A Multi-Center Study for the Development of the Taiwan Cognition Questionnaire (TCQ) in Major Depressive Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Subjective Measure
2.4. Objective Measures
2.4.1. Digit Symbol Substitution Test (DSST)
2.4.2. Digit Span Forwards and Backwards (DS)
2.4.3. Verbal Fluency Task (VFT)
2.4.4. Wechsler Memory Scale-Third Edition—Word Lists (WMS-III—Word Lists, WL)
2.5. Statistical Analyses
2.5.1. Descriptive Statistics
2.5.2. Validity and Reliability Testing of TCQ
2.5.3. Cut-Off Points of TCQ in Identifying Cognitive Impairment
2.5.4. TCQ Scores Predicted by Associated Factors
3. Results
3.1. Descriptive Statistics
3.2. Validity and Reliability Testing of TCQ
3.2.1. Content Validity
3.2.2. Construct Validity
3.2.3. Reliability
3.3. Cut-Off Points of TCQ in Identifying Cognitive Impairment
3.4. TCQ Scores Predicted by Associated Factors
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. English Version of Taiwan Cognition Questionnaire (TCQ)
0 (Never or Rarely) | 1 (Sometimes) | 2 (Often) | 3 (Very Often) | |
---|---|---|---|---|
My memory worse than usual | ||||
My attention worse than usual | ||||
I slower than usual | ||||
It more difficult for me to make a decision than usual | ||||
I less capable than usual | ||||
Total score |
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Ferrari, A.J.; Charlson, F.; Norman, R.E.; Patten, S.; Freedman, G.D.; Murray, C.J.; Vos, T.; Whiteford, H. Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Med. 2013, 10, e1001547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Zimmerman, M.; McGlinchey, J.B.; Posternak, M.A.; Friedman, M.; Boerescu, D.; Attiullah, N. Discordance between self-reported symptom severity and psychosocial functioning ratings in depressed outpatients: Implications for how remission from depression should be defined. Psychiatry Res. 2006, 141, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Bortolato, B.; Miskowiak, K.W.; Köhler, C.A.; Maes, M.; Fernandes, B.; Berk, M.; Carvalho, A.F. Cognitive remission: A novel objective for the treatment of major depression? BMC Med. 2016, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, R.S.; Xiao, H.X.; Syeda, K.; Vinberg, M.; Carvalho, A.F.; Mansur, R.B.; Maruschak, N.; Cha, D.S. The Prevalence, Measurement, and Treatment of the Cognitive Dimension/Domain in Major Depressive Disorder. CNS Drugs 2015, 29, 577–589. [Google Scholar] [CrossRef]
- Cambridge, O.R.; Knight, M.J.; Mills, N.; Baune, B.T. The clinical relationship between cognitive impairment and psychosocial functioning in major depressive disorder: A systematic review. Psychiatry Res. 2018, 269, 157–171. [Google Scholar] [CrossRef]
- Cha, D.S.; Carmona, N.E.; Subramaniapillai, M.; Mansur, R.B.; Lee, Y.; Lee, J.H.; Lee, J.; Rosenblat, J.D.; Shekotikhina, M.; Park, C.; et al. Cognitive impairment as measured by the THINC-integrated tool (THINC-it): Association with psychosocial function in major depressive disorder. J. Affect. Disord. 2017, 222, 14–20. [Google Scholar] [CrossRef]
