The Free Myocutaneous Tensor Fasciae Latae Flap—A Workhorse Flap for Sternal Defect Reconstruction: A Single-Center Experience
Abstract
:1. Introduction
2. Patients and Methods
2.1. Pre-, Intra-, and Postoperative Treatment
2.2. Follow-Up
2.3. Statistical Analysis
3. Results
3.1. Postoperative Complications
3.2. Follow-Up Examinations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strecker, T.; Rösch, J.; Horch, R.E.; Weyand, M.; Kneser, U. Sternal wound infections following cardiac surgery: Risk factor analysis and interdisciplinary treatment. Heart Surg. Forum. 2007, 10. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Chan, M.; Renz, N.; Trampuz, A. Current perspectives on diagnosis and management of sternal wound infections. Infect. Drug Resist. 2018, 11, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Cabbabe, E.B.; Cabbabe, S.W. Surgical management of the symptomatic unstable sternum with pectoralis major muscle flaps. Plast. Reconstr. Surg. 2009, 123, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Davison, S.P.; Clemens, M.W.; Armstrong, D.; Newton, E.D.; Swartz, W. Sternotomy wounds: Rectus flap versus modified pectoral reconstruction. Plast. Reconstr. Surg. 2007, 120, 929–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigeler, A.; Falkenstein, A.; Pennekamp, W.; Duchna, H.W.; Birger Jettkant, D.; Goertz, O.; Homann, H.-H.; Steinau, H.-U.; Lehnhardt, M. Sternal osteomyelitis: Long-term results after pectoralis muscle flap reconstruction. Plast. Reconstr. Surg. 2009, 123, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Baumann, D.P.; Butler, C.E. Component separation improves outcomes in VRAM flap donor sites with excessive fascial tension. Plast. Reconstr. Surg. 2010, 126, 1573–1580. [Google Scholar] [CrossRef]
- Taeger, C.D.; Horch, R.E.; Arkudas, A.; Schmitz, M.; Stübinger, A.; Lang, W.; Meyer, A.; Seitz, T.; Weyand, M.; Beier, J.P. Combined free flaps with arteriovenous loops for reconstruction of extensive thoracic defects after sternal osteomyelitis. Microsurgery 2016, 36, 121–127. [Google Scholar] [CrossRef]
- Li, Y.H.; Zheng, Z.; Yang, J.; Su, L.L.; Liu, Y.; Han, F.; Liu, J.-Q.; Hu, D.-H. Management of the extensive thoracic defects after deep sternal wound infection with the rectus abdominis myocutaneous flap: A retrospective case series. Medicine 2017, 96, e6391. [Google Scholar] [CrossRef]
- O’Hare, P.M.; Leonard, A.G.; Brennen, M.D. Experience with the tensor fasciae latae free flap. Br. J. Plast. Surg. 1983, 36, 98–104. [Google Scholar] [CrossRef]
- Engel, H.; Pelzer, M.; Sauerbier, M.; Germann, G.; Heitmann, C. An innovative treatment concept for free flap reconstruction of complex central chest wall defects—The cephalic-thoraco-acromial (CTA) loop. Microsurgery 2007, 27, 481–486. [Google Scholar] [CrossRef]
- El Oakley, R.M.; Wright, J.E. Postoperative mediastinitis: Classification and management. Ann. Thorac. Surg. 1996, 61, 1030–1036. [Google Scholar] [CrossRef]
