FOXN3 and GDNF Polymorphisms as Common Genetic Factors of Substance Use and Addictive Behaviors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Analyzed Phenotypes
2.2. SNP Selection Criteria
2.3. DNA Preparation and SNP Genotyping
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Substance Use and Behavioral Addiction Measures
3.2. Genetic Association Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems (11th Revision). Available online: https://icd.who.int/browse11/l-m/en (accessed on 10 January 2021).
- Potenza, M.N. Should addictive disorders include non-substance-related conditions? Addiction 2006, 101 (Suppl. 1), 142–151. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, H.J.; Achab, S.; Billieux, J.; Bowden-Jones, H.; Carragher, N.; Demetrovics, Z.; Higuchi, S.; King, D.L.; Mann, K.; Potenza, M.; et al. Including gaming disorder in the ICD-11: The need to do so from a clinical and public health perspective. J. Behav. Addict. 2018, 7, 556–561. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; Delfabbro, P.H.; Potenza, M.N.; Demetrovics, Z.; Billieux, J.; Brand, M. Internet gaming disorder should qualify as a mental disorder. Aust. N. Z. J. Psychiatry 2018, 52, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Király, O.; Demetrovics, Z. Inclusion of Gaming Disorder in ICD has more advantages than disadvantages. J. Behav. Addict. 2017, 6, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Chiu, W.T.; Demler, O.; Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey replication. Arch. Gen. Psychiatry 2005, 62, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Hwang, I.; LaBrie, R.; Petukhova, M.; Sampson, N.A.; Winters, K.C.; Shaffer, H.J. DSM-IV pathological gambling in the National Comorbidity Survey replication. Psychol. Med. 2008, 38, 1351–1360. [Google Scholar] [CrossRef] [Green Version]
- Potenza, M.N.; Balodis, I.M.; Derevensky, J.; Grant, J.E.; Petry, N.M.; Verdejo-Garcia, A.; Yip, S.W. Gambling disorder. Nat. Rev. Dis. Primers 2019, 5, 51. [Google Scholar] [CrossRef]
- Christenson, G.A.; Faber, R.J.; de Zwaan, M.; Raymond, N.C.; Specker, S.M.; Ekern, M.D.; Mackenzie, T.B.; Crosby, R.D.; Crow, S.J.; Eckert, E.D. Compulsive buying: Descriptive characteristics and psychiatric comorbidity. J. Clin. Psychiatry 1994, 55, 5–11. [Google Scholar]
- Di Nicola, M.; Tedeschi, D.; De Risio, L.; Pettorruso, M.; Martinotti, G.; Ruggeri, F.; Swierkosz-Lenart, K.; Guglielmo, R.; Callea, A.; Ruggeri, G.; et al. Co-occurrence of alcohol use disorder and behavioral addictions: Relevance of impulsivity and craving. Drug Alcohol Depend. 2015, 148, 118–125. [Google Scholar] [CrossRef]
- Feigelman, W.; Wallisch, L.S.; Lesieur, H.R. Problem gamblers, problem substance users, and dual-problem individuals: An epidemiological study. Am. J. Public Health 1998, 88, 467–470. [Google Scholar] [CrossRef]
- Konkolÿ Thege, B.; Hodgins, D.C.; Wild, T.C. Co-occurring substance-related and behavioral addiction problems: A person-centered, lay epidemiology approach. J. Behav. Addict. 2016, 5, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotyuk, E.; Magi, A.; Eisinger, A.; Király, O.; Vereczkei, A.; Barta, C.; Griffiths, M.D.; Székely, A.; Kökönyei, G.; Farkas, J.; et al. Co-occurrences of substance use and other potentially addictive behaviors: Epidemiological results from the Psychological and Genetic Factors of the Addictive Behaviors (PGA) Study. J. Behav. Addict. 2020, 9, 272–288. [Google Scholar] [CrossRef]
- Müller, A.; Loeber, S.; Söchtig, J.; Te Wildt, B.; De Zwaan, M. Risk for exercise dependence, eating disorder pathology, alcohol use disorder and addictive behaviors among clients of fitness centers. J. Behav. Addict. 2015, 4, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sussman, S.; Arpawong, T.E.; Sun, P.; Tsai, J.; Rohrbach, L.A.; Spruijt-Metz, D. Prevalence and co-occurrence of addictive behaviors among former alternative high school youth. J. Behav. Addict. 2014, 3, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villella, C.; Martinotti, G.; Di Nicola, M.; Cassano, M.; La Torre, G.; Gliubizzi, M.D.; Messeri, I.; Petruccelli, F.; Bria, P.; Janiri, L.; et al. Behavioural addictions in adolescents and young adults: Results from a prevalence study. J. Gambl. Stud. 2011, 27, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.; Morgenstern, M.; Hanewinkel, R. Co-occurrence of addictive behaviours: Personality factors related to substance use, gambling and computer gaming. Eur. Addict. Res. 2012, 18, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.A. Roles for nigrostriatal—Not just mesocorticolimbic—Dopamine in reward and addiction. Trends Neurosci. 2009, 32, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Buck, C.L.; Cohen, A.; Edwards, S.; Park, P.E.; Schlosburg, J.E.; Schmeichel, B.; Vendruscolo, L.F.; Wade, C.L.; Whitfield, T.W., Jr.; et al. Addiction as a stress surfeit disorder. Neuropharmacology 2014, 76 Pt B, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Le Moal, M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat. Neurosci. 2005, 8, 1442–1444. [Google Scholar] [CrossRef]
- Luscher, C.; Malenka, R.C. Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling. Neuron 2011, 69, 650–663. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Fowler, J.S.; Wang, G.J. The addicted human brain: Insights from imaging studies. J. Clin. Investig. 2003, 111, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Nutt, D.J.; Lingford-Hughes, A.; Erritzoe, D.; Stokes, P.R. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 2015, 16, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyollai, A.; Griffiths, M.; Barta, C.; Vereczkei, A.; Urban, R.; Kun, B.; Kokonyei, G.; Szekely, A.; Sasvari-Szekely, M.; Blum, K.; et al. The genetics of problem and pathological gambling: A systematic review. Curr. Pharm. Des. 2014, 20, 3993–3999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeman, R.F.; Potenza, M.N. A targeted review of the neurobiology and genetics of behavioural addictions: An emerging area of research. Can. J. Psychiatry 2013, 58, 260–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeman, R.F.; Potenza, M.N. Similarities and differences between pathological gambling and substance use disorders: A focus on impulsivity and compulsivity. Psychopharmacology 2012, 219, 469–490. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L. Nicotine addiction. N. Engl. J. Med. 2010, 362, 2295–2303. [Google Scholar] [CrossRef]
