Modified Geometry of 106Ru Asymmetric Eye Plaques to Improve Dosimetric Calculations in Ophthalmic Brachytherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometric Parameters
2.2. Surface Dose Reference Data
2.3. Monte Carlo Simulations
2.4. Clinical Cases
2.5. Film Measurements
3. Results
3.1. TOPAS vs. PenEasy Simulations
3.2. Geometric Parameters
3.3. EyeMC vs. Reference Data
3.4. MC vs. Published Data
3.5. Film Measurements
3.6. Clinical Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, A.W.; Petersen, I.A.; Kline, R.W.; Stafford, S.L.; Schomberg, P.J.; Robertson, D.M. Radiation complications and tumor control after 125I plaque brachytherapy for ocular melanoma. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Sieving, P.A. Fifteen Years of Work: The COMS Outcomes for Medium-Sized Choroidal Melanoma. Arch. Ophthalmol. 2001, 119, 1067–1068. [Google Scholar] [CrossRef] [PubMed]
- ICRU. ICRU Report No. 72: Dosimetry of beta rays and low-energy photons for brachytherapy with sealed sources. J. ICRU 2004, 4, 2–175. [Google Scholar] [CrossRef]
- Pe’er, J. Ruthenium-106 brachytherapy. Dev. Ophthalmol. 2012, 49, 27–40. [Google Scholar] [CrossRef]
- Thomson, R.M.; Furutani, K.M.; Kaulich, T.W.; Mourtada, F.; Rivard, M.J.; Soares, C.G.; Vanneste, F.M.; Melhus, C.S. AAPM recommendations on medical physics practices for ocular plaque brachytherapy: Report of task group 221. Med. Phys. 2020, 47, e92–e124. [Google Scholar] [CrossRef]
- Enger, S.A.; Vijande, J.; Rivard, M.J. Model-Based Dose Calculation Algorithms for Brachytherapy Dosimetry. Semin. Radiat. Oncol. 2020, 30, 77–86. [Google Scholar] [CrossRef]
- Taccini, G.; Cavagnetto, F.; Coscia, G.; Garelli, S.; Pilot, A. The determination of dose characteristics of ruthenium ophthalmic applicators using radiochromic film. Med. Phys. 1997, 24, 2034–2037. [Google Scholar] [CrossRef]
- Heilemann, G.; Nesvacil, N.; Blaickner, M.; Kostiukhina, N.; Georg, D. Multidimensional dosimetry of 106Ru eye plaques using EBT3 films and its impact on treatment planning. Med. Phys. 2015, 42, 5798–5808. [Google Scholar] [CrossRef]
- Trichter, S.; Soares, C.G.; Zaider, M.; DeWyngaert, J.K.; DeWerd, L.A.; Kleiman, N.J. 15 years of 106 Ru eye plaque dosimetry at Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical Center using radiochromic film in a Solid Water phantom. Biomed. Phys. Eng. Express 2018, 4, 045017. [Google Scholar] [CrossRef]
- Šolc, J. Monte Carlo calculation of dose to water of a106Ru COB-type ophthalmic plaque. J. Phys. Conf. Ser. 2008, 102, 012021. [Google Scholar] [CrossRef]
- Hendricks, J.S.; McKinney, G.W.; Durkee, J.W.; Finch, J.P.; Fensin, M.L.; James, M.R.; Johns, R.C.; Pelowitz, D.B.; Waters, L.S.; Gallmeier, F.X. MCNPX, Version 26c. Los Alamos Laboratory Report LA-UR-06-7991. 2006. Available online: https://corpora.tika.apache.org/base/docs/govdocs1/260/260249.pdf (accessed on 24 March 2022).
- Hermida-López, M. Calculation of dose distributions for 12 106Ru/106Rh ophthalmic applicator models with the PENELOPE Monte Carlo code. Med. Phys. 2013, 40, 101705. [Google Scholar] [CrossRef] [PubMed]
- Baró, J.; Sempau, J.; Fernández-Varea, J.M.; Salvat, F. PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1995, 100, 31–46. [Google Scholar] [CrossRef]
- Sempau, J.; Badal, A.; Brualla, L. A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med. Phys. 2011, 38, 5887–5895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miras del Río, H.; Ortiz Lora, A.; Bertolet Reina, A.; Terrón León, J.A. A Monte Carlo dose calculation system for ophthalmic brachytherapy based on a realistic eye model. Med. Phys. 2021, 48, 4542–4559. [Google Scholar] [CrossRef]
- Astrahan, M.A. A patch source model for treatment planning of ruthenium ophthalmic applicators. Med. Phys. 2003, 30, 1219–1228. [Google Scholar] [CrossRef]
- Astrahan, M.A. Improved treatment planning for COMS eye plaques. Int. J. Radiat. Oncol. 2005, 61, 1227–1242. [Google Scholar] [CrossRef]
- Eckert & Ziegler BEBIG GmbH. User Manual Ru-106 Eye Applicators [Rev. 15]; Eckert & Ziegler BEBIG GmbH: Berlin, Germany, 2019. [Google Scholar]
- GeoGebra. Available online: https://www.geogebra.org/ (accessed on 24 March 2022).