- Medical Research Council. Aids to the Investigation of Peripheral Nerve Injuries, 2nd ed.; Her Majesty’s Stationery Office: London, UK, 1943. [Google Scholar]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-item short-form health survey (Sf-36): I. conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Binkley, J.M.; Stratford, P.W.; Lott, S.A.; Riddle, D.L. The Lower Extremity Functional Scale (LEFS): Scale development, measurement properties, and clinical application. Phys. Ther. 1999, 79, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Tyack, Z.; Simons, M.; Spinks, A.; Wasiak, J. A systematic review of the quality of burn scar rating scales for clinical and research use. Burns 2012, 38, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Draaijers, L.J.; Tempelman, F.R.; Botman, Y.A.M.; Tuinebreijer, W.E.; Middelkoop, E.; Kreis, R.W.; Van Zuijlen, P.P. The Patient and Observer Scar Assessment Scale: A Reliable and Feasible Tool for Scar Evaluation. Plast. Reconstr. Surg. 2004, 113, 1960–1965. [Google Scholar] [CrossRef]
- Xiong, L.; Gazyakan, E.; Kremer, T.; Hernekamp, F.J.; Harhaus, L.; Saint-Cyr, M.; Knesser, U.; Hirche, C. Free flaps for reconstruction of soft tissue defects in lower extremity: A meta-analysis on microsurgical outcome and safety. Microsurgery 2016, 36, 511–524. [Google Scholar] [CrossRef]
- Mirzabeigi, M.N.; Wang, T.; Kovach, S.J.; Taylor, J.A.; Serletti, J.M.; Wu, L.C. Free flap take-back following postoperative microvascular compromise: Predicting salvage versus failure. Plast. Reconstr. Surg. 2012, 130, 579–589. [Google Scholar] [CrossRef]
- Serletti, J.M.; Higgins, J.P.; Moran, S.; Orlando, G.S. Factors Affecting Outcome in Free-Tissue Transfer in the Elderly. Plast. Reconstr. Surg. 2000, 106, 66–70. [Google Scholar] [CrossRef]
- Makary, M.A.; Segev, D.L.; Pronovost, P.J.; Syin, D.; Bandeen-Roche, K.; Patel, P.; Takenaga, R.; Devgan, L.; Holzmueller, C.G.; Tian, J.; et al. Frailty as a Predictor of Surgical Outcomes in Older Patients. J. Am. Coll. Surg. 2010, 210, 901–908. [Google Scholar] [CrossRef]
- Wong, A.K.; Nguyen, J.; Peric, M.; Shahabi, A.; Vidar, E.N.; Hwang, B.H.; Niknam Leilabadi, S.; Chan, L.S.; Urata, M.M. Analysis of risk factors associated with microvascular free flap failure using a multi-institutional Database. Microsurgery 2015, 35, 6–12. [Google Scholar] [CrossRef]
- Wähmann, M.; Wähmann, M.; Henn, D.; Xiong, L.; Hirche, C.; Harhaus, L.; Knesser, U.; Kremer, T. Geriatric Patients with Free Flap Reconstruction: A Comparative Clinical Analysis of 256 Cases. J. Reconstr. Microsurg. 2020, 36, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, S.A.; Kleipool, S.C.; Mulders, M.A.M.; Winkelhagen, J.; Schep, N.W.; Goslings, J.C.; Schepers, T. Normative data for the lower extremity functional scale (LEFS). Acta Orthop. 2017, 88, 422–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, V.K.; Baertsch, A. Microvascular reconstruction of the upper extremity with the rectus abdominis muscle. Microsurgery 1994, 15, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Galli, A.; Raposio, E.; Santi, P. Reconstruction of full-thickness defects of the thoracic wall by myocutaneous flap transfer: Latissimus dorsi compared with transverse rectus abdominis. Scand. J. Plast. Reconstr. Surg. Hand. Surg. 1995, 29, 39–43. [Google Scholar] [CrossRef]
- Nahai, F.; Hill, L.H.; Hester, R.T. Experiences with the tensor fascia lata flap. Plast. Reconstr. Surg. 1979, 63, 788–799. [Google Scholar] [CrossRef]