- Gorwood, P.; Le Strat, Y.; Ramoz, N.; Dubertret, C.; Moalic, J.M.; Simonneau, M. Genetics of dopamine receptors and drug addiction. Hum. Genet. 2012, 131, 803–822. [Google Scholar] [CrossRef]
- Guo, G.; Cai, T.; Guo, R.; Wang, H.; Harris, K.M. The dopamine transporter gene, a spectrum of most common risky behaviors, and the legal status of the behaviors. PLoS ONE 2010, 5, e9352. [Google Scholar] [CrossRef] [Green Version]
- Werme, M.; Lindholm, S.; Thoren, P.; Franck, J.; Brene, S. Running increases ethanol preference. Behav. Brain Res. 2002, 133, 301–308. [Google Scholar] [CrossRef]
- Werme, M.; Thorén, P.; Olson, L.; Brené, S. Running and cocaine both upregulate dynorphin mRNA in medial caudate putamen. Eur. J. Neurosci. 2000, 12, 2967–2974. [Google Scholar] [CrossRef]
- Potenza, M.N.; Sofuoglu, M.; Carroll, K.M.; Rounsaville, B.J. Neuroscience of behavioral and pharmacological treatments for addictions. Neuron 2011, 69, 695–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klugah-Brown, B.; Zhou, X.; Pradhan, B.K.; Zweerings, J.; Mathiak, K.; Biswal, B.; Becker, B. Common neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders—An activation likelihood meta-analysis of functional imaging studies. Addict. Biol. 2021, 26, e12997. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Lynskey, M.T. Are there genetic influences on addiction: Evidence from family, adoption and twin studies. Addiction 2008, 103, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Verweij, K.J.; Gillespie, N.A.; Heath, A.C.; Lessov-Schlaggar, C.N.; Martin, N.G.; Nelson, E.C.; Slutske, W.S.; Whitfield, J.B.; Lynskey, M.T. The genetics of addiction-a translational perspective. Transl. Psychiatry 2012, 2, e140. [Google Scholar] [CrossRef]
- Gorwood, P.; Le Strat, Y.; Ramoz, N. Genetics of addictive behavior: The example of nicotine dependence. Dialogues Clin. Neurosci. 2017, 19, 237–245. [Google Scholar] [CrossRef]
- Polderman, T.J.C.; Benyamin, B.; de Leeuw, C.A.; Sullivan, P.F.; van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47, 702–709. [Google Scholar] [CrossRef] [Green Version]
- Xian, H.; Giddens, J.L.; Scherrer, J.F.; Eisen, S.A.; Potenza, M.N. Environmental factors selectively impact co-occurrence of problem/pathological gambling with specific drug-use disorders in male twins. Addiction 2014, 109, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Slutske, W.S.; Eisen, S.; True, W.R.; Lyons, M.J.; Goldberg, J.; Tsuang, M. Common genetic vulnerability for pathological gambling and alcohol dependence in men. Arch. Gen. Psychiatry 2000, 57, 666–673. [Google Scholar] [CrossRef]
- Slutske, W.S.; Zhu, G.; Meier, M.H.; Martin, N.G. Genetic and environmental influences on disordered gambling in men and women. Arch. Gen. Psychiatry 2010, 67, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Manning, V.; Dowling, N.A.; Lee, S.; Rodda, S.; Garfield, J.B.B.; Volberg, R.; Kulkarni, J.; Lubman, D.I. Problem gambling and substance use in patients attending community mental health services. J. Behav. Addict. 2017, 6, 678–688. [Google Scholar] [CrossRef]
- Bühler, K.M.; Giné, E.; Echeverry-Alzate, V.; Calleja-Conde, J.; de Fonseca, F.R.; López-Moreno, J.A. Common single nucleotide variants underlying drug addiction: More than a decade of research. Addict. Biol. 2015, 20, 845–871. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.E.; Potenza, M.N.; Weinstein, A.; Gorelick, D.A. Introduction to behavioral addictions. Am. J. Drug Alcohol Abus. 2010, 36, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkowski, L.M.; Prescott, C.A.; Kendler, K.S. Multivariate assessment of factors influencing illicit substance use in twins from female-female pairs. Am. J. Med. Genet. 2000, 96, 665–670. [Google Scholar] [CrossRef]
- Kendler, K.S.; Jacobson, K.C.; Prescott, C.A.; Neale, M.C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry 2003, 160, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Chen, A.L.; Oscar-Berman, M.; Chen, T.J.; Lubar, J.; White, N.; Lubar, J.; Bowirrat, A.; Braverman, E.; Schoolfield, J.; et al. Generational association studies of dopaminergic genes in reward deficiency syndrome (RDS) subjects: Selecting appropriate phenotypes for reward dependence behaviors. Int. J. Environ. Res. Public Health 2011, 8, 4425–4459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nivard, M.G.; Verweij, K.J.H.; Minica, C.C.; Treur, J.L.; Vink, J.M.; Boomsma, D.I.; Consortium, I.C. Connecting the dots, genome-wide association studies in substance use. Mol. Psychiatr. 2016, 21, 733–735. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Johnson, E.C.; Demontis, D.; Thorgeirsson, T.E.; Walters, R.K.; Polimanti, R.; Hatoum, A.S.; Sanchez-Roige, S.; Paul, S.E.; Wendt, F.R.; Clarke, T.K.; et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 2020, 7, 1032–1045. [Google Scholar] [CrossRef]
- Jensen, K.P. A review of genome-wide association studies of stimulant and opioid use disorders. Mol. Neuropsychiatry 2016, 2, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Li, M.D.; Burmeister, M. New insights into the genetics of addiction. Nat. Rev. Genet. 2009, 10, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Mallard, T.T.; Ashenhurst, J.R.; Harden, K.P.; Fromme, K. GABRA2, alcohol, and illicit drug use: An event-level model of genetic risk for polysubstance use. J. Abnorm. Psychol. 2018, 127, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Koeneke, A.; Ponce, G.; Troya-Balseca, J.; Palomo, T.; Hoenicka, J. Ankyrin repeat and kinase domain containing 1 gene, and addiction vulnerability. Int. J. Mol. Sci. 2020, 21, 2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.W.; Wang, T.Y.; Chang, Y.H.; Lee, S.Y.; Chen, S.L.; Wang, Z.C.; Chen, P.S.; Chu, C.H.; Huang, S.Y.; Tzeng, N.S.; et al. ALDH2 gene: Its effects on the neuropsychological functions in patients with opioid use disorder undergoing methadone maintenance treatment. Clin. Psychopharmacol. Neurosci. 2020, 18, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Gibby, C.C.; Yuan, C.; Wang, J.; Yeung, S.C.J.; Shete, S. Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: Alcohol, smoking and opioid addiction. BMC Syst. Biol. 2015, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, J.E.; Chamberlain, S.R. Gambling disorder and its relationship with substance use disorders: Implications for nosological revisions and treatment. Am. J. Addict. 2015, 24, 126–131. [Google Scholar] [CrossRef]
