Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson’s Disease
Abstract
:1. Introduction
2. Methods and Materials
2.1. Data Resources and Tools
2.2. Sequence-Based Prediction
2.2.1. SIFT
2.2.2. PolyPhen-2
2.2.3. PROVEAN
2.2.4. Mutation Assessor
2.2.5. PON-P2
2.3. Structure-Based Prediction
2.3.1. SDM2
2.3.2. MCSM
2.4. Identification of Pathogenic nsSNPs
2.4.1. PhD-SNP
2.4.2. Rhapsody
2.5. Analysis of Packing Density
2.6. Analysis of Aggregation Propensity
2.7. Analysis of Noncovalent Interactions
2.8. Conservation Analysis
2.9. Frustration Analysis
3. Result and Discussion
3.1. Sequence- and Structure-Based Identification of Diseased Mutations
3.2. Disease Phenotype Identification of Missense Variants
3.3. Packing Density and Accessible Surface Area Analysis
3.4. Aggregation Propensity Analysis
3.5. Noncovalent Interaction Analysis
3.6. Conservation Analysis
3.7. Frustration Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junn, E.; Jang, W.H.; Zhao, X.; Jeong, B.S.; Mouradian, M.M. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J. Neurosci. Res. 2009, 87, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Richarme, G.; Mihoub, M.; Dairou, J.; Bui, L.C.; Leger, T.; Lamouri, A. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal-and glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 2015, 290, 1885–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariga, H. Common mechanisms of onset of cancer and neurodegenerative diseases. Biol. Pharm. Bull. 2015, 38, 795–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi-Niki, K.; Ganaha, Y.; Niki, T.; Nakagawa, S.; Kato-Ose, I.; Iguchi-Ariga, S.M.; Ariga, H. DJ-1 activates SIRT1 through its direct binding to SIRT1. Biochem. Biophys. Res. Commun. 2016, 474, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lebouvier, T.; Chaumette, T.; Paillusson, S.; Duyckaerts, C.; Bruley des Varannes, S.; Neunlist, M.; Derkinderen, P. The second brain and Parkinson’s disease. Eur. J. Neurosci. 2009, 30, 735–741. [Google Scholar] [CrossRef]
- Taipa, R.; Pereira, C.; Reis, I.; Alonso, I.; Bastos-Lima, A.; Melo-Pires, M.; Magalhaes, M. DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain 2016, 139, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Ariga, H.; Iguchi-Ariga, M. DJ-1/Park7 protein. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2017. [Google Scholar]
- Bandopadhyay, R.; Kingsbury, A.E.; Cookson, M.R.; Reid, A.R.; Evans, I.M.; Hope, A.D.; Pittman, A.M.; Lashley, T.; Canet-Aviles, R.; Miller, D.W. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 2004, 127, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.A.; Collins, J.L.; Hod, Y.; Ringe, D.; Petsko, G.A. The 1.1-Å resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2003, 100, 9256–9261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi-Niki, K.; Niki, T.; Iguchi-Ariga, S.M.; Ariga, H. Transcriptional regulation of DJ-1. In DJ-1/PARK7 Protein; Springer: Singapore, 2017; pp. 89–95. [Google Scholar]
- Macedo, M.G.; Anar, B.; Bronner, I.F.; Cannella, M.; Squitieri, F.; Bonifati, V.; Hoogeveen, A.; Heutink, P.; Rizzu, P. The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum. Mol. Genet. 2003, 12, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Mohammad, T.; Samarth, N.; Hussain, A.; Rehman, M.T.; Islam, A.; Alajmi, M.F.; Singh, S.; Hassan, M.I. Structural genomics approach to investigate deleterious impact of nsSNPs in conserved telomere maintenance component 1. Sci. Rep. 2021, 11, 10202. [Google Scholar] [CrossRef]
