Developing a Biosensor-Based Immunoassay to Detect HPV E6 Oncoprotein in the Saliva Rinse Fluid of Oral Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Synthesis, Purification, and Titer Determination of HP-1 Peptide
3.1.1. Solid Phase Synthesis of the HP-1 Peptide and Purification
3.1.2. Determination of the Titer of Chicken Anti-HP-1 Antibody by Indirect ELISA
3.1.3. Analyses of Kinetics and Affinity of E6 Protein and Anti-HP-1 Polyclonal Antibodies
3.1.4. Detecting E6 Protein in Saliva of Oral Cancer and Normal Subjects
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.S.; Rees, T.; Wright, J. A review of research on salivary biomarkers for oral cancer detection. Clin. Transl. Med. 2014, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Yu, Q.; Lin, Q.; Duan, Y. Emerging salivary biomarkers by mass spectrometry. Clin. Chim. Acta 2015, 438, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Malamud, D. Saliva as a diagnostic fluid. Dent. Clin. N. Am. 2011, 55, 159–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhu, S.; Jagannathan, N. Saliva: A Cutting Edge in Diagnostic Procedures. J. Oral. Dis. 2014, 2014, 168584. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K.R. Principles of affinity-based biosensors. Mol. Biotechnol. 2000, 14, 109–129. [Google Scholar] [CrossRef]
- Vashist, S.K.; Dixit, C.K.; MacCraith, B.D.; O’Kennedy, R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 2011, 136, 4431–4436. [Google Scholar] [CrossRef]
- Malon, R.S.; Sadir, S.; Balakrishnan, M.; Córcoles, E.P. Saliva-based biosensors: Noninvasive monitoring tool for clinical diagnostics. BioMed Res. Int. 2014, 2014, 962903. [Google Scholar] [CrossRef]
- Vashist, S.K. Point-of-Care Diagnostics: Recent Advances and Trends. Biosensors 2017, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Singhal, J.; Verma, S.; Kumar, S.; Mehrotra, D. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. Mol. Biotechnol. 2021, 63, 339–362. [Google Scholar] [CrossRef]
- Mirghani, H.; Lang Kuhs, K.A.; Waterboer, T. Biomarkers for early identification of recurrences in HPV-driven oropharyngeal cancer. Oral. Oncol. 2018, 82, 108–114. [Google Scholar] [CrossRef]
- Hormia, M.; Willberg, J.; Ruokonen, H.; Syrjänen, S. Marginal periodontium as a potential reservoir of human papillomavirus in oral mucosa. J. Periodontol. 2005, 76, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; King, T.; Agulnik, M. Head and neck cancer: Changing epidemiology and public health implications. Oncology 2010, 24, 915–924. [Google Scholar] [PubMed]
- Lindel, K.; Beer, K.T.; Laissue, J.; Greiner, R.H.; Aebersold, D.M. Human papillomavirus positive squamous cell carcinoma of the oropharynx: A radiosensitive subgroup of head and neck carcinoma. Cancer 2001, 92, 805–813. [Google Scholar] [CrossRef]
- Gillison, M.L.; Chaturvedi, A.K.; Lowy, D.R. HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer 2008, 113, 3036–3046. [Google Scholar] [CrossRef] [PubMed]
- Coleman, H.N.; Wang, X.; Greenfield, W.W.; Nakagawa, M. A Human Papillomavirus Type 16 E6 52-62 CD4 T-Cell Epitope Restricted by the HLA-DR11 Molecule Described in an Epitope Hotspot. MOJ Immunol. 2014, 1, 00018. [Google Scholar] [CrossRef]
- Polson, A. Isolation of IgY from the yolks of eggs by a chloroform polyethylene glycol procedure. Immunol. Investig. 1990, 19, 253–258. [Google Scholar] [CrossRef]
- Klussmann, J.P.; Weissenborn, S.J.; Wieland, U.; Dries, V.; Kolligs, J.; Jungehuelsing, M.; Eckel, H.E.; Dienes, H.P.; Pfister, H.J.; Fuchs, P.G. Prevalence, distribution, and viral load of human papillomavirus 16 DNA in tonsillar carcinomas. Cancer 2001, 92, 2875–2884. [Google Scholar] [CrossRef]
- Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: A systematic review. Cancer Epidemiol. Prev. Biomark. 2005, 14, 467–475. [Google Scholar] [CrossRef] [Green Version]