- Leino, T.; Torsheim, T.; Griffiths, M.D.; Pallesen, S. The relationship between substance use disorder and gambling disorder: A nationwide longitudinal health registry study. Scand. J. Public Health 2021, 14034948211042249. [Google Scholar] [CrossRef]
- Vitaro, F.; Hartl, A.C.; Brendgen, M.; Laursen, B.; Dionne, G.; Boivin, M. Genetic and environmental influences on gambling and substance use in early adolescence. Behav. Genet. 2014, 44, 347–355. [Google Scholar] [CrossRef]
- Lang, M.; Lemenager, T.; Streit, F.; Fauth-Buhler, M.; Frank, J.; Juraeva, D.; Witt, S.H.; Degenhardt, F.; Hofmann, A.; Heilmann-Heimbach, S.; et al. Genome-wide association study of pathological gambling. Eur. Psychiatry 2016, 36, 38–46. [Google Scholar] [CrossRef]
- Lind, P.A.; Zhu, G.; Montgomery, G.W.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Slutske, W.S. Genome-wide association study of a quantitative disordered gambling trait. Addict. Biol. 2013, 18, 511–522. [Google Scholar] [CrossRef]
- Linner, R.K.; Biroli, P.; Kong, E.; Meddens, F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R.; et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef]
- Grant, J.E.; Kim, S.W.; Hartman, B.K. A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J. Clin. Psychiatry 2008, 69, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Grant, J.E. An open naltrexone treatment study in pathological gambling disorder. Int. Clin. Psychopharmacol. 2001, 16, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Linnet, J. The anticipatory dopamine response in addiction: A common neurobiological underpinning of gambling disorder and substance use disorder? Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 98, 109802. [Google Scholar] [CrossRef]
- Popescu, A.; Marian, M.; Drăgoi, A.M.; Costea, R.-V. Understanding the genetics and neurobiological pathways behind addiction (Review). Exp. Ther. Med. 2021, 21, 544. [Google Scholar] [CrossRef] [PubMed]
- Cepik, A.; Arikan, Z.; Boratav, C.; Isik, E. Bulimia in a male alcoholic: A symptom substitution in alcoholism. Int. J. Eat. Disord. 1995, 17, 201–204. [Google Scholar] [CrossRef]
- Conner, B.T.; Stein, J.A.; Longshore, D.; Stacy, A.W. Associations between drug abuse treatment and cigarette use: Evidence of substance replacement. Exp. Clin. Psychopharmacol. 1999, 7, 64–71. [Google Scholar] [CrossRef]
- Koball, A.M.; Glodosky, N.C.; Ramirez, L.D.; Kallies, K.J.; Gearhardt, A.N. From substances to food: An examination of addiction shift in individuals undergoing residential treatment for substance use. Addict. Res. Theory 2019, 27, 322–327. [Google Scholar] [CrossRef]
- Sinclair, D.L.; Sussman, S.; Savahl, S.; Florence, M.; Adams, S.; Vanderplasschen, W. Substitute addictions in persons with substance use disorders: A scoping review. Subst. Use Misuse 2021, 56, 683–696. [Google Scholar] [CrossRef]
- Kotyuk, E.; Farkas, J.; Magi, A.; Eisinger, A.; Király, O.; Vereczkei, A.; Barta, C.; Griffiths, M.D.; Kökönyei, G.; Székely, A.; et al. The psychological and genetic factors of the addictive behaviors (PGA) study. Int. J. Methods Psychiatr. Res. 2019, 28, e1748. [Google Scholar] [CrossRef]
- Demetrovics, Z.; Szeredi, B.; Rózsa, S. The three-factor model of Internet addiction: The development of the Problematic Internet Use Questionnaire. Behav. Res. Methods 2008, 40, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Pápay, O.; Urbán, R.; Griffiths, M.D.; Nagygyörgy, K.; Farkas, J.; Kökönyei, G.; Felvinczi, K.; Oláh, A.; Elekes, Z.; Demetrovics, Z. Psychometric properties of the problematic online gaming questionnaire short-form and prevalence of problematic online gaming in a national sample of adolescents. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 340–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, C.S.; Torsheim, T.; Brunborg, G.S.; Pallesen, S. Development of a Facebook Addiction Scale. Psychol. Rep. 2012, 110, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Banyai, F.; Zsila, A.; Kiraly, O.; Maraz, A.; Elekes, Z.; Griffiths, M.; Andreassen, C.S.; Demetrovics, Z. Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLoS ONE 2017, 12, e0169839. [Google Scholar] [CrossRef] [PubMed]
- Terry, A.; Szabo, A.; Griffiths, M. The exercise addiction inventory: A new brief screening tool. Addict. Res. Theory 2004, 12, 489–499. [Google Scholar] [CrossRef]
- Griffiths, M.; Szabo, A.; Terry, A. The exercise addiction inventory: A quick and easy screening tool for health practitioners. Br. J. Sports Med. 2005, 39, e30. [Google Scholar] [CrossRef]
- Keuthen, N.J.; O’Sullivan, R.L.; Ricciardi, J.N.; Shera, D.; Savage, C.R.; Borgmann, A.S.; Jenike, M.A.; Baer, L. The Massachusetts General Hospital (MGH) Hairpulling Scale: 1. development and factor analyses. Psychother. Psychosom. 1995, 64, 141–145. [Google Scholar] [CrossRef]
- Fisher, S. Developing the DSM-IV criteria to identify adolescent problem gambling in non-clinical populations. J. Gambl. Stud. 2000, 16, 253–273. [Google Scholar] [CrossRef]
- Morgan, J.F.; Reid, F.; Lacey, J.H. The SCOFF questionnaire: Assessment of a new screening tool for eating disorders. BMJ 1999, 319, 1467–1468. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Lynskey, M.T. Candidate genes for cannabis use disorders: Findings, challenges and directions. Addiction 2009, 104, 518–532. [Google Scholar] [CrossRef] [Green Version]
- Bierut, L.J. Nicotine dependence and genetic variation in the nicotinic receptors. Drug Alcohol. Depend. 2009, 104 (Suppl. 1), S64–S69. [Google Scholar] [CrossRef] [Green Version]