- Amir, M.; Ahamad, S.; Mohammad, T.; Jairajpuri, D.S.; Hasan, G.M.; Dohare, R.; Islam, A.; Ahmad, F.; Hassan, M.I. Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma. J. Biomole. Str. Dyn. 2021, 39, 35–44. [Google Scholar]
- Mohammad, T.; Choudhury, A.; Habib, I.; Asrani, P.; Mathur, Y.; Umair, M.; Anjum, F.; Shafie, A.; Yadav, D.K.; Hassan, M. Genomic variations in the structural proteins of SARS-CoV-2 and their deleterious impact on pathogenesis: A comparative genomics approach. Front. Cell. Infect. Microbiol. 2021, 951, 765039. [Google Scholar] [CrossRef]
- Al Ajmi, M.F.; Khan, S.; Choudhury, A.; Mohammad, T.; Noor, S.; Hussain, A.; Lu, W.; Eapen, M.S.; Chimankar, V.; Hansbro, P.M. Impact of Deleterious Mutations on Structure, Function and Stability of Serum/Glucocorticoid Regulated Kinase 1: A Gene to Diseases Correlation. Front. Mol. Biosci. 2021, 8, 1073. [Google Scholar]
- Mohammad, T.; Amir, M.; Prasad, K.; Batra, S.; Kumar, V.; Hussain, A.; Rehman, M.T.; AlAjmi, M.F.; Hassan, M.I. Impact of amino acid substitution in the kinase domain of Bruton tyrosine kinase and its association with X-linked agammaglobulinemia. Int. J. Biol. Macromol. 2020, 164, 2399–2408. [Google Scholar] [CrossRef]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human gene mutation database (HGMD®): 2003 update. Hum. Mutat. 2003, 21, 577–581. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016, 44, D862–D868. [Google Scholar] [CrossRef] [Green Version]
- Shafie, A.; Khan, S.; Batra, S.; Anjum, F.; Mohammad, T.; Alam, S.; Yadav, D.K.; Islam, A.; Hassan, M.I. Investigating single amino acid substitutions in PIM1 kinase: A structural genomics approach. PLoS ONE 2021, 16, e0258929. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Khan, S.; Mohammad, T.; Shafie, A.; Anjum, F.; Islam, A.; Hassan, M.I. Impact of single amino acid substitution on the structure and function of TANK-binding kinase-1. J. Cell. Biochem. 2021, 122, 1475–1490. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, A.A.T.; Jairajpuri, D.S.; Hussain, A.; Hasan, G.M.; Alajmi, M.F.; Hassan, M.I. Impact of glioblastoma multiforme associated mutations on the structure and function of MAP/microtubule affinity regulating kinase 4. J. Biomol. Str. Dyn. 2021, 39, 1781–1794. [Google Scholar] [CrossRef]
- Amir, M.; Mohammad, T.; Kumar, V.; Alajmi, M.F.; Rehman, M.T.; Hussain, A.; Alam, P.; Dohare, R.; Islam, A.; Ahmad, F.; et al. Structural Analysis and Conformational Dynamics of STN1 Gene Mutations Involved in Coat Plus Syndrome. Front. Mol. Biosci. 2019, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.A.; Imtaiyaz Hassan, M.; Islam, A.; Ahmad, F. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr. Protein Pept. Sci. 2014, 15, 456–476. [Google Scholar] [CrossRef] [PubMed]
