Incorporating Biomarkers in COPD Management: The Research Keeps Going
Abstract
:1. Introduction
2. Complete Blood Count-Based Biomarkers
3. Oxidative Stress Biomarkers
4. Age-Related Biomarkers
5. Bronchial Biomarkers
6. Mucine-Producing Pathways
7. Extracellular Vesicles as Biomarkers in COPD
8. Genetic Biomarkers
9. COPD Exacerbation-Related Biomarkers
10. Combination of Biomarkers
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lange, P.; Celli, B.R.; Agustí, A.; Jensen, G.B.; Divo, M.; Faner, R.; Guerra, S.; Marott, J.L.; Martinez, F.D.; Martinez-Camblor, P.; et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2015, 373, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodruff, P.G.; Agusti, A.; Roche, N.; Singh, D.; Martinez, F.J. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: Making progress towards personalised management. Lancet 2015, 385, 1789–1798. [Google Scholar] [CrossRef] [Green Version]
- Stockley, R.A.; Halpin, D.M.G.; Celli, B.R.; Singh, D. Chronic Obstructive Pulmonary Disease Biomarkers and Their Interpretation. Am. J. Respir. Crit. Care Med. 2019, 199, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Spilker, B.A. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Ho, T.; Dasgupta, A.; Hargreave, F.E.; Nair, P. The use of cellular and molecular biomarkers to manage COPD exacerbations. Expert Rev. Respir. Med. 2017, 11, 403–411. [Google Scholar] [CrossRef]
- Sin, D.D.; Hollander, Z.; Demarco, M.L.; McManus, B.M.; Ng, R.T. Biomarker Development for Chronic Obstructive Pulmonary Disease. From Discovery to Clinical Implementation. Am. J. Respir. Crit. Care Med. 2015, 192, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Faner, R.; Tal-Singer, R.; Riley, J.H.; Celli, B.; Vestbo, J.; MacNee, W.; Bakke, P.; Calverley, P.M.A.; Coxson, H.; Crim, C.; et al. Lessons from ECLIPSE: A review of COPD biomarkers. Thorax 2014, 69, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Agustí, A.; Edwards, L.D.; Rennard, S.I.; MacNee, W.; Tal-Singer, R.; Miller, B.E.; Vestbo, J.; Lomas, D.A.; Calverley, P.M.A.; Wouters, E.; et al. Persistent Systemic Inflammation is Associated with Poor Clinical Outcomes in COPD: A Novel Phenotype. PLoS ONE 2012, 7, e37483. [Google Scholar] [CrossRef]
- Thomsen, M.; Dahl, M.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Inflammatory Biomarkers and Comorbidities in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 982–988. [Google Scholar] [CrossRef]
- Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Müllerová, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agusti, A.; MacNee, W.; et al. Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2010, 363, 1128–1138. [Google Scholar] [CrossRef] [Green Version]
- Müllerová, H.; Maselli, D.J.; Locantore, N.; Vestbo, J.; Hurst, J.R.; Wedzicha, J.A.; Bakke, P.; Agusti, A.; Anzueto, A. Hospitalized Exacerbations of COPD: Risk Factors and Outcomes in the ECLIPSE Cohort. Chest 2015, 147, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Pavord, I.; Lettis, S.; Locantore, N.; Pascoe, S.; Jones, P.W.; Wedzicha, J.A.; Barnes, N.C. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax 2015, 71, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negewo, N.A.; McDonald, V.M.; Baines, K.; Wark, P.A.; Simpson, J.L.; Jones, P.W.; Gibson, P. Peripheral blood eosinophils: A surrogate marker for airway eosinophilia in stable COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1495–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Kolsum, U.; Brightling, C.; Locantore, N.; Agusti, A.; Tal-Singer, R. Eosinophilic inflammation in COPD: Prevalence and clinical characteristics. Eur. Respir. J. 2014, 44, 1697–1700. [Google Scholar] [CrossRef] [Green Version]
- Pascoe, S.; Locantore, N.; Dransfield, M.T.; Barnes, N.C.; Pavord, I. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: A secondary analysis of data from two parallel randomised controlled trials. Lancet Respir. Med. 2015, 3, 435–442. [Google Scholar] [CrossRef]
