What We Talk about When We Talk about Artificial Intelligence in Radiation Oncology
Funding
Conflicts of Interest
References
- Siddique, S.; Chow, J.C. Artificial intelligence in radiotherapy. Rep. Pract. Oncol. Radiother. 2020, 25, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shen, L.; Islam, T.; Qin, W.; Zhang, Z.; Liang, X.; Zhang, G.; Xu, S.; Li, X. Artificial intelligence in image-guided radiotherapy: A review of treatment target localization. Quant. Imaging Med. Surg. 2021, 11, 4881–4894. [Google Scholar] [CrossRef] [PubMed]
- Cusumano, D.; Dinapoli, N.; Boldrini, L.; Chiloiro, G.; Gatta, R.; Masciocchi, C.; Lenkowicz, J.; Casà, C.; Damiani, A.; Azario, L.; et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol. Med. 2018, 123, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, G.; Boldrini, L.; Preziosi, F.; Cusumano, D.; Yadav, P.; Romano, A.; Placidi, L.; Lenkowicz, J.; Dinapoli, N.; Bassetti, M.F.; et al. A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients. Front. Oncol. 2022, 12, 831712. [Google Scholar] [CrossRef] [PubMed]
- Kocher, M.; Ruge, M.I.; Galldiks, N.; Lohmann, P. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther. Onkol. 2020, 196, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Mintz, Y.; Brodie, R. Introduction to artificial intelligence in medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Duan, J.; Yin, Y. Radiomics in radiotherapy: Applications and future challenges. Precis. Radiat. Oncol. 2020, 4, 29–33. [Google Scholar] [CrossRef]
- Boldrini, L.; Cusumano, D.; Chiloiro, G.; Casà, C.; Masciocchi, C.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Azario, L.; Teodoli, S.; et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): A hypothesis-generating study for an innovative personalized medicine approach. Radiol. Med. 2019, 124, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figlia, V.; Mazzola, R.; Cuccia, F.; Alongi, F.; Mortellaro, G.; Cespuglio, D.; Cucchiara, T.; Iacoviello, G.; Valenti, V.; Molino, M.; et al. Hypo-fractionated stereotactic radiation therapy for lung malignancies by means of helical tomotherapy: Report of feasibility by a single-center experience. Radiol. Med. 2018, 123, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Giaj-Levra, N.; Figlia, V.; Cuccia, F.; Mazzola, R.; Nicosia, L.; Ricchetti, F.; Rigo, M.; Attinà, G.; Vitale, C.; Sicignano, G.; et al. Reduction of inter-observer differences in the delineation of the target in spinal metastases SBRT using an automatic contouring dedicated system. Radiat. Oncol. 2021, 16, 197. [Google Scholar] [CrossRef] [PubMed]
- Ubaldi, L.; Valenti, V.; Borgese, R.; Collura, G.; Fantacci, M.; Ferrera, G.; Iacoviello, G.; Abbate, B.; Laruina, F.; Tripoli, A.; et al. Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples. Phys. Med. 2021, 90, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Cunliffe, A.; Armato, S.G.; Castillo, R.; Pham, N.; Guerrero, T.; Al-Hallaq, H.A. Lung Texture in Serial Thoracic Computed Tomography Scans: Correlation of Radiomics-based Features with Radiation Therapy Dose and Radiation Pneumonitis Development. Int. J. Radiat. Oncol. 2015, 91, 1048–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirrone, G.; Matrone, F.; Chiovati, P.; Manente, S.; Drigo, A.; Donofrio, A.; Cappelletto, C.; Borsatti, E.; Dassie, A.; Bortolus, R.; et al. Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model. J. Pers. Med. 2022, 12, 1491. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuccia, F.; Carruba, G.; Ferrera, G. What We Talk about When We Talk about Artificial Intelligence in Radiation Oncology. J. Pers. Med. 2022, 12, 1834. https://doi.org/10.3390/jpm12111834
Cuccia F, Carruba G, Ferrera G. What We Talk about When We Talk about Artificial Intelligence in Radiation Oncology. Journal of Personalized Medicine. 2022; 12(11):1834. https://doi.org/10.3390/jpm12111834
Chicago/Turabian StyleCuccia, Francesco, Giuseppe Carruba, and Guseppe Ferrera. 2022. "What We Talk about When We Talk about Artificial Intelligence in Radiation Oncology" Journal of Personalized Medicine 12, no. 11: 1834. https://doi.org/10.3390/jpm12111834
APA StyleCuccia, F., Carruba, G., & Ferrera, G. (2022). What We Talk about When We Talk about Artificial Intelligence in Radiation Oncology. Journal of Personalized Medicine, 12(11), 1834. https://doi.org/10.3390/jpm12111834