- Amir, M.; Kumar, V.; Mohammad, T.; Dohare, R.; Rehman, T.; Alajmi, M.F.; Hussain, A.; Ahmad, F.; Hassan, I. Structural and functional impact of non-synonymous SNPs in the CST complex subunit TEN1: Structural genomics approach. Biosci. Rep. 2019, 39, BSR20190312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amir, M.; Kumar, V.; Mohammad, T.; Dohare, R.; Hussain, A.; Rehman, M.T.; Alam, P.; Alajmi, M.F.; Islam, A.; Ahmad, F.; et al. Investigation of deleterious effects of nsSNPs in the POT1 gene: A structural genomics-based approach to understand the mechanism of cancer development. J. Cell. Biochem. 2019, 120, 10281–10294. [Google Scholar] [CrossRef]
- Amir, M.; Kumar, V.; Dohare, R.; Rehman, M.T.; Hussain, A.; Alajmi, M.F.; El-Seedi, H.R.; Hassan, H.M.A.; Islam, A.; Ahmad, F.; et al. Investigating architecture and structure-function relationships in cold shock DNA-binding domain family using structural genomics-based approach. Int. J. Biol. Macromol. 2019, 133, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Farheen, N.; Sen, N.; Nair, S.; Tan, K.P.; Madhusudhan, M. Depth dependent amino acid substitution matrices and their use in predicting deleterious mutations. Prog. Biophys. Mol. Biol. 2017, 128, 14–23. [Google Scholar] [CrossRef]
- Bashir, S.; Ahanger, I.A.; Shamsi, A.; Alajmi, M.F.; Hussain, A.; Choudhry, H.; Ahmad, F.; Hassan, M.I.; Islam, A. Trehalose Restrains the Fibril Load towards alpha-Lactalbumin Aggregation and Halts Fibrillation in a Concentration-Dependent Manner. Biomolecules 2021, 11, 414. [Google Scholar] [CrossRef]
- Ahanger, I.A.; Parray, Z.A.; Nasreen, K.; Ahmad, F.; Hassan, M.I.; Islam, A.; Sharma, A. Heparin Accelerates the Protein Aggregation via the Downhill Polymerization Mechanism: Multi-Spectroscopic Studies to Delineate the Implications on Proteinopathies. ACS Omega 2021, 6, 2328–2339. [Google Scholar] [CrossRef]
- Kumar, V.; Wahiduzzaman; Prakash, A.; Tomar, A.K.; Srivastava, A.; Kundu, B.; Lynn, A.M.; Imtaiyaz Hassan, M. Exploring the aggregation-prone regions from structural domains of human TDP-43. Biochim. Biophys. Acta-Proteins Proteom. 2019, 1867, 286–296. [Google Scholar] [CrossRef]
- Sami, N.; Rahman, S.; Kumar, V.; Zaidi, S.; Islam, A.; Ali, S.; Ahmad, F.; Hassan, M.I. Protein aggregation, misfolding and consequential human neurodegenerative diseases. Int. J. Neurosci. 2017, 127, 1047–1057. [Google Scholar] [CrossRef]
- Kumar, V.; Sami, N.; Kashav, T.; Islam, A.; Ahmad, F.; Hassan, M.I. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur. J. Med. Chem. 2016, 124, 1105–1120. [Google Scholar] [CrossRef]
- Privalov, P.L.; Gill, S.J. Stability of protein structure and hydrophobic interaction. Adv. Protein Chem. 1988, 39, 191–234. [Google Scholar]
- Singleton, A.B.; Farrer, M.J.; Bonifati, V. The genetics of P arkinson’s disease: Progress and therapeutic implications. Mov. Disord. 2013, 28, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.-P.; Stadler, J.; Klinefelter, G.R.; Blackstone, C.; Miller, D.W.; Ahmad, R.; Hague, S.; Baptista, M.J.; Canet-Aviles, R.; McLendon, C. L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J. Biol. Chem. 2003, 278, 36588–36595. [Google Scholar]
- Anderson, P.C.; Daggett, V. Molecular basis for the structural instability of human DJ-1 induced by the L166P mutation associated with Parkinson’s disease. Biochemistry 2008, 47, 9380–9393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Lanzas, R.; Castaño, J.G. Mitochondrial LonP1 protease is implicated in the degradation of unstable Parkinson’s disease-associated DJ-1/PARK 7 missense mutants. Sci. Rep. 2021, 11, 7320. [Google Scholar] [CrossRef]