- Siddiqui, S.; Guasconi, A.; Vestbo, J.; Jones, P.; Agusti, A.; Paggiaro, P.; Wedzicha, J.A.; Singh, D. Blood Eosinophils: A Biomarker of Response to Extrafine Beclomethasone/Formoterol in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2015, 192, 523–525. [Google Scholar] [CrossRef] [Green Version]
- Magnussen, H.; Disse, B.; Rodriguez-Roisin, R.; Kirsten, A.; Watz, H.; Tetzlaff, K.; Towse, L.; Finnigan, H.; Dahl, R.; Decramer, M.; et al. Withdrawal of Inhaled Glucocorticoids and Exacerbations of COPD. N. Engl. J. Med. 2014, 371, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Cosio, M.; Baraldo, S.; Saetta, M.; Singanayagam, A.; Johnston, S.L.; Mallia, P.; Magnussen, H.; Tetzlaff, K.; Calverley, P.M.A.; Brightling, C.E.; et al. Inhaled Glucocorticoids and COPD Exacerbations. N. Engl. J. Med. 2015, 372, 93–94. [Google Scholar] [CrossRef] [Green Version]
- Watz, H.; Tetzlaff, K.; Wouters, E.F.M.; Kirsten, A.; Magnussen, H.; Rodriguez-Roisin, R.; Vogelmeier, C.; Fabbri, L.; Chanez, P.; Dahl, R.; et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: A post-hoc analysis of the WISDOM trial. Lancet Respir. Med. 2016, 4, 390–398. [Google Scholar] [CrossRef]
- Aaron, S.D.; Vandemheen, K.L.; Maltais, F.; Field, S.; Sin, D.D.; Bourbeau, J.; Marciniuk, D.D.; FitzGerald, J.M.; Nair, P.; Mallick, R. TNFα antagonists for acute exacerbations of COPD: A randomised double-blind controlled trial. Thorax 2012, 68, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Bafadhel, M.; Greening, N.; Harvey-Dunstan, T.C.; Williams, J.E.; Morgan, M.D.; Brightling, C.; Hussain, S.F.; Pavord, I.; Singh, S.J.; Steiner, M. Blood Eosinophils and Outcomes in Severe Hospitalized Exacerbations of COPD. Chest 2016, 150, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Bafadhel, M.; Davies, L.; Calverley, P.M.; Aaron, S.; Brightling, C.; Pavord, I. Blood eosinophil guided prednisolone therapy for exacerbations of COPD: A further analysis. Eur. Respir. J. 2014, 44, 789–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD science committee report 2019. Eur. Respir. J. 2019, 53, 1900164. [Google Scholar] [CrossRef] [PubMed]
- Barnes, N.C.; Sharma, R.; Lettis, S.; Calverley, P.M. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur. Respir. J. 2016, 47, 1374–1382. [Google Scholar] [CrossRef] [Green Version]
- Brightling, C.E.; Bleecker, E.R.; Panettieri, R.A.; Bafadhel, M.; She, D.; Ward, C.K.; Xu, X.; Birrell, C.; van der Merwe, R. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: A randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir. Med. 2014, 2, 891–901. [Google Scholar] [CrossRef] [Green Version]
- Pavord, I.D.; Chanez, P.; Criner, G.J.; Kerstjens, H.; Korn, S.; Lugogo, N.; Martinot, J.-B.; Sagara, H.; Albers, F.C.; Bradford, E.S.; et al. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2017, 377, 1613–1629. [Google Scholar] [CrossRef]
- Garcia, G.; Taille, C.; Laveneziana, P.; Bourdin, A.; Chanez, P.; Humbert, M. Anti-interleukin-5 therapy in severe asthma. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2013, 22, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Ghazi, A.; Trikha, A.; Calhoun, W.J. Benralizumab—A humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity—A novel approach for the treatment of asthma. Expert Opin. Biol. Ther. 2011, 12, 113–118. [Google Scholar] [CrossRef]
- Fabbri, L.; Rabe, K.F. From COPD to chronic systemic inflammatory syndrome? Lancet 2007, 370, 797–799. [Google Scholar] [CrossRef]
- Gan, W.Q.; Man, S.F.P.; Senthilselvan, A.; Sin, D.D. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax 2004, 59, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Heidari, B. The importance of C-reactive protein and other inflammatory markers in patients with chronic obstructive pulmonary disease. Casp. J. Intern. Med. 2012, 3, 428–435. [Google Scholar]