- Gruen, L.; Morrison, W.A.; Vellar, I.V.D. Surgical Technique The Tensor Fasciae Latae myocutaneous Flap Closue Of Major Chest And Abdominal Wall Defects. Aust. N. Z. J. Surg. 1998, 68, 666–669. [Google Scholar] [CrossRef]
- Henn, D.; Wähmann, M.S.T.; Horsch, M.; Hetjens, S.; Kremer, T.; Gazyakan, E.; Hirche, C.; Schmidt, V.J.; German, G.; Knesser, U. One-Stage versus Two-Stage Arteriovenous Loop Reconstructions: An Experience on 103 Cases from a Single Center. Plast. Reconstr. Surg. 2019, 143, 912–924. [Google Scholar] [CrossRef]
- Beier, J.P.; Arkudas, A.; Lang, W.; Weyand, M.; Horch, R.E. Sternumosteomyelitis—Chirurgische Behandlungskonzepte Sternal osteomyelitis—Surgical treatment concepts. Der Chir. 2016, 87, 537–550. [Google Scholar] [CrossRef]
- Spindler, N.; Kade, S.; Spiegl, U.; Misfeld, M.; Josten, C.; Mohr, F.W.; Borger, M.; Langer, S. Deep sternal wound infection—Latissimus dorsi flap is a reliable option for reconstruction of the thoracic wall. BMC Surg. 2019, 19, 173. [Google Scholar] [CrossRef] [Green Version]
- Wettstein, R.; Erni, D.; Berdat, P.; Rothenfluh, D.; Banic, A. Radical sternectomy and primary musculocutaneous flap reconstruction to control sternal osteitis. J. Thorac. Cardiovasc. Surg. 2002, 123, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- López-Monjardin, H.; De-la-Peña-Salcedo, A.; Mendoza-Muñoz, M.; López-Yáñez-de-la-Peña, A.; Palacio-López, E.; López-García, A. Omentum flap versus pectoralis major flap in the treatment of mediastinitis. Plast. Reconstr. Surg. 1998, 101, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Kolbenschlag, J.; Hörner, C.; Sogorski, A.; Goertz, O.; Ring, A.; Harati, K.; Lehnhardt, M.; Diageler, A. Sternal Reconstruction with the Omental Flap—Acute and Late Complications, Predictors of Mortality, and Quality of Life. J. Reconstr. Microsurg. 2018, 34, 376–382. [Google Scholar] [PubMed]
- Falkner, F.; Thomas, B.; Haug, V.; Nagel, S.S.; Vollbach, F.H.; Kneser, U.; Bigdeli, A.K. Comparison of pedicled versus free flaps for reconstruction of extensive deep sternal wound defects following cardiac surgery. Microsurgery 2021, 41, 309–318. [Google Scholar] [CrossRef] [PubMed]
Patient Demographics | |
---|---|
Number of patients and flaps | 46 |
Mean age (years) ± SD (range) | 67 ± 11 (38 to 85) |
Median ASA class (range) | 3 (2 to 4) |
Sex (female/male) | 17/29 |
Comorbidities | n (%) |
Arterial hypertension (HTN) | 44 (96%) |
Coronary artery disease (CAD) | 41 (89%) |
Chronic heart failure (CHF) | 27 (59%) |
Chronic obstructive pulmonary disease (COPD) | 20 (44%) |
Chronic kidney disease (CKD) | 25 (54%) |
Diabetes mellitus (DM) | 30 (65%) |
Active smoker at time of surgery | 13 (28%) |
BMI (Body Mass Index) (kg/m2) | 29 ± 6 |
Obesity (BMI ≥ 30 kg/m2) | 19 (41%) |
El Oakley and Wright classification | |
I | - |
II | - |
IIIA | 7 (15%) |
IIIB | 11 (24%) |
IVA | 2 (4%) |
IVB | - |
V | 26 (57%) |
Microbiological examination of soft and bony tissue | |
Staphylococcus aureus | 17 (37%) |
Methicillin-resistant Staphylococcus aureus | 6 (13%) |
Staphylococcus epidermidis | 14 (30%) |
Enterococcus faecalis | 10 (22%) |
Escherichia coli | 7 (15%) |
Multiresistant Gram-negative bacteria | 9 (20%) |
Operative Characteristics | |
---|---|
Mean sternal defect size [cm2] ± SD | 194 ± 43 (128 to 297) |
Mean sternal defect length [cm] ± SD | 23 ± 3 (18 to 27) |