- Alvarez-Castelao, B.; Muñoz, C.; Sánchez, I.; Goethals, M.; Vandekerckhove, J.; Castaño, J.G. Reduced protein stability of human DJ-1/PARK7 L166P, linked to autosomal recessive Parkinson disease, is due to direct endoproteolytic cleavage by the proteasome. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2012, 1823, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Takahashi-Niki, K.; Niki, T.; Taira, T.; Iguchi-Ariga, S.M.; Ariga, H. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease patients. Biochem. Biophys. Res. Commun. 2004, 320, 389–397. [Google Scholar] [CrossRef]
- Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165878. [Google Scholar] [CrossRef]
- Amir, M.; Kumar, V.; Dohare, R.; Islam, A.; Ahmad, F.; Hassan, M.I. Sequence, structure and evolutionary analysis of cold shock domain proteins, a member of OB fold family. J. Evol. Biol. 2018, 31, 1903–1917. [Google Scholar] [CrossRef]
- Amir, M.; Ahmad, S.; Ahamad, S.; Kumar, V.; Mohammad, T.; Dohare, R.; Alajmi, M.F.; Rehman, T.; Hussain, A.; Islam, A. Impact of Gln94Glu mutation on the structure and function of protection of telomere 1, a cause of cutaneous familial melanoma. J. Biomol. Struct. Dyn. 2019, 38, 1514–1524. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, D.U.; Komives, E.A.; Wolynes, P.G. Frustration in biomolecules. Q. Rev. Biophys. 2014, 47, 285–363. [Google Scholar] [CrossRef] [Green Version]
S. No. | Mutation ID | RHAPSODY | PhD-SNP | |
---|---|---|---|---|
Score | Remarks | |||
1. | K4R | 0.466 | Neutral | Neutral |
2. | A6S | 0.848 | Deleterious | Neutral |
3. | A6V | 0.383 | Neutral | Neutral |
4. | L10M | 0.819 | Deleterious | Neutral |
5. | L10P | 0.917 | Deleterious | Disease |
6. | G13E | 0.840 | Deleterious | Disease |
7. | E16G | 0.897 | Deleterious | Disease |
8. | M17V | 0.754 | Deleterious | Neutral |
9. | E18K | 0.915 | Deleterious | Disease |
10. | V20M | 0.429 | Neutral | Neutral |
11. | R27K | 0.645 | Neutral | Neutral |
12. | A29V | 0.733 | Prob.Delet. | Disease |
13. | T34I | 0.411 | Neutral | Neutral |
14. | A36E | 0.936 | Deleterious | Neutral |
15. | V44A | 0.421 | Neutral | Neutral |
16. | C46R | 0.865 | Deleterious | Neutral |
17. | S47G | 0.598 | Deleterious | Neutral |
18. | R48G | 0.671 | Neutral | Neutral |
19. | R48C | 0.499 | Pro. Neutral | Neutral |
20. | R48H | 0.410 | Neutral | Neutral |
21. | V51G | 0.646 | Neutral | Neutral |
22. | C53F | 0.684 | Prob.Neutral | Neutral |
23. | C53W | 0.588 | Deleterious | Neutral |
24. | P54S | 0.660 | Neutral | Disease |
25. | P54H | 0.811 | Deleterious | Disease |
26. | S57I | 0.621 | Neutral | Neutral |
27. | A61T | 0.585 | Neutral | Neutral |
28. | A61E | 0.749 | Deleterious | Neutral |
29. | D68H | 0.885 | Deleterious | Disease |
30. | D68G | 0.857 | Deleterious | Disease |
31. | D68V | 0.903 | Deleterious | Disease |
32. | V70M | 0.872 | Deleterious | Neutral |
33. | G75S | 0.901 | Deleterious | Disease |
34. | G78S | 0.797 | Deleterious | Disease |
35. | V88M | 0.824 | Deleterious | Neutral |
36. | R98W | 0.463 | Neutral | Neutral |
37. | G100D | 0.677 | Prob.Neutral | Disease |
38. | G100V | 0.343 | Neutral | Neutral |