- Hurst, J.R.; Donaldson, G.C.; Perera, W.R.; Wilkinson, T.M.A.; Bilello, J.A.; Hagan, G.W.; Vessey, R.S.; Wedzicha, J.A. Use of Plasma Biomarkers at Exacerbation of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2006, 174, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Asiimwe, A.C.; Brims, F.J.H.; Andrews, N.P.; Prytherch, D.R.; Higgins, B.R.; Kilburn, S.A.; Chauhan, A.J. Routine Laboratory Tests Can Predict In-hospital Mortality in Acute Exacerbations of COPD. Lung 2011, 189, 225–232. [Google Scholar] [CrossRef]
- Hollander, Z.; DeMarco, M.L.; Sadatsafavi, M.; McManus, B.M.; Ng, R.T.; Sin, D.D. Biomarker Development in COPD: Moving From P Values to Products to Impact Patient Care. Chest 2017, 151, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, E.; Zinellu, A.; Fois, A.; Pau, M.; Scano, V.; Piras, B.; Carru, C.; Pirina, P. Oxidative Stress Biomarkers in Chronic Obstructive Pulmonary Disease Exacerbations: A Systematic Review. Antioxidants 2021, 10, 710. [Google Scholar] [CrossRef]
- Zinellu, E.; Zinellu, A.; Fois, A.G.; Carru, C.; Pirina, P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: A systematic review. Respir. Res. 2016, 17, 150. [Google Scholar] [CrossRef] [Green Version]
- Röpcke, S.; Holz, O.; Lauer, G.; Muller, M.; Rittinghausen, S.; Ernst, P.; Lahu, G.; Elmlinger, M.; Krug, N.; Hohlfeld, J.M. Repeatability of and Relationship between Potential COPD Biomarkers in Bronchoalveolar Lavage, Bronchial Biopsies, Serum, and Induced Sputum. PLoS ONE 2012, 7, e46207. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, J.; Lacoma, A.; Prat, C.; Andreo, F.; Lores, L.; Ruiz-Manzano, J.; Ausina, V. Value of procalcitonin, C-reactive protein, and neopterin in exacerbations of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2011, 6, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Thomashow, M.A.; Shimbo, D.; Parikh, M.A.; Hoffman, E.A.; Vogel-Claussen, J.; Hueper, K.; Fu, J.; Liu, C.-Y.; Bluemke, D.A.; Ventetuolo, C.E.; et al. Endothelial Microparticles in Mild Chronic Obstructive Pulmonary Disease and Emphysema. The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease Study. Am. J. Respir. Crit. Care Med. 2013, 188, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Kobayashi, S.; Fujino, N.; Suzuki, T.; Ota, C.; He, M.; Yamada, M.; Suzuki, S.; Yanai, M.; Kurosawa, S.; et al. Increased circulating endothelial microparticles in COPD patients: A potential biomarker for COPD exacerbation susceptibility. Thorax 2012, 67, 1067–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020, 33, 101544. [Google Scholar] [CrossRef] [PubMed]
- Angelis, N.; Porpodis, K.; Zarogoulidis, P.; Spyratos, D.; Kioumis, I.; Papaiwannou, A.; Pitsiou, G.; Tsakiridis, K.; Mpakas, A.; Arikas, S.; et al. Airway inflammation in chronic obstructive pulmonary disease. J. Thorac. Dis. 2014, 6, S167–S172. [Google Scholar] [CrossRef] [PubMed]
- Koutsokera, A.; Kostikas, K.; Nicod, L.P.; Fitting, J.-W. Pulmonary biomarkers in COPD exacerbations: A systematic review. Respir. Res. 2013, 14, 111. [Google Scholar] [CrossRef] [Green Version]
- Comandini, A.; Rogliani, P.; Nunziata, A.; Cazzola, M.; Curradi, G.; Saltini, C. Biomarkers of lung damage associated with tobacco smoke in induced sputum. Respir. Med. 2009, 103, 1592–1613. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Chowdhury, B.; Kharitonov, S.A.; Magnussen, H.; Page, C.P.; Postma, D.; Saetta, M. Pulmonary Biomarkers in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2006, 174, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Chamitava, L.; Cazzoletti, L.; Ferrari, M.; Garcia-Larsen, V.; Jalil, A.; Degan, P.; Fois, A.G.; Zinellu, E.; Fois, S.S.; Pasini, A.M.F.; et al. Biomarkers of Oxidative Stress and Inflammation in Chronic Airway Diseases. Int. J. Mol. Sci. 2020, 21, E4339. [Google Scholar] [CrossRef]
- Cote, C.G. Surrogates of Mortality in Chronic Obstructive Pulmonary Disease. Am. J. Med. 2006, 119, 54–62. [Google Scholar] [CrossRef]
