Radiotherapy of Breast Cancer in Laterally Tilted Prone vs. Supine Position: What about the Internal Mammary Chain?
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- The homogeneity of the dose distribution in the PTV: This is calculated from the relative difference of the PTV volume, which was exposed to 48 Gy or 52 Gy (approximately 95% or 103% of the PTV dose). Therefore, the value lay between 0 and 100; the higher it was, the more homogeneous the dose distribution in the target volume was. Subsequently, we determined a mean value from all irradiation plans. If the value of an individual plan was higher than the mean value, the irradiation plan received a factor of “1” for homogeneity; otherwise, a factor of “0”.
- (b)
- The conformity of the dose distribution: This describes whether the plan primarily covered the PTV and produced a steep dose fall-off in the surrounding normal tissues. It was calculated from the absolute volume outside the PTV + 5 mm exposed to 10 Gy and to 48 Gy (V10 and V48). These parameters were compared with the mean value of the corresponding collective. If the value for the respective plan was lower than the mean value of the collective, the surrounding normal tissue was less exposed in comparison to the entire collective; the irradiation plan received a 1; otherwise, a 0. The partial values for V10 and V48 were added together and divided by two so that the partial factor conformity resulted in between 0 and 1.
- (c)
- The radiogenic exposure of OAR: Here, both the average dose exposures and the organ-specific dose thresholds (as described above) were considered. The value was composed of the mean lung dose, the lung V20, the mean cardiac dose, and the cardiac V40. If the risk structures in the respective plan were exposed to less than the average of the corresponding collective, the result for this subfactor was “1”; otherwise, “0”. To calculate the subfactor “radiogenic exposure of OAR”, the sum of the individual OAR factors was then divided by the total number of factors, resulting in a value between 0 and 1.
Statistical Methods
3. Results
3.1. EBRT of PTV “B” (Treating Only the Breast)
3.1.1. Organs at Risk
- OAR “heart” in the EBRT of the left breast
- OAR “ipsilateral lung”
3.1.2. Lymph Node Areas
- Axillary levels
- Rotter lymph nodes (interpectoral nodes)
- Internal mammary chain (parasternal region, PSR)
3.1.3. Plan Assessment Factors and Plan Rating
3.2. EBRT of PTV “B + PSR” (Treating Breast and Parasternal Lymphatics)
3.2.1. Organs at Risk
- OAR “heart”
- OAR “ipsilateral lung”
3.2.2. Lymph Node Areas
- Axillary levels
- Rotter lymph nodes (interpectoral nodes)
3.2.3. Plan Assessment Factors and Plan Rating
3.3. Summary of Results
4. Discussion
4.1. OAR “Heart”
4.2. OAR “Lung”
4.3. Lymphatic Regions
4.4. Plan Assessments
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [PubMed] [Green Version]
