Middle Eastern Genetic Variation Improves Clinical Annotation of the Human Genome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Middle East Variation (MEV) Database
2.3. Functional and Clinical Annotation of Variants in the Middle East Variation (MEV) Database
2.4. Class I: Common Middle East Disease Variants (CMEDVs)
2.5. Class II: Putative Knockouts (KOs)
3. Results
3.1. Middle East Variation (MEV) Database
3.2. Common Middle East Disease Variants (CMEDVs)
3.3. Knockouts in the MEV Database
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- The 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; O’Connor, T.D.; Jun, G.; Kang, H.M.; Abecasis, G.; Leal, S.M.; Gabriel, S.; Rieder, M.J.; Altshuler, D.; Shendure, J.; et al. Corrigendum: Analysis of 6515 Exomes Reveals the Recent Origin of Most Human Protein-Coding Variants. Nature 2013, 495, 270. [Google Scholar] [CrossRef] [Green Version]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of Protein-Coding Genetic Variation in 60,706 Humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Tayoun, A.N.A.; Rehm, H.L. Genetic Variation in the Middle East—An Opportunity to Advance the Human Genetics Field. Genome Med. 2020, 7, 12–15. [Google Scholar] [CrossRef]
- Abou Tayoun, A.N.; Fakhro, K.A.; Alsheikh-Ali, A.; Alkuraya, F.S. Genomic Medicine in the Middle East. Genome Med. 2021, 13, 184. [Google Scholar] [CrossRef]
- Scott, E.M.; Halees, A.; Itan, Y.; Spencer, E.G.; He, Y.; Azab, M.A.; Gabriel, S.B.; Belkadi, A.; Boisson, B.; Abel, L.; et al. Characterization of Greater Middle Eastern Genetic Variation for Enhanced Disease Gene Discovery. Nat. Genet. 2016, 48, 1071–1079. [Google Scholar] [CrossRef]
- Abu Mahfouz, N.; Kizhakkedath, P.; Ibrahim, A.; El Naofal, M.; Ramaswamy, S.; Harilal, D.; Qutub, Y.; Uddin, M.; Taylor, A.; Alloub, Z.; et al. Utility of Clinical Exome Sequencing in a Complex Emirati Pediatric Cohort. Comput. Struct. Biotechnol. J. 2020, 18, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Alsalem, A.B.; Halees, A.S.; Anazi, S.; Alshamekh, S.; Alkuraya, F.S. Autozygome Sequencing Expands the Horizon of Human Knockout Research and Provides Novel Insights into Human Phenotypic Variation. PLoS Genet. 2013, 9, e1004030. [Google Scholar] [CrossRef] [PubMed]
- Fakhro, A.K.; Staudt, M.; Ramstetter, M.D.; Robay, A.; Malek, A.J.; Badii, R.; Al-Marri, A.A.-N.; Khalil, C.A.; Al Shakaki, A.; Chidiac, O.; et al. The Qatar Genome: A Population-Specific Tool for Precision Medicine in the Middle East. Hum. Genome Var. 2016, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Chapman, M.; Evans, K.; Azevedo, L.; Hayden, M.; Heywood, S.; Millar, D.S.; Phillips, A.D.; et al. The Human Gene Mutation Database (HGMD®): Optimizing Its Use in a Clinical Diagnostic or Research Setting. Hum. Genet. 2020, 139, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, S.; Church, D.M.; Maglott, D.R. ClinVar: Public Archive of Relationships among Sequence Variation and Human Phenotype. Nucleic Acids Res. 2014, 42, 980–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruitt, K.D.; Brown, G.R.; Hiatt, S.M.; Thibaud-Nissen, F.; Astashyn, A.; Ermolaeva, O.; Farrell, C.M.; Hart, J.; Landrum, M.J.; McGarvey, K.M.; et al. RefSeq: An Update on Mammalian Reference Sequences. Nucleic Acids Res. 2014, 42, 756–763. [Google Scholar] [CrossRef]
- Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD, USA). Available online: https://omim.org/ (accessed on 12 December 2021).
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Eilbeck, K.; Lewis, S.E.; Mungall, C.J.; Yandell, M.; Stein, L.; Durbin, R.; Ashburner, M. The Sequence Ontology: A Tool for the Unification of Genome Annotations. Genome Biol. 2005, 6, R44.1–R44.12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) Project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Blueprint Genetics’ Approach to Pseudogenes and Other Duplicated Genomic Regions. Available online: https://blueprintgenetics.com/pseudogene/ (accessed on 10 April 2021).
- Fattahi, Z.; Beheshtian, M.; Mohseni, M.; Poustchi, H.; Sellars, E.; Nezhadi, S.H.; Amini, A.; Arzhangi, S.; Jalalvand, K.; Jamali, P.; et al. Iranome: A catalog of genomic variations in the Iranian population. Hum. Mutat. 2019, 40, 1968–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razali, R.M.; Rodriguez-Flores, J.; Ghorbani, M.; Naeem, H.; Aamer, W.; Aliyev, E.; Jubran, A.; Ismail, S.I.; Al-Muftah, W.; Badji, R.; et al. Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes. Nat. Commun. 2021, 12, 5929. [Google Scholar] [CrossRef] [PubMed]
Total Variants | SNPs | Indels | |
---|---|---|---|
Total MEVs | 26,228,226 | 21,180,218 | 5,048,008 |
Total coding variants | 600,987 | 534,287 | 66,700 |
Unique coding variants * | 318,242 (53%) | 263,680 | 54,562 |
Reported coding variants ** | 282,745 (47%) | 270,607 | 12,138 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaswamy, S.; Jain, R.; El Naofal, M.; Halabi, N.; Yaslam, S.; Taylor, A.; Tayoun, A.A. Middle Eastern Genetic Variation Improves Clinical Annotation of the Human Genome. J. Pers. Med. 2022, 12, 423. https://doi.org/10.3390/jpm12030423
Ramaswamy S, Jain R, El Naofal M, Halabi N, Yaslam S, Taylor A, Tayoun AA. Middle Eastern Genetic Variation Improves Clinical Annotation of the Human Genome. Journal of Personalized Medicine. 2022; 12(3):423. https://doi.org/10.3390/jpm12030423
Chicago/Turabian StyleRamaswamy, Sathishkumar, Ruchi Jain, Maha El Naofal, Nour Halabi, Sawsan Yaslam, Alan Taylor, and Ahmad Abou Tayoun. 2022. "Middle Eastern Genetic Variation Improves Clinical Annotation of the Human Genome" Journal of Personalized Medicine 12, no. 3: 423. https://doi.org/10.3390/jpm12030423
APA StyleRamaswamy, S., Jain, R., El Naofal, M., Halabi, N., Yaslam, S., Taylor, A., & Tayoun, A. A. (2022). Middle Eastern Genetic Variation Improves Clinical Annotation of the Human Genome. Journal of Personalized Medicine, 12(3), 423. https://doi.org/10.3390/jpm12030423