The Expanding Role of the Infectious Disease Expert in the Context of the MS Centre
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Infectious Disease Counselling Description
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Infectious Disease Counselling
4. Discussion
Study Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.msif.org/wp-content/uploads/2020/10/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf (accessed on 30 September 2020).
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Marrodan, M.; Alessandro, L.; Farez, M.F.; Correale, J. The role of infections in multiple sclerosis. Mult. Scler. 2019, 25, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Pakpoor, J.; Disanto, G.; Gerber, J.E.; Dobson, R.; Meier, U.C.; Giovannoni, G.; Ramagopalan, S.V. The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: A meta-analysis. Mult. Scler. 2013, 19, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Xu, Y.; Smith, K.A.; Hiyoshi, A.; Piehl, F.; Olsson, T.; Montgomery, S. Hospital-diagnosed infections before age 20 and risk of a subsequent multiple sclerosis diagnosis. Brain J. Neurol. 2021, 144, 2390–2400. [Google Scholar] [CrossRef]
- Buljevac, D.; Flach, H.Z.; Hop, W.C.; Hijdra, D.; Laman, J.D.; Savelkoul, H.F.; van Der Meché, F.G.; van Doorn, P.A.; Hintzen, R.Q. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain J. Neurol. 2002, 125, 952–960. [Google Scholar] [CrossRef]
- Correale, J.; Fiol, M.; Gilmore, W. The risk of relapses in multiple sclerosis during systemic infections. Neurology 2006, 67, 652–659. [Google Scholar] [CrossRef]
- Montgomery, S.; Hillert, J.; Bahmanyar, S. Hospital admission due to infections in multiple sclerosis patients. Eur. J. Neurol. 2013, 20, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Persson, R.; Lee, S.; Ulcickas Yood, M.; Wagner Usn Mc, C.M.; Minton, N.; Niemcryk, S.; Lindholm, A.; Evans, A.M.; Jick, S.S. Infections in patients diagnosed with multiple sclerosis: A multi-database study. Mult. Scler. Relat. Disord. 2020, 41, 101982. [Google Scholar] [CrossRef]
- Luna, G.; Alping, P.; Burman, J.; Fink, K.; Fogdell-Hahn, A.; Gunnarsson, M.; Hillert, J.; Langer-Gould, A.; Lycke, J.; Nilsson, P.; et al. Infection Risks among Patients with Multiple Sclerosis Treated with Fingolimod, Natalizumab, Rituximab, and Injectable Therapies. JAMA Neurol. 2020, 77, 184–191. [Google Scholar] [CrossRef]
- Moiola, L.; Barcella, V.; Benatti, S.; Capobianco, M.; Capra, R.; Cinque, P.; Comi, G.; Fasolo, M.M.; Franzetti, F.; Galli, M.; et al. The risk of infection in patients with multiple sclerosis treated with disease-modifying therapies: A Delphi consensus statement. Mult. Scler. 2021, 27, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Sriwastava, S.; Kataria, S.; Srivastava, S.; Kazemlou, S.; Gao, S.; Wen, S.; Saber, H.; Tripathi, R.; Sheikh, Z.; Peterson, S.; et al. Disease-modifying therapies and progressive multifocal leukoencephalopathy in multiple sclerosis: A systematic review and meta-analysis. J. Neuroimmunol. 2021, 360, 577721. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Haggiag, S.; Tortorella, C.; Galgani, S.; Gasperini, C. Age-related adverse events of disease-modifying treatments for multiple sclerosis: A meta-regression. Mult. Scler. 2021, 27, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Liang, T.J. Hepatitis B Reactivation Associated with Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology 2017, 152, 1297–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmøy, T.; von der Lippe, H.; Leegaard, T.M. Listeria monocytogenes infection associated with alemtuzumab—A case for better preventive strategies. BMC Neurol. 2017, 17, 65. [Google Scholar] [CrossRef]