- Coles, C.E.; Griffin, C.L.; Kirby, A.M.; Titley, J.; Agrawal, R.K.; Alhasso, A.; Bhattacharya, I.S.; Brunt, A.M.; Ciurlionis, L.; Chan, C.; et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 2017, 390, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Budach, W.; Kammers, K.; Boelke, E.; Matuschek, C. Adjuvant radiotherapy of regional lymph nodes in breast cancer-a meta-analysis of randomized trials. Radiat. Oncol. 2013, 8, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergom, C.; Currey, A.; Desai, N.; Tai, A.; Strauss, J.B. Deep Inspiration Breath Hold: Techniques and Advantages for Cardiac Sparing During Breast Cancer IrRadiat.ion. Front Oncol. 2018, 8, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulliez, T.; Veldeman, L.; van Greveling, A.; Speleers, B.; Sadeghi, S.; Berwouts, D.; Decoster, F.; Vercauteren, T.; De Gersem, W.; Van den Broecke, R.; et al. Hypofractionated whole breast irradiation for patients with large breasts: A randomized trial comparing prone and supine positions. Radiother. Oncol. 2013, 108, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Speleers, B.A.; Belosi, F.M.; De Gersem, W.R.; Deseyne, P.R.; Paelinck, L.M.; Bolsi, A.; Lomax, A.J.; Boute, B.G.; Van Greveling, A.E.; Monten, C.M.; et al. Comparison of supine or prone crawl photon or proton breast and regional lymph node radiation therapy including the internal mammary chain. Sci. Rep. 2019, 18, 4755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speleers, B.; Schoepen, M.; Belosi, F.; Vakaet, V.; De Neve, W.; Deseyne, P.; Paelinck, L.; Vercauteren, T.; Parkes, M.J.; Lomax, T.; et al. Effects of deep inspiration breath hold on prone photon or proton irradiation of breast and regional lymph nodes. Sci. Rep. 2021, 11, 6085. [Google Scholar] [CrossRef]
- Offersen, B.V.; Boersma, L.J.; Kirkove, C.; Hol, S.; Aznar, M.C.; Sola, A.B.; Kirova, Y.M.; Pignol, J.P.; Remouchamps, V.; Verhoeven, K.; et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer, version 1.1. Radiother. Oncol. 2016, 118, 205–208. [Google Scholar] [CrossRef]
- McGale, P.; Darby, S.C.; Hall, P.; Adolfsson, J.; Bengtsson, N.O.; Bennet, A.M.; Fornander, T.; Gigante, B.; Jensen, M.B.; Peto, R.; et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother. Oncol. 2011, 100, 167–175. [Google Scholar] [CrossRef]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Mulliez, T.; Speleers, B.; Madani, I.; De Gersem, W.; Veldeman, L.; De Neve, W. Whole breast radiotherapy in prone and supine position: Is there a place for multi-beam IMRT? Radiat. Oncol. 2013, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Kirby, A.M.; Evans, P.M.; Donovan, E.M.; Convery, H.M.; Haviland, J.S.; Yarnold, J.R. Prone versus supine positioning for whole and partial-breast radiotherapy: A comparison of non-target tissue dosimetry. Radiother. Oncol. 2010, 96, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Basanta, M.; Ko, J.; Babcock, M.; Dewyngaert, J.K.; Formenti, S.C. Coverage of axillary lymph nodes in supine vs. prone breast radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 745–751. [Google Scholar] [CrossRef]
- Griem, K.L.; Fetherston, P.; Kuznetsova, M.; Foster, G.S.; Shott, S.; Chu, J. Three-dimensional photon dosimetry: A comparison of treatment of the intact breast in the supine and prone position. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 891–899. [Google Scholar] [CrossRef]
- Varga, Z.; Cserháti, A.; Rárosi, F.; Boda, K.; Gulyás, G.; Együd, Z.; Kahán, Z. Individualized positioning for maximum heart protection during breast irradiation. Acta Oncol. 2014, 53, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.W.; Wang, Z.; Macaulay, E.; Jagsi, R.; Duane, F.; Darby, S.C. Exposure of the Heart in Breast Cancer Radiation Therapy: A Systematic Review of Heart Doses Published during 2003 to 2013. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 845–853. [Google Scholar] [CrossRef]