- Hinrichs, A.L.; Wang, J.C.; Bufe, B.; Kwon, J.M.; Budde, J.; Allen, R.; Bertelsen, S.; Evans, W.; Dick, D.; Rice, J.; et al. Functional variant in a bitter-taste receptor (hTAS2R16) influences risk of alcohol dependence. Am. J. Hum. Genet. 2006, 78, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husemoen, L.L.; Fenger, M.; Friedrich, N.; Tolstrup, J.S.; Beenfeldt Fredriksen, S.; Linneberg, A. The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcohol Clin. Exp. Res. 2008, 32, 1984–1991. [Google Scholar] [CrossRef] [PubMed]
- Bierut, L.J.; Madden, P.A.; Breslau, N.; Johnson, E.O.; Hatsukami, D.; Pomerleau, O.F.; Swan, G.E.; Rutter, J.; Bertelsen, S.; Fox, L.; et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum. Mol. Genet. 2007, 16, 24–35. [Google Scholar] [CrossRef]
- Berrettini, W.H.; Doyle, G.A. The CHRNA5-A3-B4 gene cluster in nicotine addiction. Mol. Psychiatry 2012, 17, 856–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierut, L.J. Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25. Trends Pharmacol. Sci. 2010, 31, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Oscar-Berman, M.; Demetrovics, Z.; Barh, D.; Gold, M.S. Genetic Addiction Risk Score (GARS): Molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Mol. Neurobiol. 2014, 50, 765–796. [Google Scholar] [CrossRef] [Green Version]
- Boor, K.; Ronai, Z.; Nemoda, Z.; Gaszner, P.; Sasvari-Szekely, M.; Guttman, A.; Kalasz, H. Noninvasive genotyping of dopamine receptor D4 (DRD4) using nanograms of DNA from substance-dependent patients. Curr. Med. Chem. 2002, 9, 793–797. [Google Scholar] [CrossRef]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Busygina, V.; Kottermann, M.C.; Scott, K.L.; Plon, S.E.; Bale, A.E. Multiple endocrine neoplasia type 1 interacts with forkhead transcription factor CHES1 in DNA damage response. Cancer Res. 2006, 66, 8397–8403. [Google Scholar] [CrossRef] [Green Version]
- Scott, K.L.; Plon, S.E. CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional repressor. Gene 2005, 359, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Schuff, M.; Rössner, A.; Wacker, S.A.; Donow, C.; Gessert, S.; Knöchel, W. FoxN3 is required for craniofacial and eye development of xenopus laevis. Dev. Dyn. 2007, 236, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.L.; Plon, S.E. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of saccharomyces cerevisiae. Mol. Cell. Biol. 2003, 23, 4522–4531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Liu, Y.J.; Lan, X.; Wu, H.; Wen, Y.; Zhou, Z.M.; Hu, Z.B.; Sha, J.H.; Guo, X.J.; Tong, C. CHES-1-like, the ortholog of a non-obstructive azoospermia-associated gene, blocks germline stem cell differentiation by upregulating Dpp expression in Drosophila testis. Oncotarget 2016, 7, 42303–42313. [Google Scholar] [CrossRef] [Green Version]
- Lam, E.W.F.; Brosens, J.J.; Gomes, A.R.; Koo, C.Y. Forkhead box proteins: Tuning forks for transcriptional harmony. Nat. Rev. Cancer 2013, 13, 482–495. [Google Scholar] [CrossRef]
- Rogers, J.M.; Waters, C.T.; Seegar, T.C.M.; Jarrett, S.M.; Hallworth, A.N.; Blacklow, S.C.; Bulyk, M.L. Bispecific forkhead transcription factor FoxN3 recognizes two distinct motifs with different DNA shapes. Mol. Cell 2019, 74, 245–253.e246. [Google Scholar] [CrossRef] [Green Version]
- Sokolowski, M.; Wasserman, J.; Wasserman, D. Polygenic associations of neurodevelopmental genes in suicide attempt. Mol. Psychiatry 2016, 21, 1381–1390. [Google Scholar] [CrossRef]
- Galfalvy, H.; Zalsman, G.; Huang, Y.Y.; Murphy, L.; Rosoklija, G.; Dwork, A.J.; Haghighi, F.; Arango, V.; Mann, J.J. A pilot genome wide association and gene expression array study of suicide with and without major depression. World J. Biol. Psychiatry 2013, 14, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Le-Niculescu, H.; Levey, D.F.; Ayalew, M.; Palmer, L.; Gavrin, L.M.; Jain, N.; Winiger, E.; Bhosrekar, S.; Shankar, G.; Radel, M.; et al. Discovery and validation of blood biomarkers for suicidality. Mol. Psychiatry 2013, 18, 1249–1264. [Google Scholar] [CrossRef]
- Dick, D.M.; Meyers, J.; Aliev, F.; Nurnberger, J., Jr.; Kramer, J.; Kuperman, S.; Porjesz, B.; Tischfield, J.; Edenberg, H.J.; Foroud, T.; et al. Evidence for genes on chromosome 2 contributing to alcohol dependence with conduct disorder and suicide attempts. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 153B, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Fudalej, S.; Ilgen, M.; Fudalej, M.; Wojnar, M.; Matsumoto, H.; Barry, K.L.; Ploski, R.; Blow, F.C. Clinical and genetic risk factors for suicide under the influence of alcohol in a Polish sample. Alcohol Alcohol. 2009, 44, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhong, X.; Zhang, H. A genome-wide tree- and forest-based association analysis of comorbidity of alcoholism and smoking. BMC Genet. 2005, 6 (Suppl. 1), S135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, A.; Hinrichs, A.L.; Dunn, G.; Bertelsen, S.; Dick, D.M.; Saccone, S.F.; Saccone, N.L.; Grucza, R.A.; Wang, J.C.; Cloninger, C.R.; et al. Linkage scan for quantitative traits identifies new regions of interest for substance dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample. Drug Alcohol Depend. 2008, 93, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.R.; Drgon, T.; Johnson, C.; Walther, D.; Hess, J.; Uhl, G.R. Addiction molecular genetics: 639,401 SNP whole genome association identifies many "cell adhesion" genes. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2006, 141B, 918–925. [Google Scholar] [CrossRef]
- Chen, Y.J.; Liao, C.T.; Chen, P.J.; Lee, L.Y.; Li, Y.C.; Chen, I.H.; Wang, H.M.; Chang, J.T.; Chen, L.J.; Yen, T.C.; et al. Downregulation of Ches1 and other novel genes in oral cancer cells chronically exposed to areca nut extract. Head Neck 2011, 33, 257–266. [Google Scholar] [CrossRef]
- Airaksinen, M.S.; Saarma, M. The GDNF family: Signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 2002, 3, 383–394. [Google Scholar] [CrossRef]
