Homologous Recombination Deficiency (HRD) and BRCA 1/2 Gene Mutation for Predicting the Effect of Platinum-Based Neoadjuvant Chemotherapy of Early-Stage Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Literature Search and Selection
2.2. Data Extraction and Quality Assessment
2.3. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Association of Available BRCA1/2 Mutation Status with pCR Rates
3.3. Association of HRD Status with pCR Rates in Four HRD-Predefined Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dent, R.; Rugo, H.S. Most neoadjuvant chemotherapy for triple-negative breast cancer should include platinum. Lancet Oncol. 2021, 22, 27–28. [Google Scholar] [CrossRef]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Saleh, R.R.; Nadler, M.B.; Desnoyers, A.; Meti, N.; Fazelzad, R.; Amir, E. Platinum-based chemotherapy in early-stage triple negative breast cancer: A meta-analysis. Cancer Treat Rev. 2021, 100, 102283. [Google Scholar] [CrossRef]
- Kalra, M.; Tong, Y.; Jones, D.R.; Walsh, T.; Danso, M.A.; Ma, C.X.; Silverman, P.; King, M.C.; Badve, S.S.; Perkins, S.M.; et al. Cisplatin +/− rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer. NPJ Breast Cancer 2021, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Timms, K.M.; Abkevich, V.; Hughes, E.; Neff, C.; Reid, J.; Morris, B.; Kalva, S.; Potter, J.; Tran, T.V.; Chen, J.; et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014, 16, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.D.; Parveen, A.; Yadav, D.K. Role of PARP in TNBC: Mechanism of Inhibition, Clinical Applications and Resistance. Biomedicines 2021, 9, 1512. [Google Scholar] [CrossRef] [PubMed]
- Sengodan, S.K.; Hemalatha, S.K.; Nadhan, R.; Somanathan, T.; Mathew, A.P.; Chil, A.; Kopczynski, J.; Nair, R.S.; Kumar, J.M.; Srinivas, P. β-hCG-induced mutant BRCA1 ignites drug resistance in susceptible breast tissue. Carcinogenesis 2019, 40, 1415–1426. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Chen, J.; Yao, L.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; et al. Comprehensive analysis of BRCA1 and BRCA2 germline mutations in a large cohort of 5931 Chinese women with breast cancer. Breast Cancer Res. Treat. 2016, 158, 455–462. [Google Scholar] [CrossRef]
- Furlanetto, J.; Möbus, V.; Schneeweiss, A.; Rhiem, K.; Tesch, H.; Blohmer, J.U.; Lübbe, K.; Untch, M.; Salat, C.; Huober, J.; et al. Germline BRCA1/2 mutations and severe haematological toxicities in patients with breast cancer treated with neoadjuvant chemotherapy. Eur. J. Cancer 2021, 145, 44–52. [Google Scholar] [CrossRef]
- Hartman, A.R.; Kaldate, R.R.; Sailer, L.M.; Painter, L.; Grier, C.E.; Endsley, R.R.; Griffin, M.; Hamilton, S.A.; Frye, C.A.; Silberman, M.A.; et al. Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer-Am. Cancer Soc. 2012, 118, 2787–2795. [Google Scholar] [CrossRef] [PubMed]
- Greenup, R.; Buchanan, A.; Lorizio, W.; Rhoads, K.; Chan, S.; Leedom, T.; King, R.; McLennan, J.; Crawford, B.; Kelly, M.P.; et al. Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Ann. Surg. Oncol. 2013, 20, 3254–3258. [Google Scholar] [CrossRef] [PubMed]
- Engel, C.; Rhiem, K.; Hahnen, E.; Loibl, S.; Weber, K.E.; Seiler, S.; Zachariae, S.; Hauke, J.; Wappenschmidt, B.; Waha, A.; et al. Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history. Bmc Cancer 2018, 18, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomark. Prev. 2012, 21, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Chen, J.; Gao, X.; Jiang, G. Transcription factor KLF2 enhances the sensitivity of breast cancer cells to cisplatin by suppressing kinase WEE1. Cancer Biol. Ther. 2021, 22, 465–477. [Google Scholar] [CrossRef]