- Wurst, K.E.; Rheault, T.R.; Edwards, L.; Tal-Singer, R.; Agustí, A.; Vestbo, J. A comparison of COPD patients with and without ACOS in the ECLIPSE study. Eur. Respir. J. 2016, 47, 1559–1562. [Google Scholar] [CrossRef]
- Antus, B. Oxidative Stress Markers in Sputum. Oxidative Med. Cell. Longev. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kant, S.; Bajpai, J.; Prakash, V.; Verma, A.K.; Srivastava, A.; Bajaj, D.K.; Ahmad, M.; Agarwal, A. Study of oxidative stress biomarkers in chronic obstructive pulmonary disease and their correlation with disease severity in north Indian population cohort. Lung India Off. Organ Indian Chest Soc. 2017, 34, 324–329. [Google Scholar] [CrossRef]
- Albrecht, E.; Sillanpää, E.; Karrasch, S.; Alves, A.C.; Codd, V.; Hovatta, I.; Buxton, J.L.; Nelson, C.P.; Broer, L.; Hägg, S.; et al. Telomere length in circulating leukocytes is associated with lung function and disease. Eur. Respir. J. 2013, 43, 983–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNee, W. Is Chronic Obstructive Pulmonary Disease an Accelerated Aging Disease? Ann. Am. Thorac. Soc. 2016, 13, S429–S437. [Google Scholar] [CrossRef]
- Birch, J.; Anderson, R.K.; Correia-Melo, C.; Jurk, D.; Hewitt, G.; Marques, F.M.; Green, N.J.; Moisey, E.; Birrell, M.A.; Belvisi, M.G.; et al. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am. J. Physiol. Cell. Mol. Physiol. 2015, 309, L1124–L1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easter, M.; Bollenbecker, S.; Barnes, J.W.; Krick, S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2020, 21, E6924. [Google Scholar] [CrossRef] [PubMed]
- Córdoba-Lanús, E.; Cazorla-Rivero, S.; Espinoza-Jiménez, A.; De-Torres, J.P.; Pajares, M.J.; Aguirre-Jaime, A.; Celli, B.; Casanova, C. Telomere shortening and accelerated aging in COPD: Findings from the BODE cohort. Respir. Res. 2017, 18, 59. [Google Scholar] [CrossRef] [Green Version]
- Savale, L.; Chaouat, A.; Bastuji-Garin, S.; Marcos, E.; Boyer, L.; Maitre, B.; Sarni, M.; Housset, B.; Weitzenblum, E.; Matrat, M.; et al. Shortened Telomeres in Circulating Leukocytes of Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2009, 179, 566–571. [Google Scholar] [CrossRef]
- Moon, D.H.; Kim, J.; Lim, M.N.; Bak, S.H.; Kim, W.J. Correlation between Telomere Length and Chronic Obstructive Pulmonary Disease—Related Phenotypes: Results from the Chronic Obstructive Pulmonary Disease in Dusty Areas (CODA) Cohort. Tuberc. Respir. Dis. 2021, 84, 188–199. [Google Scholar] [CrossRef]
- Rode, L.; Bojesen, S.E.; Weischer, M.; Vestbo, J.; Nordestgaard, B.G. Short telomere length, lung function and chronic obstructive pulmonary disease in 46 396 individuals. Thorax 2012, 68, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Radicioni, G.; Ceppe, A.; Ford, A.A.; Alexis, N.E.; Barr, R.G.; Bleecker, E.R.; Christenson, S.A.; Cooper, C.B.; Han, M.K.; Hansel, N.N.; et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2021, 9, 1241–1254. [Google Scholar] [CrossRef]
- Kesimer, M.; Smith, B.M.; Ceppe, A.; Ford, A.A.; Anderson, W.H.; Barr, R.G.; O’Neal, W.K.; Boucher, R.C.; Woodruff, P.G.; Han, M.K.; et al. Mucin Concentrations and Peripheral Airway Obstruction in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2018, 198, 1453–1456. [Google Scholar] [CrossRef]
- Fujisawa, T.; Velichko, S.; Thai, P.; Hung, L.-Y.; Huang, F.; Wu, R. Regulation of AirwayMUC5ACExpression by IL-1β and IL-17A; the NF-κB Paradigm. J. Immunol. 2009, 183, 6236–6243. [Google Scholar] [CrossRef] [Green Version]
- Kesimer, M.; Ford, A.A.; Ceppe, A.; Radicioni, G.; Cao, R.; Davis, C.W.; Doerschuk, C.M.; Alexis, N.E.; Anderson, W.H.; Henderson, A.G.; et al. Airway Mucin Concentration as a Marker of Chronic Bronchitis. N. Engl. J. Med. 2017, 377, 911–922. [Google Scholar] [CrossRef]
- Kanai, K.; Koarai, A.; Shishikura, Y.; Sugiura, H.; Ichikawa, T.; Kikuchi, T.; Akamatsu, K.; Hirano, T.; Nakanishi, M.; Matsunaga, K.; et al. Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respir. Investig. 2015, 53, 137–148. [Google Scholar] [CrossRef]