- Ott, C.V.; Bjertrup, A.J.; Jensen, J.H.; Ullum, H.; Sjælland, R.; Purdon, S.E.; Vieta, E.; Kessing, L.V.; Miskowiak, K.W. Screening for cognitive dysfunction in unipolar depression: Validation and evaluation of objective and subjective tools. J. Affect. Disord. 2016, 190, 607–615. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Best, M.W.; Bowie, C.R.; Carmona, N.E.; Cha, D.S.; Lee, Y.; Subramaniapillai, M.; Mansur, R.B.; Barry, H.; Baune, B.T.; et al. The THINC-Integrated Tool (THINC-it) Screening Assessment for Cognitive Dysfunction: Validation in Patients with Major Depressive Disorder. J. Clin. Psychiatry 2017, 78, 873–881. [Google Scholar] [CrossRef] [Green Version]
- MacQueen, G.M.; Memedovich, K.A. Cognitive dysfunction in major depression and bipolar disorder: Assessment and treatment options. Psychiatry Clin. Neurosci. 2017, 71, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tourjman, S.V.; Juster, R.-P.; Purdon, S.; Stip, E.; Kouassi, E.; Potvin, S. The screen for cognitive impairment in psychiatry (SCIP) is associated with disease severity and cognitive complaints in major depression. Int. J. Psychiatry Clin. Pr. 2018, 23, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.R.; Mercadé, C.; Sanchez-Moreno, J.; Solé, B.; Bonnín, C.D.M.; Torrent, C.; Grande, I.; Sugranyes, G.; Popovic, D.; Salamero, M.; et al. Validity and reliability of a rating scale on subjective cognitive deficits in bipolar disorder (COBRA). J. Affect. Disord. 2013, 150, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.W.; Lamy, F.-X.; Danchenko, N.; Yarlas, A.; White, M.K.; Rive, B.; Saragoussi, D. Psychometric validation of the Perceived Deficits Questionnaire-Depression (PDQ-D) instrument in US and UK respondents with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 2018, 2861–2877. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Yang, M.J.; Lai, T.J.; Chiu, N.M.; Chau, T.T. Development of the Taiwanese Depression Questionnaire. Chang Gung Med. J. 2000, 23, 688–694. [Google Scholar]
- Wechsler, D. The Wechsler Adult Intelligence Scale, 4th ed.; NCS Pearson: San Antonio, TX, USA, 2008. [Google Scholar]
- Wechsler, D. WAIS-3, WMS-3: Wechsler Adult Intelligence Scale, Wechsler Memory Scale: Technical Manual; Psychological Corporation: San Antonia, TX, USA, 1997. [Google Scholar]
- Bryan, J.; Luszcz, M.A.; Crawford, J.R. Verbal knowledge and speed of information processing as mediators of age differences in verbal fluency performance among older adults. Psychol. Aging 1997, 12, 473–478. [Google Scholar] [CrossRef]
- Rock, P.L.; Roiser, J.; Riedel, W.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med. 2014, 44, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.J.; Gallagher, P.; Robinson, L.J.; Porter, R.J.; Young, A.H.; Ferrier, I.N.; O’Brien, J.T. A comparison of neurocognitive impairment in younger and older adults with major depression. Psychol. Med. 2008, 39, 725–733. [Google Scholar] [CrossRef]
- Sánchez-Carro, Y.; Portella, M.J.; Leal-Leturia, I.; Salvat-Pujol, N.; Etxandi, M.; de Arriba-Arnau, A.; Urretavizcaya, M.; Pousa, E.; Toll, A.; Álvarez, P.; et al. Age at illness onset and physical activity are associated with cognitive impairment in patients with current diagnosis of major depressive disorder. J. Affect. Disord. 2021, 279, 343–352. [Google Scholar] [CrossRef]