- Liu, M.; Xie, F.; Liu, M.; Zhang, Y.; Wang, S. Association between BRCA mutational status and survival in patients with breast cancer: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2021, 186, 591–605. [Google Scholar] [CrossRef]
- Holanek, M.; Selingerova, I.; Bilek, O.; Kazda, T.; Fabian, P.; Foretova, L.; Zvarikova, M.; Obermannova, R.; Kolouskova, L.; Coufal, O.; et al. Neoadjuvant Chemotherapy of Triple-Negative Breast Cancer: Evaluation of Early Clinical Response, Pathological Complete Response Rates, and Addition of Platinum Salts Benefit Based on Real-World Evidence. Cancers 2021, 13, 1586. [Google Scholar] [CrossRef]
- Slavin, T.P.; Maxwell, K.N.; Lilyquist, J.; Vijai, J.; Neuhausen, S.L.; Hart, S.N.; Ravichandran, V.; Thomas, T.; Maria, A.; Villano, D.; et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 2017, 3, 22. [Google Scholar] [CrossRef]
- Ali, R.; McIntosh, S.A.; Savage, K.I. Homologous recombination deficiency in breast cancer: Implications for risk, cancer development, and therapy. Genes Chromosomes. Cancer 2021, 60, 358–372. [Google Scholar] [CrossRef]
- Stronach, E.A.; Paul, J.; Timms, K.M.; Hughes, E.; Brown, K.; Neff, C.; Perry, M.; Gutin, A.; El-Bahrawy, M.; Steel, J.H.; et al. Biomarker Assessment of HR Deficiency, Tumor BRCA1/2 Mutations, and CCNE1 Copy Number in Ovarian Cancer: Associations with Clinical Outcome Following Platinum Monotherapy. Mol. Cancer Res. 2018, 16, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasching, P.A.; Link, T.; Hauke, J.; Seither, F.; Jackisch, C.; Klare, P.; Schmatloch, S.; Hanusch, C.; Huober, J.; Stefek, A.; et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study). Ann. Oncol. 2021, 32, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.L.; Abramson, V.; Jankowitz, R.; Falkson, C.; Marcom, P.K.; Traina, T.; Carey, L.; Rimawi, M.; Specht, J.; Miller, K.; et al. TBCRC 030: A phase II study of preoperative cisplatin versus paclitaxel in triple-negative breast cancer: Evaluating the homologous recombination deficiency (HRD) biomarker. Ann. Oncol. 2020, 31, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Lee, J.S.; Yost, S.E.; Li, S.M.; Frankel, P.H.; Ruel, C.; Schmolze, D.; Robinson, K.; Tang, A.; Martinez, N.; et al. Phase II Trial of Neoadjuvant Carboplatin and Nab-Paclitaxel in Patients with Triple-Negative Breast Cancer. Oncologist 2021, 26, e382–e393. [Google Scholar] [CrossRef]
- Sharma, P.; Kimler, B.F.; O’Dea, A.; Nye, L.; Wang, Y.Y.; Yoder, R.; Staley, J.M.; Prochaska, L.; Wagner, J.; Amin, A.L.; et al. Randomized Phase II Trial of Anthracycline-free and Anthracycline-containing Neoadjuvant Carboplatin Chemotherapy Regimens in Stage I-III Triple-negative Breast Cancer (NeoSTOP). Clin. Cancer Res. 2021, 27, 975–982. [Google Scholar] [CrossRef]
- Fontaine, C.; Renard, V.; Van den Bulk, H.; Vuylsteke, P.; Glorieux, P.; Dopchie, C.; Decoster, L.; Vanacker, L.; De Azambuja, E.; De Greve, J.; et al. Weekly carboplatin plus neoadjuvant anthracycline-taxane-based regimen in early triple-negative breast cancer: A prospective phase II trial by the Breast Cancer Task Force of the Belgian Society of Medical Oncology (BSMO). Breast Cancer Res. Treat. 2019, 176, 607–615. [Google Scholar] [CrossRef]
- Loibl, S.; Weber, K.E.; Timms, K.M.; Elkin, E.P.; Hahnen, E.; Fasching, P.A.; Lederer, B.; Denkert, C.; Schneeweiss, A.; Braun, S.; et al. Survival analysis of carboplatin added to an anthracycline/taxane-based neoadjuvant chemotherapy and HRD score as predictor of response-final results from GeparSixto. Ann. Oncol. 2018, 29, 2341–2347. [Google Scholar] [CrossRef]
