Poly(styrene-co-maleic acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SMA-PS Micelle
2.3. Characterization of SMA-PSs Micelles
2.3.1. Size Exclusion Chromatography
2.3.2. UV-Visible and Fluorescence Spectroscopy
2.3.3. Particle Size Analyses by Dynamic and Static Light Scattering, and the Zeta Potential for Surface Charge Determination
2.3.4. Transmission Eletron Microscopy (TEM)
2.4. Binding of SMA-PS Micelle to Human Serum Albumin
2.5. Release Rate of Free PS from the SMA-PS Micelles
2.6. Electron Spin Resonance (ESR) Spectroscopy: Quantification of Singlet Oxygen Generation
2.7. Bleaching Effect of Free PS and SMA-PS by Light Irradiation
2.8. Internalization of Free PS and SMA-PS in Tumor and Normal Cells
2.9. In Vitro Cytotoxicity Assay
2.10. Statistical Analyses
3. Results
3.1. Characterization of SMA Copolymer and SMA-PS Micelles
3.2. Analysis of Particle Size Distribution and Molecular Weight Estimation of SMA-PS Micelles by Dynamic and Static Light Scattering
3.3. Albumin Binding of SMA-PS Micelles
3.4. Release of Free PS from SMA-PS Micelles
3.5. Fluorescence Quenching as an Evidence of Tight Interaction of Aromatic Residues of PS to SMA in the Micelles and Destabilization of SMA-PS Micelle under Various Conditions
3.6. Singlet Oxygen Generation from SMA-PS Micelles after Light Irradiation
3.6.1. Electron Spin Resonance (ESR) Study: Prolongation of Singlet Oxygen Yielding Capacity in SMA-PS Micelles
3.6.2. Bleaching Effect to Free PS and SMA-PS Micelles by Light Irradiation
3.6.3. Effect of Time Lagged TMP Addition on Singlet Oxygen Yielding Capacity of SMA-PS Micelles
3.7. Intracellular Uptake of SMA-PS Micelle
3.8. In Vitro PDT Effect of SMA-PS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allison, R.; Sibata, C. Oncologic photodynamic therapy photosensitizers: A clinical review. Photo Photody Ther. 2010, 7, 61–75. [Google Scholar] [CrossRef]
- Allison, R.R.; Bagnato, V.S.; Cuenca, R.; Downie, G.H.; Sibata, C.H. The future of photodynamic therapy in oncology. Future Oncol. 2006, 2, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008, 60, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, H.; Kruger, C.A.; Kadanyo, S.; Mishra, A. Nanoparticles for Advanced Photodynamic Therapy of Cancer. Photomed. Laser Surg. 2017, 35, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Ishihara, R. Photodynamic Therapy for Esophageal Cancer. Clin. Endosc. 2021, 54, 494–498. [Google Scholar] [CrossRef]
- O’Connor, A.; Gallagher, W.; Byrne, A. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol. 2009, 85, 1053–1074. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Gao, S.; Islam, R.; Nema, H.; Yanagibashi, R.; Yoneda, N.; Watanabe, N.; Yasuda, Y.; Nuita, N.; Zhou, J.R.; et al. Styrene Maleic Acid Copolymer-Based Micellar Formation of Temoporfin (SMA@ mTHPC) Behaves as A Nanoprobe for Tumor-Targeted Photodynamic Therapy with A Superior Safety. Biomedicines 2021, 9, 1493. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.C.; Nguyen, V.N.; Choi, Y.; Lee, S.; Yoon, J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Song, X.; Dong, X.; Li, B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagn. Photodyn. Ther. 2021, 36, 102597. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392. [Google Scholar]
- Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015, 91, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J. Pers. Med. 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Rao, J.; Pu, K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018, 155, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; He, R.; Liu, Q.; Dong, Y.; Lin, M.; Li, W.; Xu, F. Theranostics of Triple-Negative Breast Cancer Based on Conjugated Polymer Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 10634–10646. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, S.; Stepanov, A.; Bochkova, O.; Kholin, K.; Dovjenko, A.; Zairov, R.; Nizameev, I.; Gerasimova, T.; Strelnik, I.; Voloshina, A.; et al. Tailoring of silica nanoarchitecture to optimize Cu(2−x)S based image-guided chemodynamic therapy agent. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 126996. [Google Scholar] [CrossRef]
