.; Hennessy, B.T.; Tsavachidou, D. An Efficient Procedure for Protein Extraction from Formalin-Fixed, Paraffin-Embedded Tissues for Reverse Phase Protein Arrays. Proteome Sci. 2012, 10, 56. [Google Scholar] [CrossRef]
- Zhang, F.; Hao, M.; Jin, H.; Yao, Z.; Lian, N.; Wu, L.; Shao, J.; Chen, A.; Zheng, S. Canonical Hedgehog Signalling Regulates Hepatic Stellate Cell-Mediated Angiogenesis in Liver Fibrosis. Br. J. Pharm. 2017, 174, 409–423. [Google Scholar] [CrossRef]
- Luangmonkong, T.; Suriguga, S.; Bigaeva, E.; Boersema, M.; Oosterhuis, D.; de Jong, K.P.; Schuppan, D.; Mutsaers, H.A.M.; Olinga, P. Evaluating the Antifibrotic Potency of Galunisertib in a Human Ex Vivo Model of Liver Fibrosis. Br. J. Pharm. 2017, 174, 3107–3117. [Google Scholar] [CrossRef]
- Simón, J.; Casado-Andrés, M.; Goikoetxea-Usandizaga, N.; Serrano-Maciá, M.; Martínez-Chantar, M.L. Nutraceutical Properties of Polyphenols against Liver Diseases. Nutrients 2020, 12, 3517. [Google Scholar] [CrossRef]
- Su, M.; Cao, D.; Wang, Z.; Duan, Y.; Huang, Y. Fatty Acid Synthase Inhibitor Platensimycin Intervenes the Development of Nonalcoholic Fatty Liver Disease in a Mouse Model. Biomedicines 2022, 10, 5. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, F.; Liu, Y.; Yuan, Y.; Wang, J.; Wu, D.; Cui, Y.; Zhang, S.; Guo, H.; Liang, S.; et al. Inhibition of TGFβ1 Accelerates Regeneration of Fibrotic Rat Liver Elicited by a Novel Two-Staged Hepatectomy. Theranostics 2021, 11, 4743–4758. [Google Scholar] [CrossRef]
- Crespo Yanguas, S.; Cogliati, B.; Willebrords, J.; Maes, M.; Colle, I.; van den Bossche, B.; de Oliveira, C.P.M.S.; Andraus, W.; Alves, V.A.; Leclercq, I.; et al. Experimental Models of Liver Fibrosis. Arch. Toxicol. 2016, 90, 1025–1048. [Google Scholar] [CrossRef]
- Nathwani, R.; Mullish, B.H.; Kockerling, D.; Forlano, R.; Manousou, P.; Dhar, A. A Review of Liver Fibrosis and Emerging Therapies. EMJ 2019, 4, 105–116. [Google Scholar]
- Kim, K.H.; Kim, H.C.; Hwang, M.Y.; Oh, H.K.; Lee, T.S.; Chang, Y.C.; Song, H.J.; Won, N.H.; Park, K.K. The Antifibrotic Effect of TGF-Β1 SiRNAs in Murine Model of Liver Cirrhosis. Biochem. Biophys. Res. Commun. 2006, 343, 1072–1078. [Google Scholar] [CrossRef]
- Fortea, J.I.; Fernández-Mena, C.; Puerto, M.; Ripoll, C.; Almagro, J.; Bañares, J.; Bellón, J.M.; Bañares, R.; Vaquero, J. Comparison of Two Protocols of Carbon Tetrachloride-Induced Cirrhosis in Rats—Improving Yield and Reproducibility. Sci. Rep. 2018, 8, 9163. [Google Scholar] [CrossRef]
- Tolentino, A.; Alla, A.; Martínez de Ilarduya, A.; Muñoz-Guerra, S. Complexes of Polyglutamic Acid and Long-Chain Alkanoylcholines: Nanoparticle Formation and Drug Release. Int. J. Biol. Macromol. 2014, 66, 346–353. [Google Scholar] [CrossRef]
- Abdelaal, Y.M.; Makki, S.I.M.; Sobahi, R.A.T. Modification and Characterization of Polyacrylic Acid for Metal Ion Recovery. Am. J. Polym. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Mishra, A.P.; Siva, A.B.; Gurunathan, C.; Komala, Y.; Lakshmi, B.J. Impaired Liver Regeneration and Lipid Homeostasis in CCl4 Treated WDR13 Deficient Mice. Lab. Anim. Res. 2020, 36, 41. [Google Scholar] [CrossRef]
- Luo, X.; Sun, D.; Wang, Y.; Zhang, F.; Wang, Y. Cpt1a Promoted ROS-Induced Oxidative Stress and Inflammation in Liver Injury 2 via the Nrf2/HO-1 and NLRP3 Inflammasome Signaling Pathway Running Title: Cpt1a Promoted ROS-Induced Oxidative Stress and Inflammation in Xigang Luo. Can. J. Physiol. Pharmacol. 2021, 99, 468–477. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Zhong, X.Y.; Huang, Y.S.; Zheng, C. bin HCBP6 Is Involved in the Development of Hepatic Steatosis Induced by High-Fat Diet and CCL4 in Rats. Ann. Hepatol. 2018, 17, 511–518. [Google Scholar] [CrossRef] [PubMed]
Sample | Treatment | Body Weight (g) | Liver Weight (g) | HI (%) |
---|---|---|---|---|