39. | A104T | 0.953 | Deleterious | Disease |
40. | A104S | 0.812 | Deleterious | Disease |
41. | A107T | 0.934 | Deleterious | Neutral |
42. | A107P | 0.951 | Deleterious | Disease |
43. | A107S | 0.923 | Deleterious | Neutral |
44. | L112P | 0.949 | Deleterious | Disease |
45. | H115D | 0.765 | Deleterious | Neutral |
46. | H115R | 0.735 | Prob.Delet. | Neutral |
47. | T124R | 0.913 | Deleterious | Disease |
48. | P127A | 0.777 | Deleterious | Disease |
49. | P127S | 0.798 | Deleterious | Disease |
50. | P127R | 0.831 | Deleterious | Disease |
51. | K130T | 0.627 | Neutral | Neutral |
52. | R145S | 0.363 | Neutral | Neutral |
53. | R145C | 0.838 | Deleterious | Neutral |
54. | R145P | 0.493 | Neutral | Disease |
55. | V146M | 0.826 | Deleterious | Neutral |
56. | V146G | 0.879 | Deleterious | Disease |
57. | D149A | 0.482 | Prob. Neutral | Disease |
58. | G150S | 0.316 | Neutral | Disease |
59. | G150D | 0.465 | Neutral | Neutral |
60. | T154A | 0.939 | Deleterious | Disease |
61. | T154R | 0.962 | Deleterious | Disease |
62. | R156W | 0.581 | Deleterious | Neutral |
63. | G157A | 0.89 | Deleterious | Neutral |
64. | P158S | 0.783 | Deleterious | Disease |
65. | T160S | 0.903 | Deleterious | Neutral |
66. | F164L | 0.885 | Deleterious | Neutral |
67. | A165V | 0.644 | Deleterious | Disease |
68. | L166P | 0.915 | Deleterious | Disease |
69. | L172Q | 0.85 | Deleterious | Disease |
S. No. | Mutation | WT_RSA (%) | WT_DEPTH (Å) | WT_OSP | MT_RSA (%) | MT_DEPTH (Å) | MT_OSP | Outcome |
---|---|---|---|---|---|---|---|---|
1. | L10P | 0 | 7.3 | 0.45 | 3.3 | 8.1 | 0.44 | Reduced stability |
2. | G13E | 19.9 | 5.2 | 0.49 | 19.8 | 4.1 | 0.48 | Reduced stability |
3. | E16G | 9.3 | 4.6 | 0.52 | 20.8 | 4.4 | 0.39 | Reduced stability |
4. | E18K | 0 | 6.2 | 0.58 | 0.3 | 6.3 | 0.59 | Reduced stability |
5. | P54H | 0 | 5.6 | 0.41 | 0.6 | 6.2 | 0.51 | Reduced stability |
6. | D68H | 38.4 | 3.8 | 0.36 | 48.4 | 3.8 | 0.31 | Reduced stability |
7. | D68G | 38.4 | 3.8 | 0.36 | 55 | 4 | 0.32 | Reduced stability |
8. | D68V | 38.4 | 3.8 | 0.36 | 42.5 | 3.6 | 0.35 | Reduced stability |
9. | G75S | 18.2 | 4.8 | 0.43 | 15.5 | 4.4 | 0.47 | Reduced stability |
10. | G78S | 2 | 6.4 | 0.61 | 0.7 | 7.7 | 0.65 | Reduced stability |
11. | A104T | 0 | 12.6 | 0.60 | 0.1 | 12.3 | 0.62 | Reduced stability |
12. | A104S | 0 | 12.6 | 0.60 | 0 | 12.5 | 0.6 | Reduced stability |
13. | A107P | 7.5 | 5 | 0.45 | 7.2 | 4.9 | 0.53 | Reduced stability |
14. | L112P | 0.3 | 9.8 | 0.53 | 4.5 | 9.7 | 0.55 | Reduced stability |
15. | T124R | 0 | 7.6 | 0.62 | 5.9 | 6.4 | 0.68 | Reduced stability |
16. | P127A | 51.6 | 3.4 | 0.30 | 71.2 | 3.1 | 0.25 | Increased stability |
17. | P127S | 51.6 | 3.4 | 0.30 | 69.8 | 3.3 | 0.24 | Increased stability |
18. | P127R | 51.6 | 3.4 | 0.30 | 85.3 | 3.3 | 0.14 | Increased stability |
19. | V146G | 18.2 | 3.7 | 0.39 | 33.5 | 3.8 | 0.27 | Reduced stability |
20. | T154A | 0 | 9.7 | 0.54 | 0.5 | 9.8 | 0.50 | Reduced stability |
21. | T154R | 0 | 9.7 | 0.54 | 0.3 | 10.4 | 0.66 | Reduced stability |
22. | P158S | 32.3 | 3.5 | 0.34 | 34.6 | 3.5 | 0.31 | Increased stability |
23. | A165V | 0 | 8.4 | 0.56 | 0 | 8.7 | 0.68 | Reduced stability |
24. | L166P | 12.5 | 4.6 | 0.45 | 12.9 | 5 | 0.44 | Reduced stability |