- Hjelstuen, M.H.; Mjaaland, I.; Vikström, J.; Dybvik, K.I. Radiation during deep inspiration allows loco-regional treatment of left breast and axillary-, supraclavicular- and internal mammary lymph nodes without compromising target coverage or dose restrictions to organs at risk. Acta Oncol. 2012, 51, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Blom Goldman, U.; Anderson, M.; Wennberg, B.; Lind, P. Radiation pneumonitis and pulmonary function with lung dose-volume constraints in breast cancer irradiation. J. Radiother. Pract. 2014, 13, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Grantzau, T.; Mellemkjær, L.; Overgaard, J. Second primary cancers after adjuvant radiotherapy in early breast cancer patients: A national population based study under the Danish Breast Cancer Cooperative Group (DBCG). Radiother. Oncol. 2013, 106, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.; Correa, C.; Duane, F.K.; Aznar, M.C.; Anderson, S.J.; Bergh, J.; Dodwell, D.; Ewertz, M.; Gray, R.; Jagsi, R.; et al. Early Breast Cancer Trialists’ Collaborative Group. Estimating the Risks of Breast Cancer Radiotherapy: Evidence From Modern Radiation Doses to the Lungs and Heart and From Previous Randomized Trials. J. Clin. Oncol. 2017, 35, 1641–1649. [Google Scholar] [CrossRef]
- Cho, B.C.; Hurkmans, C.W.; Damen, E.M.; Zijp, L.J.; Mijnheer, B.J. Intensity modulated versus non-intensity modulated radiotherapy in the treatment of the left breast and upper internal mammary lymph node chain: A comparative planning study. Radiother. Oncol. 2002, 62, 127–136. [Google Scholar] [CrossRef]
- Dogan, N.; Cuttino, L.; Lloyd, R.; Bump, E.A.; Arthur, D.W. Optimized dose coverage of regional lymph nodes in breast cancer: The role of intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1238–1250. [Google Scholar] [CrossRef]
- Remouchamps, V.M.; Vicini, F.A.; Sharpe, M.B.; Kestin, L.L.; Martinez, A.A.; Wong, J.W. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 392–406. [Google Scholar] [CrossRef]
- Nitsche, M.; Temme, N.; Förster, M.; Reible, M.; Hermann, R.M. Tangential vs. defined radiotherapy in early breast cancer treatment without axillary lymph node dissection: A comparative study. Strahlenther. Onkol. 2014, 190, 715–721. [Google Scholar] [CrossRef]
- Giuliano, A.E.; Ballman, K.; McCall, L.; Beitsch, P.; Whitworth, P.W.; Blumencranz, P.; Leitch, A.M.; Saha, S.; Morrow, M.; Hunt, K.K. Locoregional Recurrence after Sentinel Lymph Node Dissection with or without Axillary Dissection in Patients with Sentinel Lymph Node Metastases: Long-term Follow-up from the American College of Surgeons Oncology Group (Alliance) ACOSOG Z0011 Randomized Trial. Ann. Surg. 2016, 264, 413–420. [Google Scholar]
- Jagsi, R.; Chadha, M.; Moni, J.; Ballman, K.; Laurie, F.; Buchholz, T.A.; Giuliano, A.; Haffty, B.G. Radiation field design in the ACOSOG Z0011 (Alliance) Trial. J. Clin. Oncol. 2014, 32, 3600–3606. [Google Scholar] [CrossRef] [Green Version]