- Bochkova, O.; Dovjenko, A.; Zairov, R.; Kholin, K.; Biktimirova, R.; Fedorenko, S.; Nizameev, I.; Laskin, A.; Voloshina, A.; Lyubina, A.; et al. Silica-Supported Assemblage of CuII Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. Coatings 2022, 12, 97. [Google Scholar] [CrossRef]
- Fang, J.; Sawa, T.; Akaike, T.; Akuta, T.; Sahoo, S.K.; Khaled, G.; Hamada, A.; Maeda, H. In vivo antitumor activity of pegylated zinc protoporphyrin: Targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 2003, 63, 3567–3574. [Google Scholar] [PubMed]
- Iyer, A.K.; Greish, K.; Seki, T.; Okazaki, S.; Fang, J.; Takeshita, K.; Maeda, H. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. J. Drug Target. 2007, 15, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.K.; Greish, K.; Fang, J.; Murakami, R.; Maeda, H. High-loading nanosized micelles of copoly(styrene-maleic acid)-zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials 2007, 28, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Tsukigawa, K.; Liao, L.; Yin, H.; Eguchi, K.; Maeda, H. Styrene-maleic acid-copolymer conjugated zinc protoporphyrin as a candidate drug for tumor-targeted therapy and imaging. J. Drug Target. 2016, 24, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Liao, L.; Hitaka, Y.; Tsukigawa, K.; Subr, V.; Fang, J.; Ulbrich, K.; Maeda, H. Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl) me- thacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo. J. Control Release 2013, 165, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Liao, L.; Yin, H.; Nakamura, H.; Subr, V.; Ulbrich, K.; Maeda, H. Photodynamic therapy and imaging based on tumor-targeted nanoprobe, polymer-conjugated zinc protoporphyrin. Future Sci. OA 2015, 1, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.; Šubr, V.; Islam, W.; Hackbarth, S.; Islam, R.; Etrych, T.; Ulbrich, K.; Maeda, H. N-(2-hydroxypropyl) methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018, 130, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yuan, L.; Jia, W.; Qin, M.; Wang, Y. Effects of Rose Bengal- and Methylene Blue-Mediated Potassium Iodide-Potentiated Photodynamic Therapy on Enterococcus faecalis: A Comparative Study. Lasers Surg. Med. 2021, 53, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.T.; Lin, C.L.; Lin, C.W.; Chang, N.C.; Tsai, W.B.; Yu, J. Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. Nanomaterials 2019, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.J.; Zhou, X.B.; Wang, A.L.; Zheng, B.Y.; Yeh, C.K.; Huang., J.D. Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy. Eur. J. Med. Chem. 2018, 145, 86–95. [Google Scholar] [CrossRef]
- Jesus, V.P.S.; Raniero, L.; Lemes, G.M.; Bhattacharjee, T.T.; Júnior, P.C.; Castilho, M.L. Nanoparticles of methylene blue enhance photodynamic therapy. Photodiagn. Photodyn. Ther. 2018, 23, 212–217. [Google Scholar] [CrossRef]
- Orth, K.; Beck, G.; Genze, F.; Rück, A. Methylene blue mediated photodynamic therapy in experimental colorectal tumors in mice. J. Photochem. Photobiol. B 2000, 57, 186–192. [Google Scholar] [CrossRef]
- Cabral, H.; Miyata, K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118, 6844–6892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral, H.; Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control Release 2014, 190, 465–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greish, K.; Nagamitsu, A.; Fang, J.; Maeda, H. Copoly (styrene-maleic acid)- Pirarubicin Micelles: High Tumor-Targeting Efficiency with Little Toxicity. Bioconjug. Chem. 2005, 16, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Greish, K.; Sawa, T.; Fang, J.; Akaike, T.; Maeda, H. SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. J. Control Release 2004, 97, 219–230. [Google Scholar] [CrossRef]
- Maeda, H.; Ueda, M.; Morinaga, T.; Matsumoto, T. Conjugation of poly (styrene-co-maleic acid) derivatives to the antitumor protein neocarzinostatin: Pronounced improvements in pharmacological properties. J. Med. Chem. 1985, 28, 455–461. [Google Scholar] [CrossRef]
- Sahoo, S.; Sawa, T.; Fang, J.; Tanaka, S.; Miyamoto, Y.; Akaike, T.; Maeda, H. Pegylated zinc protoporphyrin: A water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug. Chem. 2002, 13, 1031–1038. [Google Scholar] [CrossRef]
- Islam, W.; Matsumoto, Y.; Fang, J.; Harada, A.; Niidome, T.; Ono, K.; Tsutsuki, H.; Sawa, T.; Imamura, T.; Sakurai, K.; et al. Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials 2021, 269, 120631. [Google Scholar] [CrossRef]