- Soelberg Sorensen, P.; Giovannoni, G.; Montalban, X.; Thalheim, C.; Zaratin, P.; Comi, G. The Multiple Sclerosis Care Unit. Mult. Scler. 2019, 25, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Ineichen, B.V.; Schneider, M.P.; Hlavica, M.; Hagenbuch, N.; Linnebank, M.; Kessler, T.M. High EDSS can predict risk for upper urinary tract damage in patients with multiple sclerosis. Mult. Scler. 2018, 24, 529–534. [Google Scholar] [CrossRef]
- Seddone, S.; Marturano, M.; Bientinesi, R.; Lucchini, M.; Bassi, P.; Mirabella, M.; Nociti, V. Lower urinary tract disorders in multiple sclerosis patients: Prevalence, clinical features, and response to treatments. Neurourol. Urodyn. 2021, 40, 1500–1508. [Google Scholar] [CrossRef]
- Riva, A.; Barcella, V.; Benatti, S.V.; Capobianco, M.; Capra, R.; Cinque, P.; Comi, G.; Fasolo, M.M.; Franzetti, F.; Galli, M.; et al. Vaccinations in patients with multiple sclerosis: A Delphi consensus statement. Mult. Scler. 2021, 27, 347–359. [Google Scholar] [CrossRef]
- Dantas, L.A.; Pereira, M.S.; Gauza, A.M.; Schulz, M.E.B.; Silva, G.F.D.; Martin, M.E.M.; Medeiros Junior, W.L.G.; Gonçalves, M.V.M. Latent tuberculosis infection reactivation in patients with multiple sclerosis in use of disease-modifying therapies: A systematic review. Mult. Scler. Relat. Disord. 2021, 55, 103184. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.E.; Kister, I. Infection Mitigation Strategies for Multiple Sclerosis Patients on Oral and Monoclonal Disease-Modifying Therapies. Curr. Neurol. Neurosci. Rep. 2021, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- Papeix, C.; Donze, C.; Lebrun-Frénay, C. Infections and multiple sclerosis: Recommendations from the French Multiple Sclerosis Society. Rev. Neurol. 2021, 177, 980–994. [Google Scholar] [CrossRef]
- Coyle, P.K.; Gocke, A.; Vignos, M.; Newsome, S.D. Vaccine Considerations for Multiple Sclerosis in the COVID-19 Era. Adv. Ther. 2021, 38, 3550–3588. [Google Scholar] [CrossRef] [PubMed]
- Witman Tsur, S.; Adrian Zaher, E.; Tsur, M.; Kania, K.; Kalinowska-Łyszczarz, A. Current Immunological and Clinical Perspective on Vaccinations in Multiple Sclerosis Patients: Are They Safe after All? Int. J. Mol. Sci. 2021, 22, 3859. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.K.; Krupp, L.B.; Doscher, C. Significance of reactive Lyme serology in multiple sclerosis. Ann. Neurol. 1993, 34, 745–747. [Google Scholar] [CrossRef]
- Houen, G.; Heiden, J.; Trier, N.H.; Draborg, A.H.; Benros, M.E.; Zinkevičiūtė, R.; Petraitytė-Burneikienė, R.; Ciplys, E.; Slibinskas, R.; Frederiksen, J.L. Antibodies to Epstein-Barr virus and neurotropic viruses in multiple sclerosis and optic neuritis. J. Neuroimmunol. 2020, 346, 577314. [Google Scholar] [CrossRef]
- Vukusic, S.; Rollot, F.; Casey, R.; Pique, J.; Marignier, R.; Mathey, G.; Edan, G.; Brassat, D.; Ruet, A.; De Sèze, J.; et al. Progressive Multifocal Leukoencephalopathy Incidence and Risk Stratification Among Natalizumab Users in France. JAMA Neurol. 2020, 77, 94–102. [Google Scholar] [CrossRef]