- Bonanomi, D.; Chivatakarn, O.; Bai, G.; Abdesselem, H.; Lettieri, K.; Marquardt, T.; Pierchala, B.A.; Pfaff, S.L. Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell 2012, 148, 568–582. [Google Scholar] [CrossRef] [Green Version]
- Barroso-Chinea, P.; Cruz-Muros, I.; Aymerich, M.S.; Rodriguez-Diaz, M.; Afonso-Oramas, D.; Lanciego, J.L.; Gonzalez-Hernandez, T. Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. Eur. J. Neurosci. 2005, 21, 1815–1827. [Google Scholar] [CrossRef] [Green Version]
- Tomac, A.; Widenfalk, J.; Lin, L.F.; Kohno, T.; Ebendal, T.; Hoffer, B.J.; Olson, L. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc. Natl. Acad. Sci. USA 1995, 92, 8274–8278. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Carnicella, S.; Ahmadiantehrani, S.; He, D.Y.; Barak, S.; Kharazia, V.; Ben Hamida, S.; Zapata, A.; Shippenberg, T.S.; Ron, D. Nucleus accumbens-derived glial cell line-derived neurotrophic factor is a retrograde enhancer of dopaminergic tone in the mesocorticolimbic system. J. Neurosci. 2010, 30, 14502–14512. [Google Scholar] [CrossRef]
- Kumar, A.; Kopra, J.; Varendi, K.; Porokuokka, L.L.; Panhelainen, A.; Kuure, S.; Marshall, P.; Karalija, N.; Härma, M.A.; Vilenius, C.; et al. GDNF overexpression from the native locus reveals its role in the nigrostriatal dopaminergic system function. PLoS Genet. 2015, 11, e1005710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghitza, U.E.; Zhai, H.; Wu, P.; Airavaara, M.; Shaham, Y.; Lu, L. Role of BDNF and GDNF in drug reward and relapse: A review. Neurosci. Biobehav. Rev. 2010, 35, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Wang, X.; Wu, P.; Xu, C.; Zhao, M.; Morales, M.; Harvey, B.K.; Hoffer, B.J.; Shaham, Y. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol. Psychiatry 2009, 66, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carnicella, S.; Kharazia, V.; Jeanblanc, J.; Janak, P.H.; Ron, D. GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc. Natl. Acad. Sci. USA 2008, 105, 8114–8119. [Google Scholar] [CrossRef] [Green Version]
- He, D.Y.; Ron, D. Autoregulation of glial cell line-derived neurotrophic factor expression: Implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J. 2006, 20, 2420–2422. [Google Scholar] [CrossRef]
- Ahmadiantehrani, S.; Barak, S.; Ron, D. GDNF is a novel ethanol-responsive gene in the VTA: Implications for the development and persistence of excessive drinking. Addict. Biol. 2014, 19, 623–633. [Google Scholar] [CrossRef]
- Carnicella, S.; Ron, D. GDNF—A potential target to treat addiction. Pharmacol. Ther. 2009, 122, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Yamada, K.; Niwa, M.; Nagai, T.; Nitta, A.; Nabeshima, T. Enduring vulnerability to reinstatement of methamphetamine-seeking behavior in glial cell line-derived neurotrophic factor mutant mice. FASEB J. 2007, 21, 1994–2004. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, T.; Usui, H.; Takahashi, N.; Yoshimi, A.; Saito, S.; Aleksic, B.; Ujike, H.; Inada, T.; Yamada, M.; Uchimura, N.; et al. Association analysis of the GDNF gene with methamphetamine use disorder in a Japanese population. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1268–1272. [Google Scholar] [CrossRef]
- Kotyuk, E.; Nemeth, N.; Ronai, Z.; Demetrovics, Z.; Sasvari-Szekely, M.; Szekely, A. Association between smoking behaviour and genetic variants of glial cell line-derived neurotrophic factor. J. Genet. 2016, 95, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Pagliaroli, L.; Vereczkei, A.; Kotyuk, E.; Langstieh, B.; Demetrovics, Z.; Barta, C. Association of GDNF and CNTNAP2 gene variants with gambling. J. Behav. Addict. 2019, 1–8. [Google Scholar] [CrossRef]
- Parsons, L.H.; Hurd, Y.L. Endocannabinoid signalling in reward and addiction. Nat. Rev. Neurosci. 2015, 16, 579–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, M.; Faull, R.L.M.; Dragunow, M. Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 1997, 77, 299–318. [Google Scholar] [CrossRef]
- Agrawal, A.; Wetherill, L.; Dick, D.M.; Xuei, X.; Hinrichs, A.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.I.; Schuckit, M.; Bierut, L.J.; et al. Evidence for Association Between Polymorphisms in the Cannabinoid Receptor 1 (CNR1) Gene and Cannabis Dependence. Am. J. Med. Genet. Part B. Neuropsychiatr. Genet. 2009, 150B, 736–740. [Google Scholar] [CrossRef] [Green Version]
- Hopfer, C.J.; Young, S.E.; Purcell, S.; Crowley, T.J.; Stallings, M.C.; Corley, R.P.; Rhee, S.H.; Smolen, A.; Krauter, K.; Hewitt, J.K.; et al. Cannabis receptor haplotype associated with fewer cannabis dependence symptoms in adolescents. Am. J. Med. Genet. Part B. Neuropsychiatr. Genet. 2006, 141B, 895–901. [Google Scholar] [CrossRef] [Green Version]
- Comings, D.E.; Muhleman, D.; Gade, R.; Johnson, P.; Verde, R.; Saucier, G.; MacMurray, J. Cannabinoid receptor gene (CNR1): Association with i.v. drug use. Mol. Psychiatry 1997, 2, 161–168. [Google Scholar] [CrossRef]
- Jonsson, E.G.; Nothen, M.M.; Grunhage, F.; Farde, L.; Nakashima, Y.; Propping, P.; Sedvall, G.C. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 1999, 4, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Pohjalainen, T.; Rinne, J.O.; Nagren, K.; Lehikoinen, P.; Anttila, K.; Syvalahti, E.K.; Hietala, J. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol. Psychiatry 1998, 3, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Thomas, N.; Singleton, A.; Piggot, M.; Lloyd, S.; Perry, E.K.; Morris, C.M.; Perry, R.H.; Ferrier, I.N.; Court, J.A. D2 dopamine receptor gene (DRD2) Taql A polymorphism: Reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenet. Genom. 1997, 7, 479–484. [Google Scholar] [CrossRef]
- Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry 1991, 48, 648–654. [Google Scholar] [CrossRef]