- Donker, M.; van Tienhoven, G.; Straver, M.E.; Meijnen, P.; van de Velde, C.J.; Mansel, R.E.; Cataliotti, L.; Westenberg, A.H.; Klinkenbijl, J.H.; Orzalesi, L.; et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): A randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014, 15, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Bromham, N.; Schmidt-Hansen, M.; Astin, M.; Hasler, E.; Reed, M.W. Axillary treatment for operable primary breast cancer. Cochrane Database Syst. Rev. 2017, 4, CD004561. [Google Scholar] [CrossRef]
- Stegman, L.D.; Beal, K.P.; Hunt, M.A.; Fornier, M.N.; McCormick, B. Long-term clinical outcomes of whole-breast irradiation delivered in the prone position. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 73–81. [Google Scholar] [CrossRef]
- Morrow, M.; Van Zee, K.J.; Patil, S.; Petruolo, O.; Mamtani, A.; Barrio, A.V.; Capko, D.; El-Tamer, M.; Gemignani, M.L.; Heerdt, A.S.; et al. Axillary Dissection and Nodal Irradiation Can Be Avoided for Most Node-positive Z0011-eligible Breast Cancers: A Prospective Validation Study of 793 Patients. Ann. Surg. 2017, 266, 457–462. [Google Scholar] [CrossRef]
- Schmitt, M.; Chambrelant, I.; Hong Chheang, P.; Pflumio, C.; Hild, C.; Petit, T.; Noël, G. The Impact of an Incidental Dose on Axillary Tumor Control and Toxicity in Localized Breast Cancer: A Retrospective Analysis. Cancers 2022, 14, 807. [Google Scholar] [CrossRef] [PubMed]
- Csenki, M.; Ujhidy, D.; Cserháti, A.; Kahán, Z.; Varga, Z. Radiation dose to the nodal regions during prone versus supine breast irradiation. Ther. Clin. Risk Manag. 2014, 21, 367–372. [Google Scholar]
- Leonard, K.L.; Solomon, D.; Hepel, J.T.; Hiatt, J.R.; Wazer, D.E.; DiPetrillo, T.A. Axillary lymph node dose with tangential whole breast radiation in the prone versus supine position: A dosimetric study. Radiat. Oncol. 2012, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reznik, J.; Cicchetti, M.G.; Degaspe, B.; Fitzgerald, T.J. Analysis of axillary coverage during tangential radiation therapy to the breast. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 163–168. [Google Scholar] [CrossRef]
Exposure of OARs and ROIs, EBRT of PTV “B” | Prone, 3D | Supine, 3D | p | Prone, IMRT | Supine, IMRT | p |
---|---|---|---|---|---|---|
heart, mean dose (left) (Gy) | 2.8 (SD 1.02) | 4.76 (SD 2.18) | <0.001 | 3.36 (SD 0.56) | 4.16 (SD 1.3) | <0.001 |
heart, V40 (left) (%) | 1.14 (SD 1.2) | 4.4 (SD 3.12) | <0.001 | 0.34 (SD 0.44) | 2.87 (SD 1.7) | <0.001 |
heart, mean dose (right) (Gy) | 0.35 (SD 0.07) | 0.38 (SD 0.06) | 0.98 | 0.39 (SD 0.1) | 0.44 (SD 0.11) | 0.87 |
heart, V40 (right) (%) | 0 | 0 | n.d. | 0 | 0 | n.d. |
ipsilateral lung (left), mean dose (Gy) | 1.14 (SD 0.58) | 7.83 (SD 1.49) | <0.001 | 2.49 (SD 0.47) | 7.68 (SD 1.28) | <0.001 |
ipsilateral lung (left), V20 (%) | 0.9 (SD 1.03) | 14.4 (SD 2.82) | <0.001 | 0.8 (SD 0.68) | 14.84 (SD 2.66) | <0.001 |
ipsilateral lung (right), mean dose (Gy) | 2.33 (SD 1.08) | 8.28 (SD 1.62) | <0.001 | 3.16 (SD 0.78) | 8.32 (SD 1.26) | <0.001 |
ipsilateral lung (right), V20 (%) | 3.07 (SD 2.33) | 15.64 (SD 3.62) | <0.001 | 2.43 (SD 1.44) | 15.91 (SD 3.09) | <0.001 |
axillary level I, mean dose (Gy) | 13.23 (SD 8.65) | 33.01 (SD 10.25) | <0.001 | 16.6 (SD 6.87) | 33.57 (SD 9.46) | <0.001 |
axillary level I, V40 (%) | 17.11 (SD 15.59) | 56.05 (SD 22.64) | <0.001 | 14.35 (SD 11.46) | 53.27 (SD 22.14) | <0.001 |