- Hahnen, E.; Lederer, B.; Hauke, J.; Loibl, S.; Kröber, S.; Schneeweiss, A.; Denkert, C.; Fasching, P.A.; Blohmer, J.U.; Jackisch, C.; et al. Germline Mutation Status, Pathological Complete Response, and Disease-Free Survival in Triple-Negative Breast Cancer: Secondary Analysis of the GeparSixto Randomized Clinical Trial. Jama Oncol. 2017, 3, 1378–1385. [Google Scholar] [CrossRef]
- Loibl, S.; O’Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; Von Minckwitz, G.; Maag, D.; et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): A randomised, phase 3 trial. Lancet Oncol. 2018, 19, 497–509. [Google Scholar] [CrossRef]
- Telli, M.L.; Metzger, O.; Timms, K.; Evans, B.; Vogel, D.; Wei, H.; Jones, J.T.; Wenstrup, R.J.; McKee, M.D.; Sullivan, D.M.; et al. Evaluation of homologous recombination deficiency (HRD) status with pathological response to carboplatin plus +/− veliparib in BrighTNess, a randomized phase 3 study in early stage TNBC. J. Clin. Oncol. 2018, 36, 519. [Google Scholar] [CrossRef]
- Sharma, P.; López-Tarruella, S.; García-Saenz, J.A.; Ward, C.; Connor, C.S.; Gómez, H.L.; Prat, A.; Moreno, F.; Jerez-Gilarranz, Y.; Barnadas, A.; et al. Efficacy of Neoadjuvant Carboplatin plus Docetaxel in Triple-Negative Breast Cancer: Combined Analysis of Two Cohorts. Clin. Cancer Res. 2017, 23, 649–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, R.; Elkin, E.; Timms, K.; Goetz, M.; Boughey, J.; Zhang, Z.; Walsh, B.; Carpenter, J.; Storniolo, A.; Watkins, S.; et al. Abstract P3-07-13: Homologous recombination deficiency (HRD) as a predictive biomarker of response to preoperative systemic therapy (PST) in TBCRC008 comprising a platinum in HER2-negative primary operable breast cancer. Cancer Res. 2016, 76, P3–P7. [Google Scholar]
- Telli, M.L.; Jensen, K.C.; Vinayak, S.; Kurian, A.W.; Lipson, J.A.; Flaherty, P.J.; Timms, K.; Abkevich, V.; Schackmann, E.A.; Wapnir, I.L.; et al. Phase II Study of Gemcitabine, Carboplatin, and Iniparib As Neoadjuvant Therapy for Triple-Negative and BRCA1/2 Mutation-Associated Breast Cancer With Assessment of a Tumor-Based Measure of Genomic Instability: PrECOG 0105. J. Clin. Oncol. 2015, 33, 1895–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaklamani, V.G.; Jeruss, J.S.; Hughes, E.; Siziopikou, K.; Timms, K.M.; Gutin, A.; Abkevich, V.; Sangale, Z.; Solimeno, C.; Brown, K.L.; et al. Phase II neoadjuvant clinical trial of carboplatin and eribulin in women with triple negative early-stage breast cancer (NCT01372579). Breast Cancer Res. Treat. 2015, 151, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Sella, T.; Gal, Y.E.; Levanon, K.; Rotenberg, T.S.; Gadot, M.; Kuchuk, I.; Molho, R.B.; Itai, A.; Modiano, T.M.; Gold, R.; et al. Evaluation of tolerability and efficacy of incorporating carboplatin in neoadjuvant anthracycline and taxane based therapy in a BRCA1 enriched triple-negative breast cancer cohort. Breast 2018, 40, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Silver, D.P.; Richardson, A.L.; Eklund, A.C.; Wang, Z.C.; Szallasi, Z.; Li, Q.; Juul, N.; Leong, C.O.; Calogrias, D.; Buraimoh, A.; et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 2010, 28, 1145–1153. [Google Scholar] [CrossRef]
- Connolly, R.M.; Fackler, M.J.; Zhang, Z.; Zhou, X.C.; Goetz, M.P.; Boughey, J.C.; Walsh, B.; Carpenter, J.T.; Storniolo, A.M.; Watkins, S.P.; et al. Tumor and serum DNA methylation in women receiving preoperative chemotherapy with or without vorinostat in TBCRC008. Breast Cancer Res. Treat. 2018, 167, 107–116. [Google Scholar] [CrossRef]