- De Ruyck, K.; Nackaerts, K.; Beels, L.; Werbrouck, J.; De Volder, A.; Meysman, M.; Salhi, B.; Van Meerbeeck, J.; Thierens, H. Genetic variation in three candidate genes and nicotine dependence, withdrawal and smoking cessation in hospitalized patients. Pharmacogenomics 2010, 11, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Voisey, J.; Swagell, C.D.; Hughes, I.P.; van Daal, A.; Noble, E.P.; Lawford, B.R.; Young, R.M.; Morris, C.P. A DRD2 and ANKK1 haplotype is associated with nicotine dependence. Psychiat. Res. 2012, 196, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapleton, J.A.; Sutherland, G.; O’Gara, C.; Spirling, L.I.; Ball, D. Association between DRD2/ANKK1 Taq1A genotypes, depression and smoking cessation with nicotine replacement therapy. Pharmacogenet. Genom. 2011, 21, 447–453. [Google Scholar] [CrossRef]
- Wang, F.; Simen, A.; Arias, A.; Lu, Q.W.; Zhang, H.P. A large-scale meta-analysis of the association between the ANKK1/DRD2 Taq1A polymorphism and alcohol dependence. Hum. Genet. 2013, 132, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.; Montel, R.A.; Shen, P.H.; Mash, D.C.; Goldman, D. Assessment of the association of D2 dopamine receptor gene and reported allele frequencies with alcohol use disorders: A systematic review and meta-analysis. JAMA Netw. Open 2019, 2, e1914940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Q.F.; Li, S.B. Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci. Lett. 2009, 464, 127–130. [Google Scholar] [CrossRef]
- Vereczkei, A.; Demetrovics, Z.; Szekely, A.; Sarkozy, P.; Antal, P.; Szilagyi, A.; Sasvari-Szekely, M.; Barta, C. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS ONE 2013, 8, e66592. [Google Scholar] [CrossRef]
- Deng, X.D.; Jiang, H.; Ma, Y.; Gao, Q.; Zhang, B.; Mu, B.; Zhang, L.X.; Zhang, W.; Er, Z.E.; Xie, Y.; et al. Association between DRD2/ANKK1 TaqIA polymorphism and common illicit drug dependence: Evidence from a meta-analysis. Hum. Immunol. 2015, 76, 42–51. [Google Scholar] [CrossRef]
- Noble, E.P.; Blum, K.; Khalsa, M.E.; Ritchie, T.; Montgomery, A.; Wood, R.C.; Fitch, R.J.; Ozkaragoz, T.; Sheridan, P.J.; Anglin, M.D.; et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend. 1993, 33, 271–285. [Google Scholar] [CrossRef]
- Persico, A.M.; Bird, G.; Gabbay, F.H.; Uhl, G.R. D2 dopamine receptor Gene TaqI A1 and B1 restriction fragment length polymorphisms: Enhanced frequencies in psychostimulant-preferring polysubstance abusers. Biol. Psychiatry 1996, 40, 776–784. [Google Scholar] [CrossRef]
- Kereszturi, E.; Kiraly, O.; Barta, C.; Molnar, N.; Sasvari-Szekely, M.; Csapo, Z. No direct effect of the -521 C/T polymorphism in the human dopamine D4 receptor gene promoter on transcriptional activity. BMC Mol. Biol. 2006, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachner-Melman, R.; Lerer, E.; Zohar, A.H.; Kremer, I.; Elizur, Y.; Nemanov, L.; Golan, M.; Blank, S.; Gritsenko, I.; Ebstein, R.P. Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am. J. Med. Genet. Part B. Neuropsychiatr. Genet. 2007, 144B, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.H.; Zhu, Y.S.; Huo, Z.H.; Sun, R.F.; Yu, B.; Wang, Y.P.; Chai, Z.Q.; Li, S.B. Association study of polymorphisms in the promoter region of DRD4 with schizophrenia, depression, and heroin addiction. Brain Res. 2010, 1359, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Munafo, M.R.; Yalcin, B.; Willis-Owen, S.A.; Flint, J. Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biol. Psychiatry 2008, 63, 197–206. [Google Scholar] [CrossRef]
- Szilagyi, A.; Boor, K.; Szekely, A.; Gaszner, P.; Kalasz, H.; Sasvari-Szekely, M.; Barta, C. Combined effect of promoter polymorphisms in the dopamine D4 receptor and the serotonin transporter genes in heroin dependence. Neuropsychopharmacol. Hung. 2005, 7, 28–33. [Google Scholar]
- Thomson, C.J.; Hanna, C.W.; Carlson, S.R.; Rupert, J.L. The 521 C/T variant in the dopamine-4-receptor gene (DRD4) is associated with skiing and snowboarding behavior. Scand. J. Med. Sci. Spor. 2013, 23, e108–e113. [Google Scholar] [CrossRef]
Substance Use | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | dbSNP No. | Allele | Nicotine | Alcohol | Cannabis | Other Drugs | ||||||||
Non-Use (n = 3588) | Use (n = 1026) | p | Non-Use (n = 3538) | Use (n = 440) | p | Non-Use (n = 4204) | Use (n = 160) | p | Non-Use (n = 4088) | Ever Use (n = 1246) | p | |||
FOXN3 | rs759364 | A | 30.8% | 26.6% | 0.016 | 30.0% | 37.5% | 0.0025 * | 30.4% | 33.6% | 0.425 | 30.1% | 32.6% | 0.103 |
G | 69.2% | 73.4% | 70.0% | 62.5% | 69.6% | 66.4% | 69.9% | 67.4% | ||||||
GDNF | rs3096140 | G | 28.8% | 28.2% | 0.722 | 28.3% | 25.7% | 0.302 | 28.6% | 24.1% | 0.299 | 29.2% | 29.0% | 0.910 |
A | 71.2% | 71.8% | 71.7% | 74.3% | 71.4% | 75.9% | 70.8% | 71.0% | ||||||
GDNF | rs1549250 | C | 41.2% | 45.1% | 0.037 | 40.8% | 44.7% | 0.139 | 41.0% | 44.0% | 0.491 | 40.9% | 46.0% | 0.0029 * |
A | 58.8% | 54.9% | 59.2% | 55.3% | 59.0% | 56.0% | 59.1% | 54.0% | ||||||
GDNF | rs2910702 | C | 23.9% | 23.5% | 0.808 | 23.3% | 21.1% | 0.321 | 23.4% | 19.7% | 0.327 | 23.5% | 24.8% | 0.386 |
T | 76.1% | 76.5% | 76.7% | 78.9% | 76.6% | 80.3% | 76.5% | 75.2% | ||||||
GDNF | rs11111 | C | 15.5% | 15.8% | 0.848 | 15.4% | 18.3% | 0.125 | 15.3% | 20.1% | 0.123 | 15.6% | 16.6% | 0.419 |
T | 84.5% | 84.2% | 84.6% | 81.7% | 84.7% | 79.9% | 84.4% | 83.4% | ||||||
GDNF | rs2973033 | C | 27.8% | 31.4% | 0.040 | 27.6% | 32.2% | 0.055 | 27.7% | 32.6% | 0.221 | 27.3% | 31.5% | 0.0078 * |
T | 72.2% | 68.6% | 72.4% | 67.8% | 72.3% | 67.4% | 72.7% | 68.5% | ||||||
GDNF | rs3812047 | T | 12.8% | 12.3% | 0.712 | 12.8% | 11.4% | 0.442 | 12.4% | 8.1% | 0.148 | 12.8% | 12.9% | 0.965 |
C | 87.2% | 87.7% | 87.2% | 88.6% | 87.6% | 91.9% | 87.2% | 87.1% | ||||||
GDNF | rs1981844 | C | 28.5% | 31.6% | 0.082 | 28.3% | 32.5% | 0.098 | 28.3% | 30.3% | 0.622 | 28.2% | 31.4% | 0.049 |
G | 71.5% | 68.4% | 71.7% | 67.5% | 71.7% | 69.7% | 71.8% | 68.6% | ||||||
CNR1 | rs806380 | G | 33.7% | 32.8% | 0.620 | 33.5% | 31.2% | 0.347 | 32.9% | 33.8% | 0.823 | 32.1% | 36.4% | 0.0077 * |
A | 66.3% | 67.2% | 66.5% | 68.8% | 67.1% | 66.2% | 67.9% | 63.6% | ||||||
CNR1 | rs2023239 | C | 18.2% | 15.7% | 0.081 | 17.8% | 18.3% | 0.835 | 17.9% | 14.5% | 0.300 | 18.4% | 17.0% | 0.288 |
T | 81.8% | 84.3% | 82.2% | 81.7% | 82.1% | 85.5% | 81.6% | 83.0% | ||||||
DRD1 | rs4532 | C | 37.7% | 38.8% | 0.575 | 37.1% | 37.8% | 0.806 | 36.9% | 43.6% | 0.111 | 36.6% | 40.5% | 0.018 |
T | 62.3% | 61.3% | 62.9% | 62.3% | 63.1% | 56.4% | 63.4% | 59.5% | ||||||