- Scarpazza, C.; Signori, A.; Prosperini, L.; Sormani, M.P.; Cosottini, M.; Capra, R.; Gerevini, S. Early diagnosis of progressive multifocal leucoencephalopathy: Longitudinal lesion evolution. J. Neurol. Neurosurg. Psychiatry 2019, 90, 261–267. [Google Scholar] [CrossRef]
- Mhanna, E.; Nouchi, A.; Louapre, C.; De Paz, R.; Heinzlef, O.; Bodini, B.; Assouad, R.; Chochon, F.; Lubetzki, C.; Papeix, C.; et al. Human papillomavirus lesions in 16 MS patients treated with fingolimod: Outcomes and vaccination. Mult. Scler. 2021, 27, 1794–1798. [Google Scholar] [CrossRef]
- Epstein, D.J.; Dunn, J.; Deresinski, S. Infectious Complications of Multiple Sclerosis Therapies: Implications for Screening, Prophylaxis, and Management. Open Forum Infect. Dis. 2018, 5, ofy174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patients | n = 107 |
---|---|
Female sex, n (%) | 78 (72.9) |
Age, years, mean (SD) | 41.4 (14.4) |
Disease duration, years, mean (SD) | 8.5 (9.4) |
EDSS, median [range] | 1.5 [0–8.0] |
Disease course, n (%) | |
RMS | 78 (72.9%) |
SPMS | 19 (17.8%) |
PPMS | 10 (9.3%) |
Number of counselling, n (%) | |
1 | 69 (64.5%) |
2 | 30 (28.0%) |
3 | 6 (5.6%) |
4 | 2 (1.9%) |
Year of counselling, n (%) | |
2015 | 5 (4.7%) |
2016 | 8 (7.5%) |
2017 | 22 (20.6%) |
2018 | 26 (24.3%) |
2019 | 46 (43.0%) |
Counselling Timing | n = 155 |
---|---|
Diagnostic workup | 22 (14.2%) |
Start or change treatment | 78 (50.3%) |
Follow-up on treatment | 55 (35.5%) |
Counselling Motivation | n = 155 |
---|---|
Isolated serological findings to be interpreted | 39 (25.2%) |
Fungal or parasitic infection | 7 (4.5%) |
Bacterial infection | 44 (28.4%) |
Viral infection | 37 (23.9%) |
Vaccination | 28 (18.1%) |
Counselling Timing | n = 155 |
---|---|
Non-specific | 46 (29.7%) |
Antibiotic or antiviral treatment | 30 (19.4%) |
Prophylaxis or vaccination | 60 (38.7%) |
Treatment authorisation | 19 (12.3%) |
Impact on MS Treatment | n = 155 |
---|---|
Treatment changed or suspended | 12 (7.7%) |
Treatment delay | 79 (51.0%) |
No impact | 64 (41.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchini, M.; Del Giacomo, P.; De Arcangelis, V.; Nociti, V.; Bianco, A.; De Fino, C.; Presicce, G.; Cicia, A.; Carlomagno, V.; Mirabella, M. The Expanding Role of the Infectious Disease Expert in the Context of the MS Centre. J. Pers. Med. 2022, 12, 591. https://doi.org/10.3390/jpm12040591
Lucchini M, Del Giacomo P, De Arcangelis V, Nociti V, Bianco A, De Fino C, Presicce G, Cicia A, Carlomagno V, Mirabella M. The Expanding Role of the Infectious Disease Expert in the Context of the MS Centre. Journal of Personalized Medicine. 2022; 12(4):591. https://doi.org/10.3390/jpm12040591
Chicago/Turabian StyleLucchini, Matteo, Paola Del Giacomo, Valeria De Arcangelis, Viviana Nociti, Assunta Bianco, Chiara De Fino, Giorgia Presicce, Alessandra Cicia, Vincenzo Carlomagno, and Massimiliano Mirabella. 2022. "The Expanding Role of the Infectious Disease Expert in the Context of the MS Centre" Journal of Personalized Medicine 12, no. 4: 591. https://doi.org/10.3390/jpm12040591
APA StyleLucchini, M., Del Giacomo, P., De Arcangelis, V., Nociti, V., Bianco, A., De Fino, C., Presicce, G., Cicia, A., Carlomagno, V., & Mirabella, M. (2022). The Expanding Role of the Infectious Disease Expert in the Context of the MS Centre. Journal of Personalized Medicine, 12(4), 591. https://doi.org/10.3390/jpm12040591