- Tung, N.; Arun, B.; Hacker, M.R.; Hofstatter, E.; Toppmeyer, D.L.; Isakoff, S.J.; Borges, V.; Legare, R.D.; Isaacs, C.; Wolff, A.C.; et al. TBCRC 031: Randomized Phase II Study of Neoadjuvant Cisplatin Versus Doxorubicin-Cyclophosphamide in Germline BRCA Carriers With HER2-Negative Breast Cancer (the INFORM trial). J. Clin. Oncol. 2020, 38, 1539–1548. [Google Scholar] [CrossRef]
- Dieci, M.V.; Del, M.L.; Cinquini, M.; Montemurro, F.; Biganzoli, L.; Cortesi, L.; Zambelli, A.; Criscitiello, C.; Levaggi, A.; Conte, B.; et al. Inclusion of Platinum Agents in Neoadjuvant Chemotherapy Regimens for Triple-Negative Breast Cancer Patients: Development of GRADE (Grades of Recommendation, Assessment, Development and Evaluation) Recommendation by the Italian Association of Medical Oncology (AIOM). Cancers 2019, 11, 1137. [Google Scholar]
- Caramelo, O.; Silva, C.; Caramelo, F.; Frutuoso, C.; Almeida-Santos, T. The effect of neoadjuvant platinum-based chemotherapy in BRCA mutated triple negative breast cancers-systematic review and meta-analysis. Hered Cancer Clin. Pract. 2019, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Sztupinszki, Z.; Diossy, M.; Borcsok, J.; Prosz, A.; Cornelius, N.; Kjeldsen, M.K.; Mirza, M.R.; Szallasi, Z. Comparative Assessment of Diagnostic Homologous Recombination Deficiency-Associated Mutational Signatures in Ovarian Cancer. Clin. Cancer Res. 2021, 27, 5681–5687. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Barlow, W.E.; Godwin, A.K.; Pathak, H.; Isakova, K.; Williams, D.; Timms, K.M.; Hartman, A.R.; Wenstrup, R.J.; Linden, H.M.; et al. Impact of homologous recombination deficiency biomarkers on outcomes in patients with triple-negative breast cancer treated with adjuvant doxorubicin and cyclophosphamide (SWOG S9313). Ann. Oncol. 2018, 29, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Tutt, A.; Tovey, H.; Cheang, M.; Kernaghan, S.; Kilburn, L.; Gazinska, P.; Owen, J.; Abraham, J.; Barrett, S.; Barrett-Lee, P.; et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: The TNT Trial. Nat. Med. 2018, 24, 628–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Study | Year | Type of Study | Stage of Disease | Endpoints Available for Inclusion | Treatment | Chemotherapy Regimen |
---|---|---|---|---|---|---|---|
Fasching et al. [22] | GeparPLA | 2020 | Subgroup of phase 2 RCT | I-III | pCR; toxicity | PCb→EC | P 80 mg/m2 weekly + Cb AUC2 weekly for 12 weeks, followed by EC. |
Mayer et al. [23] | TBCRC030 | 2020 | Subgroup of phase 2 RCT | I-III | pCR; RCB | Cisplatin | Cisplatin 75 mg/m2 every 3 weeks |
Yuan et al. [24] | NCT01525966 | 2020 | Phase 2 | II-III | pCR; RCB; 3-year OS; 3-year DFS | Cb + nab-P | P 80 mg/m2 weekly for 12 doses + Cb AUC 6 every 3 weeks for four cycles |
Sharma et al. [25] | NeoSTOP | 2020 | Phase 2 RCT | I-III | pCR; RCB; OS; toxicity; event-free | Arm A: PCb→AC; Arm B: DCb | Arm A: P 80 mg/m2 weekly for 12 weeks + Cb AUC6 every 3 weeks for four cycles followed by doxorubicin 60 mg/m2 + cyclophosphamide 600 mg/m2 every 14 days for four cycles Arm B: D 75 mg/m2 + Cb AUC6 every 3 weeks for six cycles |
Fontaine et al. [26] | BSMO | 2019 | phase 2 | II-III | pCR; toxicity | PCb→EC | P 80 mg/m2 weekly concurrent with weekly Cb AUC = 2 for 12 weeks, followed by bi-weekly epirubicin (90 mg/m2) and cyclophosphamide (600 mg/m2) |
Hahnen et al. [28], Loibl.S et al. [27] | Gepar Sixto | 2017, 2018 | Phase 2 RCT | II-III | pCR, DFS | PCb + doxorubicin + bevacizumab | Cb AUC5 + P 80 mg/m2 + doxorubicin 20 mg/m2 weekly for 18 weeks + bevacizumab 15 mg/kg iv every 3 weeks |
Loibl et al. [29], Telli et al. [30] | BrighTNess | 2018 | phase 3 RCT | II-III | pCR, toxicity | Segment I: PCb + veraparib Segment II: PCb | Segment I: P 80 mg/m2 weekly for 12 doses + Cb AUC 6 every 3 weeks for four cycles + veraparib 50 mg orally twice a day. Segment II: P 80 mg/m2 weekly for 12 doses + Cb AUC 6 every 3 weeks for four cycles |