25. | L172Q | 4.6 | 5.1 | 0.45 | 5.4 | 4.9 | 0.40 | Reduced stability |
S. No. | Mutation | SODA | Remarks |
---|---|---|---|
1. | L10P | 24.49 | More soluble |
2. | G13E | 3.11 | More soluble |
3. | E16G | −1.87 | Less soluble |
4. | E18K | −1.19 | Less soluble |
5. | P54H | −21.34 | Less soluble |
6. | D68H | −22.29 | Less soluble |
7. | D68G | −1.92 | Less soluble |
8. | D68V | −107.76 | Less soluble |
9. | G75S | −0.32 | Less soluble |
10. | G78S | 0.17 | More soluble |
11. | A104T | −3.29 | Less soluble |
12. | A104S | 4.20 | More soluble |
13. | A107P | 3.90 | More soluble |
14. | L112P | 7.28 | More soluble |
15. | T124R | 4.75 | More soluble |
16. | V146G | 7.045 | More soluble |
17. | T154A | 1.59 | More soluble |
18. | T154R | 5.65 | More soluble |
19. | A165V | −49.98 | Less soluble |
20. | L166P | 18.93 | More soluble |
21. | L172Q | 3.71 | More soluble |
S. No. | Variant | van der Waals Interaction | Hydrogen Bonds | Ionic Interactions | Aromatic Contacts | Hydrophobic Contacts |
---|---|---|---|---|---|---|
1. | L10P | 118 | 182 | 12 | 13 | 350 |
2. | G13E | 110 | 182 | 12 | 13 | 347 |
3. | E16G | 107 | 178 | 12 | 13 | 340 |
4. | E18K | 108 | 180 | 12 | 13 | 353 |
5. | P54H | 110 | 181 | 12 | 13 | 346 |
6. | D68H | 110 | 180 | 12 | 13 | 347 |
7. | D68G | 108 | 180 | 12 | 13 | 342 |
8. | D68V | 110 | 180 | 12 | 13 | 356 |
9. | G75S | 133 | 210 | 12 | 13 | 422 |
10. | G78S | 132 | 209 | 12 | 13 | 422 |
11. | A104T | 110 | 181 | 12 | 13 | 346 |
12. | A104S | 108 | 181 | 12 | 13 | 341 |
13. | A107P | 130 | 210 | 12 | 13 | 423 |
14. | L112P | 112 | 180 | 12 | 13 | 341 |
15. | T124R | 114 | 186 | 13 | 13 | 349 |
16. | V146G | 116 | 183 | 12 | 13 | 358 |
17. | T154A | 109 | 180 | 12 | 13 | 343 |
18. | T154R | 111 | 180 | 12 | 13 | 349 |
19. | A165V | 111 | 181 | 12 | 13 | 357 |
20. | L166P | 111 | 179 | 12 | 13 | 339 |
21. | L172Q | 110 | 182 | 12 | 13 | 334 |
22. | Wild-type | 114 | 181 | 12 | 13 | 347 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjum, F.; Joshia, N.; Mohammad, T.; Shafie, A.; Alhumaydhi, F.A.; Aljasir, M.A.; Shahwan, M.J.S.; Abdullaev, B.; Adnan, M.; Elasbali, A.M.; et al. Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson’s Disease. J. Pers. Med. 2022, 12, 220. https://doi.org/10.3390/jpm12020220
Anjum F, Joshia N, Mohammad T, Shafie A, Alhumaydhi FA, Aljasir MA, Shahwan MJS, Abdullaev B, Adnan M, Elasbali AM, et al. Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson’s Disease. Journal of Personalized Medicine. 2022; 12(2):220. https://doi.org/10.3390/jpm12020220
Chicago/Turabian StyleAnjum, Farah, Namrata Joshia, Taj Mohammad, Alaa Shafie, Fahad A. Alhumaydhi, Mohammad A. Aljasir, Moyad J. S. Shahwan, Bekhzod Abdullaev, Mohd Adnan, Abdelbaset Mohamed Elasbali, and et al. 2022. "Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson’s Disease" Journal of Personalized Medicine 12, no. 2: 220. https://doi.org/10.3390/jpm12020220
APA StyleAnjum, F., Joshia, N., Mohammad, T., Shafie, A., Alhumaydhi, F. A., Aljasir, M. A., Shahwan, M. J. S., Abdullaev, B., Adnan, M., Elasbali, A. M., Pasupuleti, V. R., & Hassan, M. I. (2022). Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson’s Disease. Journal of Personalized Medicine, 12(2), 220. https://doi.org/10.3390/jpm12020220