- Kobayashi, A.; Oda, T.; Maeda, H. Protein binding of macromolecular anticancer agent SMANCS: Characterization of poly (styrene-co-maleic acid) derivatives as an albumin binding ligand. J. Bioact. Compat. Polym. 1988, 3, 319–333. [Google Scholar] [CrossRef]
- Lo, J.C.; Darracq, M.A.; Clark, R.F. A review of methylene blue treatment for cardiovascular collapse. J. Emerg. Med. 2014, 46, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.K.; Miyachi, S.; Yamazaki, M.; Sawada, Y.; Chung, Y.B.; Iga, T.; Hanano, M.; Sugiyama, Y. Nonlinear pharmacokinetics of hepatobiliary transport of rose bengal in rats after iv bolus administration with varying doses. Biopharma Drug Dispos. 1992, 13, 647–662. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Sato, F.; Maeda, H. Facilitated internalization of neocarzinostatin and its lipophilic polymer conjugate, SMANCS, into cytosol in acidic pH. J. Natl. Cancer Inst. 1987, 79, 1205–1211. [Google Scholar] [PubMed]
- Hovorka, O.; Etrych, T.; Subr, V.; Strohalm, J.; Ulbrich, K.; Rihova, B. HPMA based macromolecular therapeutics: Internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. J. Drug Target. 2006, 14, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Yu, Y.; Eisenberg, A.; Maysinger, D. Cellular internalization of PCL(20)-b-PEO (44) block copolymer micelles. Biochim. Biophys. Acta 1999, 1421, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Masuda, T.; Akita, H.; Niikura, K.; Nishio, T.; Ukawa, M.; Enoto, K.; Danev, R.; Nagayama, K.; Ijiro, K.; Harashima, H. Envelope-type lipid nanoparticles incorporating a short PEG-lipid conjugate for improved control of intracellular trafficking and transgene transcription. Biomaterials 2009, 30, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, H.; Akita, H.; Kogure, K.; Oishi, M.; Nagasaki, Y.; Kihira, Y.; Ueno, M.; Kobayashi, H.; Kikuchi, H.; Harashima, H. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007, 14, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, H.; Fang, J.; Gahininath, Y.B.; Tsukigawa, K.; Maeda, H. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles. J. Control Release 2011, 155, 367–375. [Google Scholar] [CrossRef]
- Saisyo, A.; Nakamura, H.; Fang, J.; Tsukigawa, K.; Greish, K.; Furukawa, H.; Maeda, H. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect. Colloids Surf. B Biointerfaces 2016, 138, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Yano, T.; Muto, M.; Minashi, K.; Iwasaki, J.; Kojima, T.; Fuse, N.; Doi, T.; Kaneko, K.; Ohtsu, A. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: A phase II study. Int. J. Cancer 2012, 131, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
SMA Micelles | a SMA Mw. | b Hydrodynamic Size (kDa) | c Content (%W/W) | d Surface Charge (ζ, mV) e |
---|---|---|---|---|
cSMA-RB | 1360 | 29 | 8.72 | −43.03 ± 1.2 |
buSMA-RB | 1581 | 34 | 9.41 | −21.70 ± 0.8 |
cSMA-MB | 1360 | 47 | 6.36 | −46.03 ± 2.1 |
buSMA-MB | 1581 | 52 | 5.41 | −24.17 ± 0.5 |
SMA Micelles | 0.1 M Phosphate Buffer (pH 7.5) | Deionized Water | 2% HSA in 0.1 M Phosphate Buffer (pH 7.5) |
---|---|---|---|
cSMA-RB | 18.7 ± 1.1 | 35.4 ± 2.3 | 95.4 ± 11.3 |
buSMA-RB | 23.5 ± 1.3 | 38.9 ± 1.2 | 107.4 ± 21.4 |
cSMA-MB | 25.7 ± 1.6 | 41.3 ± 3.1 | 103.2 ± 13.5 |
buSMA-MB | 27.5 ± 0.9 | 46.1 ± 2.7 | 111.8 ± 15.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharate, G.Y.; Qin, H.; Fang, J. Poly(styrene-co-maleic acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. J. Pers. Med. 2022, 12, 493. https://doi.org/10.3390/jpm12030493
Bharate GY, Qin H, Fang J. Poly(styrene-co-maleic acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. Journal of Personalized Medicine. 2022; 12(3):493. https://doi.org/10.3390/jpm12030493
Chicago/Turabian StyleBharate, Gahininath Yadavrao, Haibo Qin, and Jun Fang. 2022. "Poly(styrene-co-maleic acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake" Journal of Personalized Medicine 12, no. 3: 493. https://doi.org/10.3390/jpm12030493
APA StyleBharate, G. Y., Qin, H., & Fang, J. (2022). Poly(styrene-co-maleic acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. Journal of Personalized Medicine, 12(3), 493. https://doi.org/10.3390/jpm12030493