- Gildengers, A.G.; Butters, M.A.; Chisholm, D.; Anderson, S.J.; Begley, A.; Holm, M.; Rogers, J.C.; Reynolds, C.F.; Mulsant, B.H. Cognition in older adults with bipolar disorder versus major depressive disorder. Bipolar Disord. 2012, 14, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Withall, A.; Harris, L.M.; Cumming, S.R. A longitudinal study of cognitive function in melancholic and non-melancholic subtypes of Major Depressive Disorder. J. Affect. Disord. 2010, 123, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, C.; Bosi, M.F.; Volontè, M.; Giordano, F.; Dell’Osso, B.; Viganò, C.A. Duration of untreated illness and depression severity are associated with cognitive impairment in mood disorders. Int. J. Psychiatry Clin. Pr. 2020, 24, 227–235. [Google Scholar] [CrossRef]
- Pan, Z.; Grovu, R.C.; Cha, D.S.; Carmona, N.E.; Subramaniapillai, M.; Shekotikhina, M.; Rong, C.; Lee, Y.; McIntyre, R.S. Pharmacological Treatment of Cognitive Symptoms in Major Depressive Disorder. CNS Neurol. Disord.—Drug Targets 2018, 16, 891–899. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Wingenfeld, K.; Kuehl, L.K.; Otte, C.; Hinkelmann, K. Childhood trauma and diagnosis of major depression: Association with memory and executive function. Psychiatry Res. 2018, 270, 880–886. [Google Scholar] [CrossRef]
- Ng, Q.X.; Loke, W.; Foo, N.X.; Tan, W.J.; Chan, H.W.; Lim, D.Y.; Yeo, W.S. A systematic review of the clinical use of Withania somnifera (Ashwagandha) to ameliorate cognitive dysfunction. Phytotherapy Res. 2019, 34, 583–590. [Google Scholar] [CrossRef]
- Herrera-Guzmán, I.; Gudayol-Ferré, E.; Herrera-Guzmán, D.; Guàrdia-Olmos, J.; Hinojosa-Calvo, E.; Herrera-Abarca, J.E. Effects of selective serotonin reuptake and dual serotonergic–noradrenergic reuptake treatments on memory and mental processing speed in patients with major depressive disorder. J. Psychiatr. Res. 2009, 43, 855–863. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Lophaven, S.; Olsen, C.K. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int. J. Neuropsychopharmacol. 2014, 17, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Cserjési, R.; Luminet, O.; Poncelet, A.-S.; Lénárd, L. Altered executive function in obesity. Exploration of the role of affective states on cognitive abilities. Appetite 2009, 52, 535–539. [Google Scholar] [CrossRef]
- Yen, Y.-C.; Rebok, G.W.; Gallo, J.J.; Jones, R.N.; Tennstedt, S.L. Depressive Symptoms Impair Everyday Problem-Solving Ability through Cognitive Abilities in Late Life. Am. J. Geriatr. Psychiatry 2011, 19, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.F.; Miskowiak, K.K.; Hyphantis, T.N.; Kohler, C.A.; Alves, G.S.; Bortolato, B.; Sales, P.M.G.; Machado-Vieira, R.; Berk, M.; McIntyre, R.S. Cognitive Dysfunction in Depression—Pathophysiology and Novel Targets. CNS Neurol. Disord.—Drug Targets 2015, 13, 1819–1835. [Google Scholar] [CrossRef]
- Bowie, C.R.; Gupta, M.; Holshausen, K. Cognitive Remediation Therapy for Mood Disorders: Rationale, Early Evidence, and Future Directions. Can. J. Psychiatry 2013, 58, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Raes, F.; Williams, J.M.G.; Hermans, D. Reducing cognitive vulnerability to depression: A preliminary investigation of MEmory Specificity Training (MEST) in inpatients with depressive symptomatology. J. Behav. Ther. Exp. Psychiatry 2009, 40, 24–38. [Google Scholar] [CrossRef]