DRD2 | rs6277 | G | 46.8% | 47.4% | 0.766 | 47.8% | 44.0% | 0.147 | 46.6% | 55.1% | 0.049 | 47.0% | 47.7% | 0.674 |
A | 53.2% | 52.6% | 52.2% | 56.0% | 53.4% | 44.9% | 53.0% | 52.3% | ||||||
ANKK1 | rs1800497 | A | 18.8% | 19.1% | 0.829 | 19.5% | 20.4% | 0.671 | 18.6% | 27.1% | 0.0113 * | 18.8% | 20.5% | 0.213 |
G | 81.2% | 80.9% | 80.5% | 79.6% | 81.4% | 72.9% | 81.2% | 79.5% | ||||||
DRD3 | rs6280 | C | 30.2% | 30.8% | 0.717 | 29.9% | 33.8% | 0.116 | 30.5% | 32.4% | 0.650 | 30.7% | 29.9% | 0.617 |
T | 69.8% | 69.2% | 70.1% | 66.2% | 69.5% | 67.6% | 69.3% | 70.1% | ||||||
DRD4 | rs1800955 | C | 46.0% | 45.2% | 0.691 | 45.9% | 47.6% | 0.554 | 45.2% | 56.2% | 0.014 | 45.9% | 47.5% | 0.367 |
T | 54.0% | 54.8% | 54.1% | 52.4% | 54.8% | 43.8% | 54.1% | 52.5% | ||||||
CHRNA5/A3 | rs16969968 | A | 35.2% | 37.6% | 0.188 | 34.0% | 37.0% | 0.230 | 35.8% | 33.1% | 0.520 | 35.1% | 35.2% | 0.973 |
G | 64.8% | 62.4% | 66.0% | 63.0% | 64.2% | 66.9% | 64.9% | 64.8% | ||||||
CHRNA5/A3 | rs1051730 | A | 35.6% | 38.4% | 0.124 | 34.9% | 37.0% | 0.422 | 36.5% | 33.8% | 0.517 | 35.8% | 35.8% | 0.984 |
G | 64.4% | 61.6% | 65.1% | 63.0% | 63.5% | 66.2% | 64.2% | 64.2% | ||||||
CHRNB3 | rs6474412 | C | 23.7% | 20.6% | 0.058 | 22.0% | 22.3% | 0.900 | 23.1% | 26.5% | 0.355 | 22.5% | 23.0% | 0.720 |
T | 76.3% | 79.4% | 78.0% | 77.7% | 76.9% | 73.5% | 77.5% | 77.0% | ||||||
OPRM1 | rs1799971 | G | 12.4% | 13.9% | 0.266 | 12.8% | 12.5% | 0.851 | 12.3% | 12.1% | 0.963 | 12.8% | 12.8% | 0.959 |
A | 87.6% | 86.1% | 87.2% | 87.5% | 87.7% | 87.9% | 87.2% | 87.2% | ||||||
GABRA2 | rs279858 | C | 39.5% | 39.0% | 0.785 | 39.7% | 39.9% | 0.924 | 40.7% | 35.5% | 0.224 | 40.0% | 38.9% | 0.506 |
T | 60.5% | 61.0% | 60.3% | 60.1% | 59.3% | 64.5% | 60.0% | 61.1% | ||||||
TAS2R16 | rs978739 | C | 33.7% | 37.0% | 0.060 | 33.0% | 33.9% | 0.719 | 34.2% | 31.9% | 0.570 | 34.1% | 34.8% | 0.662 |
T | 66.3% | 63.0% | 67.0% | 66.1% | 65.8% | 68.1% | 65.9% | 65.2% | ||||||
FKBP5 | rs1360780 | T | 28.4% | 28.2% | 0.916 | 28.6% | 27.6% | 0.677 | 27.9% | 25.4% | 0.535 | 27.7% | 27.8% | 0.927 |
C | 71.6% | 71.8% | 71.4% | 72.4% | 72.1% | 74.6% | 72.3% | 72.2% | ||||||
FKBP5 | rs4713916 | A | 28.0% | 25.8% | 0.197 | 27.9% | 26.0% | 0.442 | 27.5% | 23.9% | 0.356 | 27.3% | 26.2% | 0.488 |
G | 72.0% | 74.2% | 72.1% | 74.0% | 72.5% | 76.1% | 72.7% | 73.8% | ||||||
ALDH2 | rs886205 | G | 17.4% | 18.3% | 0.523 | 17.1% | 19.3% | 0.265 | 17.2% | 21.4% | 0.190 | 17.4% | 18.2% | 0.552 |
A | 82.6% | 81.7% | 82.9% | 80.7% | 82.8% | 78.6% | 82.6% | 81.8% | ||||||
ALDH1B1 | rs2073478 | G | 38.9% | 36.3% | 0.176 | 38.3% | 38.0% | 0.930 | 39.0% | 37.5% | 0.728 | 38.5% | 39.0% | 0.768 |
T | 61.1% | 63.7% | 61.7% | 62.0% | 61.0% | 62.5% | 61.5% | 61.0% | ||||||
ADH1C | rs698 | C | 37.9% | 40.5% | 0.165 | 38.2% | 37.4% | 0.775 | 38.6% | 34.4% | 0.334 | 38.9% | 37.3% | 0.367 |
T | 62.1% | 59.5% | 61.8% | 62.6% | 61.4% | 65.6% | 61.1% | 62.7% | ||||||
ADH1C | rs1693482 | T | 38.0% | 40.3% | 0.229 | 38.3% | 37.0% | 0.644 | 38.8% | 33.8% | 0.243 | 38.8% | 37.5% | 0.432 |
C | 62.0% | 59.7% | 61.7% | 63.0% | 61.2% | 66.2% | 61.2% | 62.5% | ||||||
FAAH | rs324420 | A | 21.4% | 24.4% | 0.065 | 21.8% | 22.4% | 0.792 | 21.6% | 21.6% | 0.999 | 22.1% | 20.1% | 0.153 |
C | 78.6% | 75.6% | 78.2% | 77.6% | 78.4% | 78.4% | 77.9% | 79.9% | ||||||
COMT | rs4680 | G | 47.6% | 44.6% | 0.125 | 47.6% | 46.9% | 0.778 | 47.7% | 44.0% | 0.403 | 47.0% | 48.6% | 0.361 |
A | 52.4% | 55.4% | 52.4% | 53.1% | 52.3% | 56.0% | 53.0% | 51.4% | ||||||
WFS1 | rs1046322 | A | 10.0% | 12.9% | 0.013 | 9.7% | 11.9% | 0.162 | 10.4% | 11.4% | 0.705 | 10.3% | 10.2% | 0.921 |
G | 90.0% | 87.1% | 90.3% | 88.1% | 89.6% | 88.6% | 89.7% | 89.8% | ||||||
WFS1 | rs9457 | G | 42.7% | 44.8% | 0.267 | 42.0% | 46.7% | 0.073 | 43.0% | 50.7% | 0.069 | 43.1% | 43.4% | 0.851 |
C | 57.3% | 55.2% | 58.0% | 53.3% | 57.0% | 49.3% | 56.9% | 56.6% | ||||||
CALD1 | rs3800737 | C | 31.0% | 30.8% | 0.883 | 30.6% | 30.3% | 0.903 | 30.8% | 35.7% | 0.221 | 29.7% | 32.1% | 0.128 |
T | 69.0% | 69.2% | 69.4% | 69.7% | 69.2% | 64.3% | 70.3% | 67.9% |
Potentially Addictive Behaviors | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | dbSNP No. | Allele | Internet Use (PIUQ) | Videogame Playing (POGQ) | Social Network Site Use (BSMAS) | Gambling (DSM IV MR J) | Exercise (EAI) | Trichotillomania (MGH-HPS) | Eating Disorders (SCOFF) | |||||||
(n = 5936) | p | (n = 5698) | p | (n = 3452) | p | (n = 5916) | p | (n = 5916) | p | (n = 3250) | p | (n = 5978) | p | |||
FOXN3 | rs759364 | A | 10.53 | 0.0003 * | 16.11 | 0.003 * | 9.71 | 0.184 | 0.26 | 0.612 | 12.18 | 0.003 * | 1.44 | 0.975 | 0.71 | 0.529 |
G | 10.13 | 15.55 | 9.52 | 0.25 | 12.63 | 1.45 | 0.73 | |||||||||
GDNF | rs3096140 | G | 10.36 | 0.109 | 15.72 | 0.438 | 9.75 | 0.109 | 0.24 | 0.474 | 12.73 | 0.046 | 1.38 | 0.894 | 0.71 | 0.449 |
A | 10.18 | 15.57 | 9.50 | 0.22 | 12.41 | 1.40 | 0.73 | |||||||||
GDNF | rs1549250 | C | 10.13 | 0.027 | 15.57 | 0.185 | 9.57 | 0.510 | 0.26 | 0.478 | 12.51 | 0.941 | 1.36 | 0.366 | 0.73 | 0.714 |
A | 10.36 | 15.80 | 9.66 | 0.24 | 12.52 | 1.49 | 0.72 | |||||||||
GDNF | rs2910702 | C | 10.27 | 0.937 | 15.78 | 0.597 | 9.80 | 0.185 | 0.27 | 0.383 | 12.58 | 0.624 | 1.35 | 0.491 | 0.71 | 0.742 |
T | 10.26 | 15.67 | 9.59 | 0.24 | 12.50 | 1.47 | 0.72 | |||||||||
GDNF | rs11111 | C | 10.07 | 0.104 | 15.43 | 0.179 | 9.35 | 0.078 | 0.24 | 0.636 | 12.69 | 0.235 | 1.26 | 0.270 | 0.72 | 0.875 |
T | 10.29 | 15.75 | 9.68 | 0.25 | 12.46 | 1.48 | 0.72 | |||||||||
GDNF | rs2973033 | C | 10.11 | 0.057 | 15.41 | 0.031 | 9.48 | 0.149 | 0.25 | 0.777 | 12.52 | 0.865 | 1.48 | 0.617 | 0.73 | 0.493 |
T | 10.33 | 15.82 | 9.70 | 0.25 | 12.49 | 1.40 | 0.71 | |||||||||
GDNF | rs3812047 | T | 10.35 | 0.482 | 15.67 | 0.982 | 9.73 | 0.495 | 0.20 | 0.167 | 12.66 | 0.400 | 1.45 | 0.967 | 0.73 | 0.805 |
C | 10.24 | 15.66 | 9.60 | 0.24 | 12.48 | 1.44 | 0.72 | |||||||||
GDNF | rs1981844 | C | 10.10 | 0.091 | 15.38 | 0.052 | 9.50 | 0.384 | 0.23 | 0.616 | 12.48 | 0.842 | 1.49 | 0.551 | 0.73 | 0.481 |
G | 10.30 | 15.76 | 9.64 | 0.25 | 12.51 | 1.39 | 0.71 | |||||||||