Mean sternal defect width [cm] ± SD | 8 ± 1 (7 to 11) |
Mean length of flap ischemia [min] ± SD | 63 ± 16 (32 to 91) |
Mean skin paddle surface [cm2] ± SD | 205 ± 38 (154 to 308) |
Mean flap length [cm] ± SD | 24 ± 3 (19 to 28) |
Mean flap width [cm] ± SD | 8 ± 1 (7 to 11) |
Mean OT [min] ± SD (range) | 387 ± 120 (212 to 695) |
Recipient vessel situation | |
RIMA and concomitant vein | 9 (20%) |
RIMA and cephalic vein | 15 (33%) |
Cephalic vein-thoracoacromial artery arterio-venous loop | 3 (7%) |
Cephalic vein-subclavian artery arterio-venous loop | 10 (22%) |
Subclavian artery/vein arterio-venous loop using a greater saphenous vein graft | 9 (20%) |
Surgical Complications | n (%) |
---|---|
Flap Complications | |
Arterial thrombosis | 2 (4%) |
Venous thrombosis | 1 (2%) |
Hematoma | 5 (11%) |
Wound dehiscence | 3 (7%) |
Partial flap necrosis (>5% of the skin paddle) | 3 (7%) |
Donor-site complications | |
Impaired wound healing | 3 (7%) |
Wound infection | 1 (2%) |
Hematoma | 1 (2%) |
Follow-Up Examinations | |||
---|---|---|---|
Range of Motion | Donor-Site | Healthy Side | p-Value |
Mean knee joint extension/flexion (mean ± SD) | 110° ± 9° | 114° ± 9° | p = 0.08 |
Mean hip joint extension/flexion (mean ± SD) | 118° ± 10° | 122° ± 8° | p = 0.73 |
Mean hip joint abduction/adduction (mean ± SD) | 69° ± 5° | 71° ± 6° | p = 0.29 |
Mean hip internal-/external rotation (mean ± SD) | 58° ± 7° | 62° ± 7° | p = 0.07 |
Scarring | Donor-Site | Recipient-Site | |
Median VSS (range) | 3 (2 to 7) | 3 (2 to 5) | - |
Median POSAS (range) | 24 (18 to 34) | 23 (19 to 31) | - |
Median patients’ scar assessment (range) | 12 (9 to 21) | 12 (10 to 16) | - |
Median observers’ scar assessment (range) | 11 (9 to 17) | 11 (9 to 15) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigdeli, A.K.; Falkner, F.; Thomas, B.; Hundeshagen, G.; Mayer, S.A.; Risse, E.-M.; Harhaus, L.; Gazyakan, E.; Kneser, U.; Radu, C.A. The Free Myocutaneous Tensor Fasciae Latae Flap—A Workhorse Flap for Sternal Defect Reconstruction: A Single-Center Experience. J. Pers. Med. 2022, 12, 427. https://doi.org/10.3390/jpm12030427
Bigdeli AK, Falkner F, Thomas B, Hundeshagen G, Mayer SA, Risse E-M, Harhaus L, Gazyakan E, Kneser U, Radu CA. The Free Myocutaneous Tensor Fasciae Latae Flap—A Workhorse Flap for Sternal Defect Reconstruction: A Single-Center Experience. Journal of Personalized Medicine. 2022; 12(3):427. https://doi.org/10.3390/jpm12030427
Chicago/Turabian StyleBigdeli, Amir Khosrow, Florian Falkner, Benjamin Thomas, Gabriel Hundeshagen, Simon Andreas Mayer, Eva-Maria Risse, Leila Harhaus, Emre Gazyakan, Ulrich Kneser, and Christian Andreas Radu. 2022. "The Free Myocutaneous Tensor Fasciae Latae Flap—A Workhorse Flap for Sternal Defect Reconstruction: A Single-Center Experience" Journal of Personalized Medicine 12, no. 3: 427. https://doi.org/10.3390/jpm12030427
APA StyleBigdeli, A. K., Falkner, F., Thomas, B., Hundeshagen, G., Mayer, S. A., Risse, E. -M., Harhaus, L., Gazyakan, E., Kneser, U., & Radu, C. A. (2022). The Free Myocutaneous Tensor Fasciae Latae Flap—A Workhorse Flap for Sternal Defect Reconstruction: A Single-Center Experience. Journal of Personalized Medicine, 12(3), 427. https://doi.org/10.3390/jpm12030427