Sella et al. [35] | 2018 | Clinical trial | I-III | pCR | ddAC→PCb | Four cycles of doxorubicin (60 mg/m2) and cyclophosphamide (600 mg/m2) every 2 weeks followed by 12 weekly cycles of P (80/m2) with Cb (AUC 1.5) | |
Sharma et al. [31] | PROGECT | 2017 | Clinical trial | I-III | pCR, RCB | DCb | Six cycles of Cb AUC 6 + D 75 mg/m2 every 21 days |
Connolly et al. [32] | TBCRC 008 | 2016 | Phase 2 RCT | I-III | pCR | Cb + nab-P ± vorinostat | Not available |
Telli et al. [33] | PrECOG 0105 | 2015 | Phase 2 | I-IIIA | pCR, RCB | Cb + gemcitabine + iniparib | Four cycles of Cb (on days 1 and 8) + gemcitabin (1000 mg/m2 on days 1 and 8), + iniparib (5.6 mg/Kg on days 1, 4, 8, and 11) every 21 days |
Kaklamani et al. [34] | NCT01372579 | 2015 | Phase 2 | I-III | pCR, RCB | Cb + eribulin | Four cycles of Cb AUC 6 + eribulin 1.4 mg/m2 (day 1 and 8) every 21 days |
Silver et al. [36] | 2010 | Clinical trial | II-III | pCR | Cisplatin | Four cycles of Cisplatin at 75 mg/m2 every 21 days |
Author | Study | Year | No. of Patients | No. of Patients with pCR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
mBRCA+ | WtBRCA | HRD+ | HRD- | mBRCA+ | WtBRCA | HRD+ | HRD- | |||
Fasching et al. [22] | GeparPLA | 2020 | 20 | 16 | 27 | 12 | 6 | 16 | ||
Mayer et al. [23] | TBCRC030 | 2020 | 6 | 69 | 39 | 17 | 1 | 5 | 5 | 1 |
Yuan et al. [24] | NCT01525966 | 2020 | 11 | 44 | 8 | 20 | ||||
Sharma et al. [25] | NeoSTOP | 2020 | 17 | 65 | 13 | 32 | ||||
Fontaine et al. [26] | BSMO | 2019 | 9 | 42 | 7 | 22 | ||||
Hahnen et al. [28], Loibl.S et al. [27] | GeparSixto | 2017, 2018 | 26 | 120 | 74 | 27 | 17 | 66 | 48 | 11 |
Loibl et al. [29], Telli et al. [30] | BrighTNess | 2018 | 70 | 406 | 225 | 104 | 38 | 222 | 138 | 42 |
Sella et al. [35] | 2018 | 14 | 23 | 9 | 10 | |||||
Sharma et al. [31] | PROGECT | 2017 | 27 | 133 | 16 | 75 | ||||
Connolly et al. [32] | TBCRC 008 | 2016 | 12 | 6 | 8 | 1 | ||||
Telli et al. [33] | PrECOG 0105 | 2015 | 17 | 73 | 50 | 15 | 9 | 22 | 33 | 3 |
Kaklamani et al. [34] | NCT01372579 | 2015 | 3 | 27 | 12 | 14 | 2 | 11 | 9 | 2 |
Silver et al. [36] | 2010 | 2 | 26 | 2 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Y.; Chen, Y.; Zhang, D.; Wei, Y.; Li, Z.; Li, Q.; Xu, B. Homologous Recombination Deficiency (HRD) and BRCA 1/2 Gene Mutation for Predicting the Effect of Platinum-Based Neoadjuvant Chemotherapy of Early-Stage Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis. J. Pers. Med. 2022, 12, 323. https://doi.org/10.3390/jpm12020323
Chai Y, Chen Y, Zhang D, Wei Y, Li Z, Li Q, Xu B. Homologous Recombination Deficiency (HRD) and BRCA 1/2 Gene Mutation for Predicting the Effect of Platinum-Based Neoadjuvant Chemotherapy of Early-Stage Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis. Journal of Personalized Medicine. 2022; 12(2):323. https://doi.org/10.3390/jpm12020323
Chicago/Turabian StyleChai, Yue, Yujie Chen, Di Zhang, Yuce Wei, Zhijun Li, Qiao Li, and Binghe Xu. 2022. "Homologous Recombination Deficiency (HRD) and BRCA 1/2 Gene Mutation for Predicting the Effect of Platinum-Based Neoadjuvant Chemotherapy of Early-Stage Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis" Journal of Personalized Medicine 12, no. 2: 323. https://doi.org/10.3390/jpm12020323
APA StyleChai, Y., Chen, Y., Zhang, D., Wei, Y., Li, Z., Li, Q., & Xu, B. (2022). Homologous Recombination Deficiency (HRD) and BRCA 1/2 Gene Mutation for Predicting the Effect of Platinum-Based Neoadjuvant Chemotherapy of Early-Stage Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 12(2), 323. https://doi.org/10.3390/jpm12020323