axillary level II, mean dose (Gy) | 1.75 (SD 3.16) | 13.01 (SD 12.03) | <0.001 | 4.55 (SD 3.26) | 14.55 (SD 12.08) | <0.001 |
axillary level II, V40 (%) | 0.52 (SD 0.19) | 13.73 (SD 20.39) | <0.001 | 0.32 (SD 2.03) | 13.84 (SD 19.97) | <0.001 |
axillary level III, mean dose (Gy) | 1.45 (SD 1.65) | 10.17 (SD 10.97) | <0.001 | 4.12 (SD 3.13) | 12.08 (SD 11.57) | <0.001 |
axillary level III, V40 (%) | 0.02 (SD 0.19) | 7.57 (SD 16.93) | <0.001 | 0.01 (SD 0.03) | 9.23 (SD 17.18) | <0.001 |
interpectoral nodes, mean dose (Gy) | 15.75 (SD 10.78) | 35.57 (SD 11.19) | <0.001 | 19.95 (SD 8.81) | 35.96 (SD 11.56) | <0.001 |
interpectoral nodes, V40 (%) | 20.3 (SD 22.05) | 67.12 (SD 23.92) | <0.001 | 18.42 (SD 17.52) | 69.68 (SD 22.92) | <0.001 |
parasternal region, mean dose (Gy) | 9.67 (SD 7.11) | 16.49 (SD 10.37) | <0.001 | 11.8 (SD 6.18) | 17.32 (SD 9.37) | <0.001 |
parasternal region, V40 (%) | 4.81 (SD 8.51) | 14.49 (SD 22) | <0.001 | 2.61 (SD 6.16) | 11.45 (SD 17.86) | <0.001 |
Plan Assessment Factors, EBRT of PTV “B” | Prone, 3D | Supine, 3D | p | Prone, IMRT | Supine, IMRT | p |
---|---|---|---|---|---|---|
OPAF, whole collective | 0.61 (SD 0.1) | 0.42 (SD 0.26) | <0.001 | 0.69 (SD 0.18) | 0.45 (SD 0.15) | <0.001 |
OPAF, left breast | 0.6 (SD 0.11) | 0.45 (SD 0.26) | <0.001 | 0.62 (SD 0.18) | 0.48 (SD 0.19 | <0.001 |
OPAF, right breast | 0.63 (SD 0.07) | 0.38 (SD 0.27) | <0.001 | 0.75 (SD 0.16) | 0.43 (SD 0.11) | <0.001 |
subfactor “homogeneity” | 0.03 (SD 0.16) | 0.78 (SD 0.42) | <0.001 | 0.3 (SD 0.46) | 0.98 (SD 0.16) | <0.001 |
subfactor “conformity” | 0.85 (SD 0.26) | 0.4 (SD 0.46) | <0.001 | 0.78 (SD 0.25) | 0.33 (SD 0.38) | <0.001 |
subfactor “radiogenic exposure of OAR” | 0.96 (SD 0.13) | 0.08 (SD 0.17) | <0.001 | 0.98 (SD 0.07) | 0.06 (SD 0.16) | <0.001 |
Exposure of OARs and ROIs, EBRT of PTV “B + PSR” | Prone, 3D | Supine, 3D | p | Prone, IMRT | Supine, IMRT | p |
---|---|---|---|---|---|---|
heart, mean dose (left) (Gy) | 7.24 (SD 2.23) | 7.3 (SD 2.9) | 4.7 | 7.35 (SD 1.78) | 6 (SD 2.02) | 0.015 |
heart, V40 (left) (%) | 7.19 (SD 3.39) | 7.87 (SD 4.54) | 0.3 | 2.53 (SD 1.53) | 3.77 (SD 2.41) | 0.03 |
heart, mean dose (right) (Gy) | 1.8 (SD 0.82) | 1.07 (SD 0.42) | <0.001 | 3.54 (SD 1.19) | 1.61 (SD 0.94) | <0.001 |
heart, V40 (right) (%) | 0.52 (SD 0.83) | 0.04 (SD 0.15) | 0.008 | 0.3 (SD 0.52) | 0.13 (SD 0.58) | 0.04 |
ipsilateral lung (left), mean dose (Gy) | 7.42 (SD 2.53) | 13.12 (SD 2.6) | <0.001 | 7.52 (SD 1.72) | 12.65 (SD 0.99) | <0.001 |
ipsilateral lung (left), V20 (%) | 14.44 (SD 5.38) | 27.61 (SD 4.45) | <0.001 | 11.72 (SD 3.98) | 24.78 (SD 2.45) | <0.001 |
ipsilateral lung (right), mean dose (Gy) | 9.76 (SD 2.82) | 14.34 (SD 2.55) | <0.001 | 9.52 (SD 1.78) | 14.06 (SD 2.01) | <0.001 |
ipsilateral lung (right), V20 (%) | 18.77 (SD 7.59) | 30.44 (SD 6.22) | <0.001 | 15.21 (SD 5.62) | 28.51 (SD 5.02) | <0.001 |
axillary level I, mean dose (Gy) | 31.8 (SD 8.58) | 35.95 (SD 8.19) | 0.015 | 26.79 (SD 6.76) | 33.57 (SD 9.46) | <0.001 |
axillary level I, V40 (%) | 51.11 (SD 20.47) | 62.05 (SD 18.99) | 0.007 | 24.4 (SD 16.94) | 61.3 (SD 17.97) | <0.001 |
axillary level II, mean dose (Gy) | 8.21 (SD 7.32) | 13.03 (SD 10.58) | 0.01 | 10.53 (SD 6.86) | 16.14 (SD 11.09) | 0.004 |
axillary level II, V40 (%) | 3.68 (SD 12.22) | 11.32 (SD 18.02) | 0.02 | 1.94 (SD 6.32) | 12.96 (SD 17.2) | <0.001 |