- Rasmussen, K.G. Some Considerations in Choosing Electroconvulsive Therapy Versus Transcranial Magnetic Stimulation for Depression. J. ECT 2011, 27, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.M.; McClintock, S.M.; Forster, J.J.; Lo, T.Y.; Loo, C.K. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects. Depression Anxiety 2017, 34, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Millan, M.J.; Agid, Y.; Brüne, M.; Bullmore, E.; Carter, C.S.; Clayton, N.; Connor, R.; Davis, S.; Deakin, J.; DeRubeis, R.; et al. Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 2012, 11, 141–168. [Google Scholar] [CrossRef]
During the Past 7 Days, How Often Was… | Never or Rarely (0 or Once) | Sometimes (Twice or Thrice) | Often (4 to 5 Times) | Very Often (6 to 7 Times) |
---|---|---|---|---|
My memory worse than usual | 0 | 1 | 2 | 3 |
My attention worse than usual | 0 | 1 | 2 | 3 |
I slower than usual | 0 | 1 | 2 | 3 |
It more difficult for me to make a decision than usual | 0 | 1 | 2 | 3 |
I less capable than usual | 0 | 1 | 2 | 3 |
Group 1 (N = 493) | Group 2 (N = 150) | ||||
---|---|---|---|---|---|
Mean/Count | SD/% | Mean/Count | SD/% | ||
Age (years) | 49.9 | 17.1 | 52.2 | 12.1 | |
Age of onset (years) | 39.5 | 16.2 | 41.9 | 13.1 | |
Years since onset | 10.3 | 9.2 | 10.4 | 8.2 | |
Sex | male | 159 | 32.3 | 49 | 32.7 |
female | 334 | 67.7 | 101 | 67.3 | |
Marital status | married | 255 | 51.7 | 73 | 48.7 |
single | 145 | 29.4 | 26 | 17.3 | |
divorced/widowed | 93 | 18.9 | 51 | 34.0 | |
Education | primary or less | 72 | 14.6 | 26 | 17.3 |
middle | 62 | 12.6 | 38 | 25.3 | |
high | 159 | 32.3 | 56 | 37.3 | |
college or more | 200 | 40.6 | 30 | 20.0 | |
Occupation | unemployed | 349 | 70.8 | 106 | 70.7 |
full-time | 114 | 23.1 | 17 | 11.3 | |
part-time | 30 | 6.1 | 27 | 28.0 | |
Ever hospitalized 1 | yes | 158 | 32.0 | 66 | 44.0 |
no | 335 | 68.0 | 84 | 56.0 | |
ICD-10 diagnosis | F32.0 | 19 | 3.9 | 1 | 0.7 |
F32.1 | 27 | 5.5 | 7 | 4.7 | |
F32.2 | 13 | 2.6 | 12 | 8.0 | |
F32.3 | 5 | 1.0 | 1 | 0.7 | |
F32.4 | 11 | 2.2 | 0 | 0 | |
F32.5 | 15 | 3.0 | 0 | 0 | |
F32.9 | 24 | 4.9 | 9 | 6.0 | |
F33.0 | 22 | 4.5 | 1 | 0.7 | |
F33.1 | 68 | 13.8 | 16 | 10.7 | |
F33.2 | 105 | 21.3 | 50 | 33.3 | |
F33.3 | 20 | 4.1 | 20 | 13.3 | |
F33.40 | 38 | 7.7 | 2 | 1.3 | |
F33.41 | 55 | 11.2 | 1 | 0.7 | |
F33.42 | 19 | 3.9 | 0 | 0 | |
F33.9 | 52 | 10.5 | 30 | 20.0 | |
TCQ 2 score | 7.10 | 4.80 | 9.36 | 4.51 | |
TDQ 3 score | NA | NA | 31.67 | 14.32 | |
DSST 4 percentile | NA | NA | 22.5 | 25.5 | |
DS 5 percentile | NA | NA | 30.7 | 27.5 | |
VFT 6 percentile | NA | NA | 36.4 | 31.8 | |
WL 7 percentile | NA | NA | 30.0 | 26.3 |
Item No. | Mean | SD | Floor (%) | Ceiling (%) | Cronbach’s Alpha | Item Total Correlation |
---|---|---|---|---|---|---|
1 | 1.54 | 1.09 | 20.1 | 26.6 | 0.907 | 0.673 |
2 | 1.39 | 1.14 | 29.0 | 23.5 | 0.873 | 0.853 |
3 | 1.48 | 1.10 | 23.9 | 24.3 | 0.881 | 0.802 |
4 | 1.43 | 1.14 | 27.8 | 24.9 | 0.884 | 0.787 |
5 | 1.25 | 1.14 | 35.5 | 19.9 | 0.890 | 0.746 |
total | 7.10 | 4.80 | 8.50 | 9.50 | -- | -- |
Cut-Off Points | Sensitivity | 1-Specificity | Youden’s Index |
---|---|---|---|
2/3 | 0.943 | 0.844 | 0.099 |
3/4 | 0.895 | 0.778 | 0.117 |
4/5 | 0.886 | 0.711 | 0.175 |
5/6 | 0.819 | 0.644 | 0.175 |
6/7 | 0.790 | 0.511 | 0.279 |
7/8 | 0.714 | 0.489 | 0.225 |