- Reid, L.V.; Spalluto, C.M.; Watson, A.; Staples, K.J.; Wilkinson, T.M.A. The Role of Extracellular Vesicles as a Shared Disease Mechanism Contributing to Multimorbidity in Patients with COPD. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.R.; Burdon, J.G.W.; Piitulainen, E.; Sandhaus, R.A.; Seersholm, N.; Stocks, J.M.; Stoel, B.C.; Huang, L.; Yao, Z.; Edelman, J.M.; et al. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): A randomised, double-blind, placebo-controlled trial. Lancet 2015, 386, 360–368. [Google Scholar] [CrossRef]
- Silverman, E.K.; Sandhaus, R.A. Alpha1-Antitrypsin Deficiency. N. Engl. J. Med. 2009, 360, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Guenegou, A.; Leynaert, B.; Bénessiano, J.; Pin, I.; Demoly, P.; Neukirch, F.; Boczkowski, J.; Aubier, M. Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health Survey (ECRHS), France. J. Med. Genet. 2006, 43, e43. [Google Scholar] [CrossRef] [Green Version]
- Yamada, N.; Yamaya, M.; Okinaga, S.; Nakayama, K.; Sekizawa, K.; Shibahara, S.; Sasaki, H. Microsatellite Polymorphism in the Heme Oxygenase-1 Gene Promoter Is Associated with Susceptibility to Emphysema. Am. J. Hum. Genet. 2000, 66, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Cho, M.H.; Anderson, W.; Coxson, H.O.; Müller, N.; Washko, G.; Hoffman, E.A.; Bakke, P.; Gulsvik, A.; Lomas, D.A.; et al. Genome-wide Association Study IdentifiesBICD1as a Susceptibility Gene for Emphysema. Am. J. Respir. Crit. Care Med. 2011, 183, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Faner, R.; Rojas, M.; MacNee, W.; Agustí, A. Abnormal Lung Aging in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Cho, M.H.; Hersh, C.P.; Lomas, D.A.; Miller, B.E.; Kong, X.; Bakke, P.; Gulsvik, A.; Agustí, A.; Wouters, E.; et al. Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 1238–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillai, S.G.; Ge, D.; Zhu, G.; Kong, X.; Shianna, K.V.; Need, A.; Feng, S.; Hersh, C.P.; Bakke, P.; Gulsvick, A.; et al. A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci. PLoS Genet. 2009, 5, e1000421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.H.; Castaldi, P.J.; Wan, E.S.; Siedlinski, M.; Hersh, C.P.; Demeo, D.L.; Himes, B.E.; Sylvia, J.S.; Klanderman, B.J.; Ziniti, J.P.; et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum. Mol. Genet. 2012, 21, 947–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.H.; Boutaoui, N.; Klanderman, B.J.; Sylvia, J.S.; Ziniti, J.P.; Hersh, C.P.; DeMeo, D.L.; Hunninghake, G.M.; Litonjua, A.; Sparrow, D.; et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 2010, 42, 200–202. [Google Scholar] [CrossRef] [Green Version]
- Artigas, M.S.; Wain, L.V.; Repapi, E.; Obeidat, M.; Sayers, I.; Burton, P.R.; Johnson, T.; Zhao, J.H.; Albrecht, E.; Dominiczak, A.F.; et al. Effect of Five Genetic Variants Associated with Lung Function on the Risk of Chronic Obstructive Lung Disease, and Their Joint Effects on Lung Function. Am. J. Respir. Crit. Care Med. 2011, 184, 786–795. [Google Scholar] [CrossRef] [Green Version]
- Hancock, D.; Eijgelsheim, M.; Wilk, J.B.; Gharib, S.A.; Loehr, L.; Marciante, K.D.; Franceschini, N.; Van Durme, Y.M.T.A.; Chen, T.-H.; Barr, R.G.; et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 2010, 42, 45–52. [Google Scholar] [CrossRef]
- Castaldi, P.J.; Cho, M.H.; Estepar, R.S.J.; McDonald, M.-L.N.; Laird, N.; Beaty, T.H.; Washko, G.; Crapo, J.D.; Silverman, E.K. Genome-Wide Association Identifies Regulatory Loci Associated with Distinct Local Histogram Emphysema Patterns. Am. J. Respir. Crit. Care Med. 2014, 190, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Cho, M.H.; Hersh, C.P.; McDonald, M.-L.N.; Crapo, J.D.; Bakke, P.S.; Gulsvik, A.; Comellas, A.P.; Wendt, C.H.; Lomas, D.A.; et al. Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease. Respir. Res. 2014, 15, 113. [Google Scholar] [CrossRef] [Green Version]