- SahebJamee, M.; Boorghani, M.; Ghaffari, S.R.; AtarbashiMoghadam, F.; Keyhani, A. Human papillomavirus in saliva of patients with oral squamous cell carcinoma. Med. Oral. Patol. Oral. Cir. Bucal. 2009, 14, e525–e528. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Springer, S.; Mulvey, C.L.; Silliman, N.; Schaefer, J.; Sausen, M.; James, N.; Rettig, E.M.; Guo, T.; Pickering, C.R.; et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl. Med. 2015, 7, 293ra104. [Google Scholar] [CrossRef] [Green Version]
- Chuang, A.Y.; Chuang, T.C.; Chang, S.; Zhou, S.; Begum, S.; Westra, W.H.; Ha, P.K.; Koch, W.M.; Califano, J.A. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral Oncol. 2008, 44, 915–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephen, J.K.; Kang, M.C.; Mahan, M.; Divine, G.; Ghanem, T.A.; Worsham, M.J. HPV and methylation indicators in paired tumor and saliva in HNSCC. Cancer Clin. Oncol. 2013, 2, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.M.; Chan, J.Y.; Zhang, Z.; Wang, H.; Khan, Z.; Bishop, J.A.; Westra, W.; Koch, W.M.; Califano, J.A. Saliva and plasma quantitative polymerase chain reaction-based detection and surveillance of human papillomavirus-related head and neck cancer. JAMA Otolaryngol.–Head Neck Surg. 2014, 140, 846–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.; Kiess, A.; Chung, C.H. Emerging biomarkers in head and neck cancer in the era of genomics. Nat. Rev. Clin. Oncol. 2015, 12, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef]
- Schiffman, M.; Wentzensen, N. Human papillomavirus infection and the multistage carcinogenesis of cervical cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Gillison, M.L.; Alemany, L.; Snijders, P.J.; Chaturvedi, A.; Steinberg, B.M.; Schwartz, S.; Castellsagué, X. Human papillomavirus and diseases of the upper airway: Head and neck cancer and respiratory papillomatosis. Vaccine 2012, 30, F34–F54. [Google Scholar] [CrossRef]
- Zhang, J.J.; Cao, X.C.; Zheng, X.Y.; Wang, H.Y.; Li, Y.W. Feasibility study of a human papillomavirus E6 and E7 oncoprotein test for the diagnosis of cervical precancer and cancer. J. Int. Med. Res. 2018, 46, 1033–1042. [Google Scholar] [CrossRef]
- Bussu, F.; Ragin, C.; Boscolo, P.; Rizzo, D.; Gallus, R.; Delogu, G.; Morbini, P.; Tommasino, M. HPV as a marker of molecular characterization in head and neck oncology: Looking for a standardization of clinical use and of detection method(s) in clinical practice. Head Neck 2019, 41, 1104–1111. [Google Scholar] [CrossRef]
- Robinson, M.; Schache, A.; Sloan, P.; Thavaraj, S. HPV specific testing: A requirement for oropharyngeal squamous cell carcinoma patients. Head Neck Pathol. 2012, 6, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Dias da Silva, W.; Tambourgi, D.V. IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Vet. Immunol. Immunopathol. 2010, 135, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.; Bok, M.; Saif, L.; Fernandez, F.; Parreño, V. Egg yolk IgY antibodies: A therapeutic intervention against group A rotavirus in calves. Res. Vet. Sci. 2015, 103, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzywa, R.; Łupicka-Słowik, A.; Walczak, M.; Idzi, M.; Bobrek, K.; Boivin, S.; Gaweł, A.; Stefaniak, T.; Oleksyszyn, J.; Sieńczyk, M. Highly sensitive detection of cancer antigen 15-3 using novel avian IgY antibodies. ALTEX-Altern. Anim. Exp. 2014, 31, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Lung, F.D.; Tsai, J.Y.; Wei, S.Y.; Cheng, J.W.; Chen, C.; Li, P.; Roller, P.P. Novel peptide inhibitors for Grb2 SH2 domain and their detection by surface plasmon resonance. J. Pept. Res. 2002, 60, 143–149. [Google Scholar] [CrossRef]
- Gopinath, S.C.; Tang, T.H.; Citartan, M.; Chen, Y.; Lakshmipriya, T. Current aspects in immunosensors. Biosens. Bioelectron. 2014, 57, 292–302. [Google Scholar] [CrossRef]
- Leiva, C.L.; Gallardo, M.J.; Casanova, N.; Terzolo, H.; Chacana, P. IgY-technology (egg yolk antibodies) in human medicine: A review of patents and clinical trials. Int. Immunopharmacol. 2020, 81, 106269. [Google Scholar] [CrossRef]