axillary level III, mean dose (Gy) | 6.74 (SD 6.67) | 10.96 (SD 9.05) | 0.01 | 9 (SD 5.98) | 14.32 (SD 10.76) | 0.04 |
axillary level III, V40 (%) | 1.74 (SD 8.56) | 6.39 (SD 13.32) | 0.07 | 0.32 (SD 1.26) | 8.37 (SD 16.16) | 0.001 |
interpectoral nodes, mean dose (Gy) | 26.2 (SD 10.43) | 35.53 (SD 11.14) | <0.001 | 24.6 (SD 7.82) | 36.76 (SD 10.84) | <0.001 |
interpectoral nodes, V40 (%) | 40.45 (SD 23.99) | 66.77 (SD 23.82) | <0.001 | 23.31 (SD 19.11) | 69.33 (SD 23.1) | <0.001 |
Plan Assessment Factors, EBRT of PTV “B + PSR” | Prone, 3D | Supine, 3D | p | Prone, IMRT | Supine, IMRT | p |
---|---|---|---|---|---|---|
OPAF, whole collective | 0.47 (SD 0.18) | 0.51 (SD 0.2) | 0.13 | 0.59 (SD 0.17) | 0.58 (SD 0.22) | 0.22 |
OPAF, left breast | 0.46 (SD 0.18) | 0.49 (SD 0.23) | 0.24 | 0.6 (SD 0.17) | 0.54 (SD 0.22) | 0.43 |
OPAF, right breast | 0.48 (SD 0.18) | 0.54 (SD 0.17) | 0.21 | 0.57 (SD 0.18) | 0.61 (SD 0.22) | 0.3 |
subfactor “homogeneity” | 0.35 (SD 0.26) | 0.56 (SD 0.23) | <0.001 | 0.44 (SD 0.32) | 0.61 (SD 0.33) | 0.009 |
subfactor “conformity” | 0.41 (SD 0.36) | 0.56 (SD 0.41) | 0.042 | 0.59 (SD 0.25) | 0.69 (SD 0.39) | 0.12 |
subfactor “radiogenic exposure of OAR” | 0.64 (SD 0.31) | 0.42 (SD 0.3) | 0.001 | 0.73 (SD 0.19) | 0.43 (SD 0.23) | <0.001 |
Prone, 3D | Prone, IMRT | Supine, 3D | Supine, IMRT | |
---|---|---|---|---|
PTV “B” | ||||
heart | + | + | ||
ipsilateral lung | + | + | ||
ipsilateral lung | + | + | ||
axillary and other lymphatic regions | + | + | ||
plan assessment | ||||
| + | ++ | ++ | |
| + | + | ||
| ++ | ++ | ||
| + | + | ||
PTV “B + PSR” | ||||
heart, left-breast EBRT | + | |||
heart, right-breast EBRT | + | + | ||
ipsilateral lung | ++ | ++ | ||
axillary and other lymphatic regions | + | + | ||
plan assessment | ||||
| ++ | ++ | ||
| + | + | + | |
| + | + | ||
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temme, N.; Hermann, R.M.; Hinsche, T.; Becker, J.-N.; Sonnhoff, M.; Kaltenborn, A.; Carl, U.M.; Christiansen, H.; Geworski, L.; Nitsche, M. Radiotherapy of Breast Cancer in Laterally Tilted Prone vs. Supine Position: What about the Internal Mammary Chain? J. Pers. Med. 2022, 12, 653. https://doi.org/10.3390/jpm12040653
Temme N, Hermann RM, Hinsche T, Becker J-N, Sonnhoff M, Kaltenborn A, Carl UM, Christiansen H, Geworski L, Nitsche M. Radiotherapy of Breast Cancer in Laterally Tilted Prone vs. Supine Position: What about the Internal Mammary Chain? Journal of Personalized Medicine. 2022; 12(4):653. https://doi.org/10.3390/jpm12040653
Chicago/Turabian StyleTemme, Nils, Robert Michael Hermann, Tanja Hinsche, Jan-Niklas Becker, Mathias Sonnhoff, Alexander Kaltenborn, Ulrich Martin Carl, Hans Christiansen, Lilli Geworski, and Mirko Nitsche. 2022. "Radiotherapy of Breast Cancer in Laterally Tilted Prone vs. Supine Position: What about the Internal Mammary Chain?" Journal of Personalized Medicine 12, no. 4: 653. https://doi.org/10.3390/jpm12040653
APA StyleTemme, N., Hermann, R. M., Hinsche, T., Becker, J. -N., Sonnhoff, M., Kaltenborn, A., Carl, U. M., Christiansen, H., Geworski, L., & Nitsche, M. (2022). Radiotherapy of Breast Cancer in Laterally Tilted Prone vs. Supine Position: What about the Internal Mammary Chain? Journal of Personalized Medicine, 12(4), 653. https://doi.org/10.3390/jpm12040653