- Pillai, S.G.; Kong, X.; Edwards, L.D.; Cho, M.H.; Anderson, W.H.; Coxson, H.O.; Lomas, D.A.; Silverman, E.K. Loci Identified by Genome-wide Association Studies Influence Different Disease-related Phenotypes in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2010, 182, 1498–1505. [Google Scholar] [CrossRef] [Green Version]
- Bleecker, E.R.; Cho, M.H.; Hersh, C.P.; McDonald, M.-L.N.; Wells, J.M.; Dransfield, M.T.; Bowler, R.P.; Lynch, D.A.; Lomas, D.A.; Crapo, J.D.; et al. IREB2andGALCAre Associated with Pulmonary Artery Enlargement in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2015, 52, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, G.; Tian, X.; Chen, F.; Li, G.; Ding, Y. The polymorphisms of FGFR2 and MGAT5 affect the susceptibility to COPD in the Chinese people. BMC Pulm. Med. 2021, 21, 129. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, Y.; Guo, S.; Qin, J.; Feng, M.; An, Y.; Zhang, J.; Li, Y.; Xiong, S.; Zhou, H.; et al. Circulating syndecan-1 as a novel biomarker relates to lung function, systemic inflammation, and exacerbation in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1933–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathioudakis, A.G.; Janssens, W.; Sivapalan, P.; Singanayagam, A.; Dransfield, M.T.; Jensen, J.-U.S.; Vestbo, J. Acute exacerbations of chronic obstructive pulmonary disease: In search of diagnostic biomarkers and treatable traits. Thorax 2020, 75, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Noell, G.; Cosío, B.G.; Faner, R.; Monsó, E.; Peces-Barba, G.; De Diego, A.; Esteban, C.; Gea, J.; Rodriguez-Roisin, R.; Garcia-Nuñez, M.; et al. Multi-level differential network analysis of COPD exacerbations. Eur. Respir. J. 2017, 50, 1700075. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.; Ingebrigtsen, T.S.; Marott, J.L.; Dahl, M.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Inflammatory Biomarkers and Exacerbations in Chronic Obstructive Pulmonary Disease. JAMA 2013, 309, 2353–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fermont, J.M.; Masconi, K.L.; Jensen, M.T.; Ferrari, R.; Di Lorenzo, V.A.P.; Marott, J.M.; Schuetz, P.; Watz, H.; Waschki, B.; Müllerova, H.; et al. Biomarkers and clinical outcomes in COPD: A systematic review and meta-analysis. Thorax 2019, 74, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-W.R.; Leung, J.M.; Sin, D.D. A Systematic Review of Diagnostic Biomarkers of COPD Exacerbation. PLoS ONE 2016, 11, e0158843. [Google Scholar] [CrossRef]
- Celli, B.R.; Locantore, N.; Yates, J.; Tal-Singer, R.; Miller, B.E.; Bakke, P.; Calverley, P.; Coxson, H.; Crim, C.; Edwards, L.; et al. Inflammatory Biomarkers Improve Clinical Prediction of Mortality in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1065–1072. [Google Scholar] [CrossRef]
- Hlapčić, I.; Belamarić, D.; Bosnar, M.; Kifer, D.; Dugac, A.V.; Rumora, L. Combination of Systemic Inflammatory Biomarkers in Assessment of Chronic Obstructive Pulmonary Disease: Diagnostic Performance and Identification of Networks and Clusters. Diagnostics 2020, 10, 1029. [Google Scholar] [CrossRef]
- Hlapčić, I.; Hulina-Tomašković, A.; Rajković, M.G.; Popović-Grle, S.; Dugac, A.V.; Rumora, L. Association of Plasma Heat Shock Protein 70 with Disease Severity, Smoking and Lung Function of Patients with Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2020, 9, 3097. [Google Scholar] [CrossRef]
- Celli, B.R.; Anderson, J.A.; Brook, R.; Calverley, P.; Cowans, N.J.; Crim, C.; Dixon, I.; Kim, V.; Martinez, F.J.; Morris, A.; et al. Serum biomarkers and outcomes in patients with moderate COPD: A substudy of the randomised SUMMIT trial. BMJ Open Respir. Res. 2019, 6, e000431. [Google Scholar] [CrossRef] [Green Version]
- Schumann, D.M.; Leeming, D.; Papakonstantinou, E.; Blasi, F.; Kostikas, K.; Boersma, W.; Louis, R.; Milenkovic, B.; Aerts, J.; Sand, J.M.; et al. Collagen Degradation and Formation Are Elevated in Exacerbated COPD Compared with Stable Disease. Chest 2018, 154, 798–807. [Google Scholar] [CrossRef]