CNR1 | rs806380 | G | 10.39 | 0.060 | 15.79 | 0.496 | 9.67 | 0.524 | 0.25 | 0.740 | 12.49 | 0.972 | 1.47 | 0.882 | 0.75 | 0.088 |
A | 10.19 | 15.66 | 9.58 | 0.24 | 12.49 | 1.45 | 0.71 | |||||||||
CNR1 | rs2023239 | C | 10.37 | 0.284 | 15.63 | 0.674 | 9.56 | 0.823 | 0.20 | 0.080 | 12.41 | 0.656 | 1.43 | 0.943 | 0.72 | 0.905 |
T | 10.23 | 15.73 | 9.60 | 0.25 | 12.49 | 1.44 | 0.72 | |||||||||
DRD1 | rs4532 | C | 10.21 | 0.394 | 15.71 | 0.861 | 9.53 | 0.427 | 0.25 | 0.620 | 12.58 | 0.341 | 1.41 | 0.837 | 0.72 | 0.979 |
T | 10.29 | 15.75 | 9.64 | 0.24 | 12.44 | 1.44 | 0.72 | |||||||||
DRD2 | rs6277 | G | 10.17 | 0.158 | 15.59 | 0.239 | 9.57 | 0.664 | 0.27 | 0.058 | 12.45 | 0.538 | 1.37 | 0.329 | 0.71 | 0.473 |
A | 10.32 | 15.79 | 9.63 | 0.23 | 12.54 | 1.51 | 0.73 | |||||||||
ANKK1 | rs1800497 | A | 10.21 | 0.686 | 15.83 | 0.536 | 9.87 | 0.051 | 0.24 | 0.917 | 12.46 | 0.855 | 1.33 | 0.441 | 0.73 | 0.772 |
G | 10.26 | 15.69 | 9.53 | 0.25 | 12.49 | 1.48 | 0.72 | |||||||||
DRD3 | rs6280 | C | 10.20 | 0.420 | 15.80 | 0.638 | 9.45 | 0.094 | 0.28 | 0.080 | 12.41 | 0.413 | 1.39 | 0.654 | 0.68 | 0.039 |
T | 10.29 | 15.71 | 9.70 | 0.24 | 12.53 | 1.47 | 0.73 | |||||||||
DRD4 | rs1800955 | C | 10.25 | 0.854 | 15.83 | 0.327 | 9.53 | 0.490 | 0.26 | 0.475 | 12.31 | 0.042 | 1.53 | 0.364 | 0.67 | 0.002 * |
T | 10.23 | 15.65 | 9.63 | 0.24 | 12.60 | 1.38 | 0.76 | |||||||||
CHRNA5/A3 | rs16969968 | A | 10.18 | 0.238 | 15.76 | 0.753 | 9.52 | 0.296 | 0.25 | 0.983 | 12.43 | 0.487 | 1.48 | 0.774 | 0.72 | 0.813 |
G | 10.31 | 15.71 | 9.66 | 0.25 | 12.53 | 1.43 | 0.73 | |||||||||
CHRNA5/A3 | rs1051730 | A | 10.25 | 0.474 | 15.84 | 0.393 | 9.48 | 0.232 | 0.25 | 0.629 | 12.43 | 0.513 | 1.47 | 0.755 | 0.72 | 0.796 |
G | 10.32 | 15.68 | 9.65 | 0.24 | 12.52 | 1.42 | 0.72 | |||||||||
CHRNB3 | rs6474412 | C | 10.43 | 0.037 | 15.61 | 0.719 | 9.51 | 0.510 | 0.26 | 0.709 | 12.52 | 0.723 | 1.39 | 0.638 | 0.74 | 0.429 |
T | 10.18 | 15.68 | 9.61 | 0.25 | 12.47 | 1.47 | 0.71 | |||||||||
OPRM1 | rs1799971 | G | 10.25 | 0.899 | 15.60 | 0.571 | 9.41 | 0.303 | 0.21 | 0.186 | 12.56 | 0.691 | 1.51 | 0.727 | 0.64 | 0.026 |
A | 10.26 | 15.75 | 9.62 | 0.25 | 12.48 | 1.44 | 0.73 | |||||||||
GABRA2 | rs279858 | C | 10.26 | 0.958 | 15.62 | 0.331 | 9.64 | 0.605 | 0.26 | 0.278 | 12.58 | 0.229 | 1.46 | 0.961 | 0.74 | 0.163 |
T | 10.26 | 15.79 | 9.57 | 0.24 | 12.41 | 1.45 | 0.71 | |||||||||
TAS2R16 | rs978739 | C | 10.26 | 0.878 | 15.71 | 0.901 | 9.61 | 0.937 | 0.26 | 0.358 | 12.44 | 0.665 | 1.60 | 0.128 | 0.72 | 0.948 |
T | 10.27 | 15.74 | 9.60 | 0.24 | 12.51 | 1.36 | 0.72 | |||||||||
FKBP5 | rs1360780 | T | 10.29 | 0.763 | 15.91 | 0.253 | 9.61 | 0.953 | 0.24 | 0.918 | 12.59 | 0.401 | 1.37 | 0.592 | 0.76 | 0.066 |
C | 10.26 | 15.68 | 9.62 | 0.24 | 12.45 | 1.46 | 0.70 | |||||||||
FKBP5 | rs4713916 | A | 10.18 | 0.419 | 15.74 | 0.788 | 9.51 | 0.581 | 0.25 | 0.974 | 12.73 | 0.031 | 1.32 | 0.417 | 0.75 | 0.107 |
G | 10.27 | 15.69 | 9.60 | 0.25 | 12.40 | 1.46 | 0.70 | |||||||||
ALDH2 | rs886205 | G | 10.09 | 0.165 | 15.71 | 0.999 | 9.45 | 0.377 | 0.27 | 0.420 | 12.56 | 0.617 | 1.42 | 0.951 | 0.74 | 0.310 |
A | 10.27 | 15.71 | 9.60 | 0.24 | 12.47 | 1.43 | 0.71 | |||||||||
ALDH1B1 | rs2073478 | G | 10.29 | 0.578 | 15.68 | 0.929 | 9.64 | 0.561 | 0.23 | 0.451 | 12.44 | 0.999 | 1.45 | 0.927 | 0.74 | 0.276 |
T | 10.24 | 15.69 | 9.56 | 0.24 | 12.44 | 1.46 | 0.71 | |||||||||
ADH1C | rs698 | C | 10.35 | 0.285 | 15.90 | 0.077 | 9.58 | 0.844 | 0.24 | 0.397 | 12.30 | 0.046 | 1.42 | 0.830 | 0.70 | 0.276 |
T | 10.24 | 15.58 | 9.61 | 0.22 | 12.58 | 1.45 | 0.73 | |||||||||
ADH1C | rs1693482 | T | 10.33 | 0.254 | 15.88 | 0.128 | 9.58 | 0.892 | 0.26 | 0.466 | 12.31 | 0.039 | 1.42 | 0.742 | 0.71 | 0.542 |
C | 10.21 | 15.61 | 9.60 | 0.24 | 12.60 | 1.47 | 0.72 | |||||||||
FAAH | rs324420 | A | 10.12 | 0.171 | 15.56 | 0.361 | 9.58 | 0.834 | 0.24 | 0.326 | 12.43 | 0.612 | 1.63 | 0.138 | 0.72 | 0.832 |
C | 10.29 | 15.75 | 9.61 | 0.26 | 12.51 | 1.35 | 0.72 | |||||||||
COMT | rs4680 | G | 10.19 | 0.262 | 15.51 | 0.039 | 9.58 | 0.593 | 0.24 | 0.689 | 12.40 | 0.155 | 1.29 | 0.026 | 0.72 | 0.825 |
A | 10.31 | 15.87 | 9.65 | 0.25 | 12.60 | 1.63 | 0.72 | |||||||||
WFS1 | rs1046322 | A | 10.05 | 0.134 | 15.50 | 0.395 | 9.57 | 0.868 | 0.25 | 0.841 | 12.22 | 0.198 | 1.37 | 0.740 | 0.73 | 0.785 |
G | 10.29 | 15.75 | 9.61 | 0.25 | 12.51 | 1.46 | 0.72 | |||||||||
WFS1 | rs9457 | G | 10.33 | 0.229 | 15.78 | 0.559 | 9.69 | 0.261 | 0.26 | 0.186 | 12.61 | 0.144 | 1.52 | 0.356 | 0.74 | 0.170 |
C | 10.20 | 15.67 | 9.53 | 0.24 | 12.40 | 1.39 | 0.70 | |||||||||
CALD1 | rs3800737 | C | 10.29 | 0.638 | 15.49 | 0.060 | 9.63 | 0.690 | 0.23 | 0.188 | 12.49 | 0.985 | 1.38 | 0.547 | 0.73 | 0.557 |
T | 10.24 | 15.84 | 9.58 | 0.26 | 12.49 | 1.48 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vereczkei, A.; Barta, C.; Magi, A.; Farkas, J.; Eisinger, A.; Király, O.; Belik, A.; Griffiths, M.D.; Szekely, A.; Sasvári-Székely, M.; et al. FOXN3 and GDNF Polymorphisms as Common Genetic Factors of Substance Use and Addictive Behaviors. J. Pers. Med. 2022, 12, 690. https://doi.org/10.3390/jpm12050690
Vereczkei A, Barta C, Magi A, Farkas J, Eisinger A, Király O, Belik A, Griffiths MD, Szekely A, Sasvári-Székely M, et al. FOXN3 and GDNF Polymorphisms as Common Genetic Factors of Substance Use and Addictive Behaviors. Journal of Personalized Medicine. 2022; 12(5):690. https://doi.org/10.3390/jpm12050690
Chicago/Turabian StyleVereczkei, Andrea, Csaba Barta, Anna Magi, Judit Farkas, Andrea Eisinger, Orsolya Király, Andrea Belik, Mark D. Griffiths, Anna Szekely, Mária Sasvári-Székely, and et al. 2022. "FOXN3 and GDNF Polymorphisms as Common Genetic Factors of Substance Use and Addictive Behaviors" Journal of Personalized Medicine 12, no. 5: 690. https://doi.org/10.3390/jpm12050690
APA StyleVereczkei, A., Barta, C., Magi, A., Farkas, J., Eisinger, A., Király, O., Belik, A., Griffiths, M. D., Szekely, A., Sasvári-Székely, M., Urbán, R., Potenza, M. N., Badgaiyan, R. D., Blum, K., Demetrovics, Z., & Kotyuk, E. (2022). FOXN3 and GDNF Polymorphisms as Common Genetic Factors of Substance Use and Addictive Behaviors. Journal of Personalized Medicine, 12(5), 690. https://doi.org/10.3390/jpm12050690