Group I, CTRL | No treatment | 312.54 ± 2.05 | 7.69 ± 2.42 | 2.46 ± 0.77 |
Group II, NaCl | IP injections of sterile 0,9% NaCl in untreated rats | 313.69 ± 9.05 | 7.73 ± 0.42 | 2.46 ± 0.13 b |
Group III, VOO | IP injections of sterile virgin olive in untreated rats | 308.46 ± 19.38 | 7.71 ± 0.25 | 2.49 ± 0.08 b |
Group IV, GLY-NM | IP injections of encapsulated LY2157299 in untreated rats | 319.4 ± 11.03 | 7.71 ± 0.25 | 2.41 ± 0.08 b |
Group V, GLY | IP injections of free LY2157299 in untreated rats | 315.23 ± 8.05 | 7.72 ± 1.25 | 2.44 ± 0.39 b |
Group VI, GLY-NM (recovery) | IP injections of encapsulated LY2157299 in untreated rats and recovered for 2 weeks | 309.37 ± 24.32 | 7.79 ± 0.39 | 2.51 ± 0.12 b |
Group VII, HF | IP injections of CCl4 | 304.64 ± 8.45 | 4.69 ± 0.36 a | 1.53 ± 0.11 a |
Group VIII, HF (recovery) | IP injections of CCl4 in untreated rats and recovered for 2 weeks | 218.48 ± 9.2 ab | 3.98 ± 0.19 a | 1,82 ± 0,09 a |
Group IX, HF-GLY-NM | IP injections of encapsulated LY2157299 in CCl4 treated rats | 303.66 ± 4.65 | 7.29 ± 0.56 b | 2.4 ± 0.18 b |
Group X, HF-GLY | IP injections of free LY2157299 in CCl4 treated rats | 251.97 ± 11.25 abc | 6.21 ± 0.51 abc | 2.46 ± 0.20 b |
Group XI, HF-NM | IP injections of empty micelles in CCl4 treated rats | 215.24 ± 8.65 ab | 4.01 ± 0.29 a | 1.86 ± 0.13 a |
Sample | Morphological Modifications |
---|---|
Group I, CTRL | None |
Group II, NaCl | None |
Group III, VOO | None |
Group IV, GLY-NM | Presence of inflammatory cells infiltration |
Group V, GLY | None |
Group VI, GLY-NM (recovery) | Presence of inflammatory cells infiltration |
Group VII, HF | Fibrosis after 2 weeks |
Increase of collagen fibers | |
Presence of pseudolobuli | |
High macrosteatosis | |
High hepatocellular ballooning | |
Increase of inflammatory cells infiltration | |
Group VIII, HF (recovery) | Fibrosis after 2 weeks |
Increase of collagen fibers | |
Presence of pseudolobuli | |
High macrosteatosis | |
High hepatocellular ballooning | |
Increase of inflammatory cells infiltration | |
Group IX, HF-GLY-NM | No fibrotic septa |
Presence of inflammatory cells | |
Group X, HF-GLY | No fibrotic septa |
High amount of collagen fibers around blood vessels | |
Group XI, HF-NM | Fibrosis after 2 weeks |
Increase of collagen fibers | |
Presence of pseudolobuli | |
High macrosteatosis | |
High hepatocellular ballooning | |
Increase of inflammatory cells infiltration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panzarini, E.; Leporatti, S.; Tenuzzo, B.A.; Quarta, A.; Hanafy, N.A.N.; Giannelli, G.; Moliterni, C.; Vardanyan, D.; Sbarigia, C.; Fidaleo, M.; et al. Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl4-Induced Liver Fibrosis in Rats. J. Pers. Med. 2022, 12, 1812. https://doi.org/10.3390/jpm12111812
Panzarini E, Leporatti S, Tenuzzo BA, Quarta A, Hanafy NAN, Giannelli G, Moliterni C, Vardanyan D, Sbarigia C, Fidaleo M, et al. Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl4-Induced Liver Fibrosis in Rats. Journal of Personalized Medicine. 2022; 12(11):1812. https://doi.org/10.3390/jpm12111812
Chicago/Turabian StylePanzarini, Elisa, Stefano Leporatti, Bernardetta Anna Tenuzzo, Alessandra Quarta, Nemany A. N. Hanafy, Gianluigi Giannelli, Camilla Moliterni, Diana Vardanyan, Carolina Sbarigia, Marco Fidaleo, and et al. 2022. "Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl4-Induced Liver Fibrosis in Rats" Journal of Personalized Medicine 12, no. 11: 1812. https://doi.org/10.3390/jpm12111812
APA StylePanzarini, E., Leporatti, S., Tenuzzo, B. A., Quarta, A., Hanafy, N. A. N., Giannelli, G., Moliterni, C., Vardanyan, D., Sbarigia, C., Fidaleo, M., Tacconi, S., & Dini, L. (2022). Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl4-Induced Liver Fibrosis in Rats. Journal of Personalized Medicine, 12(11), 1812. https://doi.org/10.3390/jpm12111812