- Pizzini, A.; Filipiak, W.; Wille, J.; Ager, C.; Wiesenhofer, H.; Kubinec, R.; Blaško, J.; Tschurtschenthaler, C.; Mayhew, C.A.; Weiss, G.; et al. Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease. J. Breath Res. 2018, 12, 036002. [Google Scholar] [CrossRef]
- Zemans, R.L.; Jacobson, S.; Keene, J.; Kechris, K.; Miller, B.E.; Tal-Singer, R.; Bowler, R.P. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir. Res. 2017, 18, 117. [Google Scholar] [CrossRef] [Green Version]
Specimen Type | Readily Available and Currently Used Biomarkers | Extensively Investigated Biomarkers but Not Sufficiently Validated | Less Investigated Biomarkers |
---|---|---|---|
Peripheral Blood (plasma/ serum) | Eosinophils | MDA | Vitamins A, E, and C |
CRP | GSH, GSH-Px, SOD | GGT | |
IL-6, TNFα, MCP-1 | vWF | ||
Extracellular vesicles (CD62E+, CD31+) | |||
Exhaled air | FeNO | Ethane | |
Sputum | IL-6, IL-8, TNF-α | 8-isoprostane | |
MPO | MDA | ||
MMP-8, MMP-9, MMP-12, neutrophil elastase, Eosinophil peroxidase | SOD, GSH-Px | ||
Leptin | |||
Exhaled breath condensate | 8-isoprostane | MDA | |
H2O2 | IL-8 | ||
Bronchoalveolar lavage fluid | Glutathione | EGFR, HSA, A1AT, TIMP1, IL-8 and Cal-protectin | |
Urine | 8-isoprostane |
Specimen Type | Biomarker | Main Findings | First Author [Ref] |
---|---|---|---|
Peripheral Blood (plasma/ serum) | MDA | MDA levels were significantly higher in patients with AECOPD compared to stable COPD | Zinellu E. [35] |
Vitamins A, E, and C | Levels of vitamins A and E, but not C were significantly lower in patients with AECOPD than stable COPD | ||
GSH, GSH-Px, SOD | Decreased levels of these antioxidant biomarkers were found in the plasma of patients with AECOPD compared to stable COPD | ||
GGT | GGT levels were significantly higher in patients with AECOPD (adjusted for age, gender, smoking status) compared to stable COPD and a positive association was reported with CRP | Zinellu E. [36] | |
IL-6, TNFα, MCP-1 vWF | Elevated serum levels of IL-6, TNFα and MCP-1, depict the systemic inflammation that occurs in COPD patients Increased concentration of vWF was reported in the serum of COPD smokers | Röpcke S. [37] | |
CRP | Positive association of CRP with morbidity, mortality, and frequency of exacerbations Negative association with lung function parameters | Röpcke S. [37] | |
CRP was used for the confirmation of AECOPD | Lacoma A. [38] | ||
CRP was used as a prognostic biomarker and as a marker of inflammatory response in COPD patients Increased CRP levels were found in both patients with AECOPD and stable COPD CRP had a sensitivity of 72.5% and a specificity of 100% for the diagnosis of patients with AECOPD | Heidari B. [31] | ||
Extracellular vesicles | CD31+ EVs, suggestive of endothelial cell apoptosis, were elevated in patients with emphysema CD62E+ EVs indicative of endothelial activation were elevated in severe COPD and hyperinflation | Thomashow M.A. [39] | |
Higher baseline CD62E+ EVs may indicate COPD patients who are susceptible to exacerbation | Takahashi T [40] | ||
Blood eosinophilia | Peripheral blood eosinophilia (above 0.2 × 109/L) can be used for the detection of sputum eosinophilia mostly in stable COPD It is considered a sensitive biomarker for the detection of sputum eosinophilia in AECOPD (sensitivity 90%, specificity 60%) | Negewo N.A. [13] | |
Exhaled air | Ethane | Elevated levels of ethane are found in exhaled air of COPD patients and are associated with COPD severity | Barnes P.J. [41] |
FeNO | Smoking is considered a significant limitation of FeNO use because it negatively affects its concentration FeNO is elevated in patients with asthma-like component of COPD Potential biomarker for estimating treatment response in COPD patients | Angelis N. [42] | |
FeNO levels increased at the onset of AECOPD and decreased with resolution FeNO had an inverse relationship with FEV1% Increase of FEV1% following a decrease in FeNO (sensitivity 74%, specificity 75%) | Koutsokera A. [43] | ||