- Vergara, D.; Bianco, M.; Pagano, R.; Priore, P.; Lunetti, P.; Guerra, F.; Bettini, S.; Carallo, S.; Zizzari, A.; Pitotti, E.; et al. An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin. Nanomedicine 2018, 14, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Lago, S.; Nadai, M.; Rossetto, M.; Richter, S.N. Surface Plasmon Resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2018, 1862, 1276–1282. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.H.; Yi, S.Y.; Woubit, A.; Kim, M. A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium. Appl. Sci. Converg. Technol. 2016, 25, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Augustin, J.G.; Lepine, C.; Morini, A.; Brunet, A.; Veyer, D.; Brochard, C.; Mirghani, H.; Péré, H.; Badoual, C. HPV Detection in Head and Neck Squamous Cell Carcinomas: What Is the Issue? Front. Oncol. 2020, 10, 1751. [Google Scholar] [CrossRef] [PubMed]
- Gipson, B.J.; Robbins, H.A.; Fakhry, C.; D’Souza, G. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer. Oral Oncol. 2018, 77, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Harlé, A.; Guillet, J.; Thomas, J.; Sastre-Garau, X.; Rouyer, M.; Ramacci, C.; Gilson, P.; Dubois, C.; Dolivet, G.; Leroux, A.; et al. Evaluation and validation of HPV real-time PCR assay for the detection of HPV DNA in oral cytobrush and FFPE samples. Sci. Rep. 2018, 8, 11313. [Google Scholar] [CrossRef] [PubMed]
ka (1/Ms) | kd (1/s) | KD (M) | Rmax (RU) | tc | Chi2 (RU2) |
---|---|---|---|---|---|
340.6 | 1.191 × 10−4 | 3.497 × 10−7 | 1385 | 8.020 × 106 | 0.524 |
KD (M) | 1.753 × 10−7 |
Rmax (RU) | 52.94 |
offset (RU) | −6.557 |
Chi2 (RU2) | 0.288 |
Source of Samples | Target Biomarker | Methods | Sensitivity | Specificity | Advantages | Disadvantages |
---|---|---|---|---|---|---|
Histopathological specimen [40] | HPV-DNA | polymerase chain reaction (PCR) | >90% | >90% | High assay sensitivity and specificity | Not directly indicated that cancer is induced by HPV |
HPV-DNA | in situ hybridization | >90% | >90% | High agreement with HPV DNA assays | Not suitable for clinical application | |
p16INK4A | Immunohistochemistry | >80% | >80% | Reliable indicator biomarker | High false positive rate, and no standard scoring system available | |
Serum [28,41] | HPV antibody | E6/E7 antibody analysis | >80% | >90% | Indicates the presence of HPV-associated cancer | At any anatomic site, not specific in HNSCC |
HPV E6/E7 oncoproteins | Western blot analysis | >65% | >30% | Indicates the presence of HPV-associated cancer | At any anatomic site and low sensitivity of assay | |
Saliva [42,43] | HPV DNA | polymerase chain reaction (PCR) | >90% | >70% | High assay sensitivity and specificity | Single time-point measure of HPV exposure and not directly indicated that cancer induced by HPV |
HPV E6/E7 transcripts | qRT-PCR | >90% | >95% | Achievable in laboratories | Limited utility in clinical practice |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-S.; Ou, B.-R.; Lung, F.-D. Developing a Biosensor-Based Immunoassay to Detect HPV E6 Oncoprotein in the Saliva Rinse Fluid of Oral Cancer Patients. J. Pers. Med. 2022, 12, 594. https://doi.org/10.3390/jpm12040594
Cheng C-S, Ou B-R, Lung F-D. Developing a Biosensor-Based Immunoassay to Detect HPV E6 Oncoprotein in the Saliva Rinse Fluid of Oral Cancer Patients. Journal of Personalized Medicine. 2022; 12(4):594. https://doi.org/10.3390/jpm12040594
Chicago/Turabian StyleCheng, Chi-Sheng, Bor-Rung Ou, and Feng-Di Lung. 2022. "Developing a Biosensor-Based Immunoassay to Detect HPV E6 Oncoprotein in the Saliva Rinse Fluid of Oral Cancer Patients" Journal of Personalized Medicine 12, no. 4: 594. https://doi.org/10.3390/jpm12040594
APA StyleCheng, C. -S., Ou, B. -R., & Lung, F. -D. (2022). Developing a Biosensor-Based Immunoassay to Detect HPV E6 Oncoprotein in the Saliva Rinse Fluid of Oral Cancer Patients. Journal of Personalized Medicine, 12(4), 594. https://doi.org/10.3390/jpm12040594