8/9 | 0.657 | 0.422 | 0.235 |
9/10 | 0.610 | 0.311 | 0.299 |
10/11 | 0.543 | 0.244 | 0.299 |
11/12 | 0.476 | 0.200 | 0.276 |
12/13 | 0.371 | 0.089 | 0.282 |
13/14 | 0.343 | 0.089 | 0.254 |
14/15 | 0.248 | 0.089 | 0.159 |
Model | Variable | Unstandardized | Standardized Beta | 95% CI for B | p | R2 | |
---|---|---|---|---|---|---|---|
B | SE | ||||||
1 | Age (years) | −1.012 | 0.839 | −0.106 | −2.670 0.645 | 0.229 | 0.038 |
Male (vs. female) | −0.027 | 0.034 | −0.073 | −0.094 0.039 | 0.419 | ||
Married (vs. not-married) | −0.807 | 0.770 | −0.090 | −2.329 0.715 | 0.296 | ||
Education < 9 years (vs. >9 years) | 0.248 | 0.798 | 0.027 | −1.330 1.825 | 0.757 | ||
Unemployed (vs. else) | 0.561 | 0.866 | 0.057 | −1.151 2.273 | 0.518 | ||
2 | Age (years) | −1.234 | 0.785 | −0.129 | −2.785 0.317 | 0.118 | 0.175 |
Male (vs. female) | 0.007 | 0.033 | 0.018 | −0.058 0.071 | 0.842 | ||
Married (vs. not-married) | −0.195 | 0.749 | −0.022 | −1.676 1.286 | 0.795 | ||
Education < 9 years (vs. >9 years) | −0.499 | 0.766 | −0.055 | −2.013 1.015 | 0.516 | ||
Unemployed (vs. else) | −0.321 | 0.829 | −0.032 | −1.959 1.318 | 0.699 | ||
Ever hospitalized 2 (vs. never) | 2.417 | 0.746 | 0.267 | 0.942 3.892 | 0.001 | ||
Cognition composite score 3 | −0.014 | 0.004 | −0.260 | −0.022 −0.005 | 0.002 | ||
3 | Age (years) | −0.110 | 0.493 | −0.011 | −1.084 0.864 | 0.824 | 0.684 |
Male (vs. female) | 0.013 | 0.020 | 0.034 | −0.027 0.053 | 0.533 | ||
Married (vs. not-married) | 0.728 | 0.469 | 0.081 | −0.199 1.656 | 0.123 | ||
Education < 9 years (vs. >9 years) | 0.208 | 0.478 | 0.023 | −0.737 1.152 | 0.665 | ||
Unemployed (vs. else) | −0.067 | 0.515 | −0.007 | −1.084 0.951 | 0.897 | ||
Ever hospitalized (vs. never) | 1.194 | 0.470 | 0.132 | 0.264 2.123 | 0.012 | ||
Cognition composite score 3 | −0.003 | 0.003 | −0.055 | −0.008 0.003 | 0.294 | ||
TDQ 4 total score | 0.248 | 0.016 | 0.786 | 0.215 0.280 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, Y.-C.; Chiu, N.-Y.; Hwang, T.-J.; Su, T.-P.; Yang, Y.-K.; Chen, C.-S.; Li, C.-T.; Su, K.-P.; Lai, T.-J.; Chang, C.-M. A Multi-Center Study for the Development of the Taiwan Cognition Questionnaire (TCQ) in Major Depressive Disorder. J. Pers. Med. 2022, 12, 359. https://doi.org/10.3390/jpm12030359
Yen Y-C, Chiu N-Y, Hwang T-J, Su T-P, Yang Y-K, Chen C-S, Li C-T, Su K-P, Lai T-J, Chang C-M. A Multi-Center Study for the Development of the Taiwan Cognition Questionnaire (TCQ) in Major Depressive Disorder. Journal of Personalized Medicine. 2022; 12(3):359. https://doi.org/10.3390/jpm12030359
Chicago/Turabian StyleYen, Yung-Chieh, Nan-Ying Chiu, Tzung-Jeng Hwang, Tung-Ping Su, Yen-Kuang Yang, Cheng-Sheng Chen, Cheng-Ta Li, Kuan-Pin Su, Te-Jen Lai, and Chia-Ming Chang. 2022. "A Multi-Center Study for the Development of the Taiwan Cognition Questionnaire (TCQ) in Major Depressive Disorder" Journal of Personalized Medicine 12, no. 3: 359. https://doi.org/10.3390/jpm12030359
APA StyleYen, Y. -C., Chiu, N. -Y., Hwang, T. -J., Su, T. -P., Yang, Y. -K., Chen, C. -S., Li, C. -T., Su, K. -P., Lai, T. -J., & Chang, C. -M. (2022). A Multi-Center Study for the Development of the Taiwan Cognition Questionnaire (TCQ) in Major Depressive Disorder. Journal of Personalized Medicine, 12(3), 359. https://doi.org/10.3390/jpm12030359