Sputum | MPO, 8-isoprostane | No significant elevation of MPO and 8-isoprostane was found in patients with AECOPD | Zinellu E. [35] |
Increased levels of 8-isoprostane were detected in COPD patients compared to non-smokers and smokers without COPD A positive association was observed between 8-isoprostane and pulmonary function parameters | Comandini A. [44] | ||
MDA, SOD, GSH-Px | Elevated levels of MDA, and reduced SOD and GSH-Px were observed in the sputum of patients with AECOPD compared to stable COPD A positive association was detected among these biomarkers in induced sputum | Zinellu E. [35] | |
MMP-8, MMP-9, MMP-12, neutrophil elastase, Eosinophil peroxidase | Elevated levels of these biomarkers were found in COPD patients | Barnes P.J. [45] | |
Comandini A. [44] | |||
IL-6, IL-8, TNF-α, Leptin | Elevated levels of IL-6, IL-8, TNF-a were observed in severe COPD cases compared to less severe COPD Increased levels of IL-8 were associated with COPD severity (predicted FEV1%) progression and AECOPD | Barnes P.J. [45] | |
IL-6, IL-8, TNF-α | Elevated levels of IL-6, IL-8 and TNF-α are observed in patients with AECOPD compared to stable COPD | Koutsokera A. [43] | |
Exhaled breath condensate | MDA, H2O2 | No difference was observed in the MDA levels in the EBC of patients with AECOPD and stable COPD H2O2 was highly elevated in both patients with AECOPD and stable COPD | Zinellu E. [35] |
MDA was elevated in the EBC of COPD patients and was even higher in patients with an AECOPD Elevated levels of H2O2 were found in both patients with AECOPD and stable COPD | Barnes P.J. [41] | ||
8-isoprostane | Increased levels of 8-isoprostane were observed in COPD patients | Chamitava L. [46] | |
Koutsokera A. [43] | |||
8-isoprostaglandin F2a (8-isoprostane) | 8-isoprostane was associated with disease severity Its concentration was found to be higher in COPD patients compared to smokers without COPD | Barnes P.J. [45] | |
IL-8 | There is an inverse relationship of IL-8 and PFTs at the onset of an AECOPD | Koutsokera A. [43] | |
Bronchoalveolar lavage fluid | Glutathione | Reduced glutathione levels were observed in severe AECOPD compared to stable COPD | Zinellu E. [35] |
Lower levels of glutathione were observed in frequent AECOPD compared to stable COPD. | Barnes P.J. [41] | ||
EGF-R, HSA, A1AT, TIMP1, IL-8 and Calprotectin | Low levels of EGF-R, HSA and A1AT were found in the BAL of COPD patients Increased concentrations of TIMP1, IL-8 and Calprotectin were detected in the BAL of COPD patients that were correlated with airway inflammation | Röpcke S. [37] | |
Urine | 8-isoprostane | Increased levels of 8-isoprostane were observed in the urine of COPD patients | Chamitava L. [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantazopoulos, I.; Magounaki, K.; Kotsiou, O.; Rouka, E.; Perlikos, F.; Kakavas, S.; Gourgoulianis, K. Incorporating Biomarkers in COPD Management: The Research Keeps Going. J. Pers. Med. 2022, 12, 379. https://doi.org/10.3390/jpm12030379
Pantazopoulos I, Magounaki K, Kotsiou O, Rouka E, Perlikos F, Kakavas S, Gourgoulianis K. Incorporating Biomarkers in COPD Management: The Research Keeps Going. Journal of Personalized Medicine. 2022; 12(3):379. https://doi.org/10.3390/jpm12030379
Chicago/Turabian StylePantazopoulos, Ioannis, Kalliopi Magounaki, Ourania Kotsiou, Erasmia Rouka, Fotis Perlikos, Sotirios Kakavas, and Konstantinos Gourgoulianis. 2022. "Incorporating Biomarkers in COPD Management: The Research Keeps Going" Journal of Personalized Medicine 12, no. 3: 379. https://doi.org/10.3390/jpm12030379
APA StylePantazopoulos, I., Magounaki, K., Kotsiou, O., Rouka, E., Perlikos, F., Kakavas, S., & Gourgoulianis, K. (2022). Incorporating Biomarkers in COPD Management: The Research Keeps Going. Journal of Personalized Medicine, 12(3), 379. https://doi.org/10.3390/jpm12030379