- Miras, H.; Jiménez, R.; Miras, C.; Gomà, C. CloudMC: A cloud computing application for Monte Carlo simulation. Phys. Med. Biol. 2013, 58, N125. [Google Scholar] [CrossRef]
- Miras, H.; Jiménez, R.; Perales, Á.; Terrón, J.A.; Bertolet, A.; Ortiz, A.; Macías, J. Monte Carlo verification of radiotherapy treatments with CloudMC. Radiat. Oncol. 2018, 13, 99. [Google Scholar] [CrossRef] [Green Version]
- Perl, J.; Shin, J.; Schumann, J.; Faddegon, B.; Paganetti, H. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Med. Phys. 2012, 39, 6818–6837. [Google Scholar] [CrossRef]
- Faddegon, B.; Ramos-Méndez, J.; Schuemann, J.; McNamara, A.; Shin, J.; Perl, J.; Paganetti, H. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med. Eur. J. Med. Phys. 2020, 72, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Kyriakou, I.; Ivanchenko, V.; Sakata, D.; Bordage, M.C.; Guatelli, S.; Incerti, S.; Emfietzoglou, D. Influence of track structure and condensed history physics models of Geant4 to nanoscale electron transport in liquid water. Phys. Med. 2019, 58, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Hermida-López, M.; Brualla, L. Absorbed dose distributions from ophthalmic 106Ru/106Rh plaques measured in water with radiochromic film. Med. Phys. 2018, 45, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Devic, S.; Seuntjens, J.; Sham, E.; Podgorsak, E.B.; Schmidtlein, C.R.; Kirov, A.S.; Soares, C.G. Precise radiochromic film dosimetry using a flat-bed document scanner. Med. Phys. 2005, 32, 2245–2253. [Google Scholar] [CrossRef]
- Sutherland, J.G.H.; Rogers, D.W.O. Monte Carlo calculated absorbed-dose energy dependence of EBT and EBT2 film. Med. Phys. 2010, 37, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Devic, S.; Tomic, N.; Lewis, D. Reference radiochromic film dosimetry: Review of technical aspects. Phys. Medica Eur. J. Med. Phys. 2016, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, F.J.; Eichmann, M.; Flühs, D.; Sauerwein, W.; Brualla, L. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques. Ocul. Oncol. Pathol. 2017, 3, 204–209. [Google Scholar] [CrossRef]
- Hansen, J.B.; Culberson, W.S.; DeWerd, L.A. A convex windowless extrapolation chamber to measure surface dose rate from 106Ru/106Rh episcleral plaques. Med. Phys. 2019, 46, 2430–2443. [Google Scholar] [CrossRef]
- Eichmann, M.; Thomann, B. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources. Med. Phys. 2017, 44, 4900–4909. [Google Scholar] [CrossRef] [Green Version]
- Hermida–López, M.; Brualla, L. Technical Note: Monte Carlo study of 106Ru/106Rh ophthalmic plaques including the 106Rh gamma spectrum. Med. Phys. 2017, 44, 2581–2585. [Google Scholar] [CrossRef] [PubMed]
Circle | Angle | CIA | CIB | COB | COC |
---|---|---|---|---|---|
1 | 0° | 104.3 (3.5) | 99.7 (4.1) | 97.8 (4.0) | 94.2 (6.3) |
1 | 45° | 104.3 (2.9) | 99.7 (2.8) | 98.0 (3.0) | 96.8 (5.1) |
1 | 90° | 101.1 (1.5) | 100.3 (2.5) | 99.4 (3.2) | 98.7 (2.7) |
1 | 135° | 72.4 (4.6) | 91.9 (4.2) | 98.0 (4.7) | 91.0 (7.0) |
1 | 180° | 44.3 (4.4) | 62.8 (6.8) | 82.5 (7.4) | 32.3 (4.9) |
2 | 0° | 99.6 (7.2) | 98.0 (6.4) | 97.3 (6.2) | 93.3 (8.8) |
2 | 45° | 102.1 (4.9) | 99.2 (3.7) | 96.4 (5.2) | 94.4 (5.7) |
2 | 90° | 99.1 (3.8) | 99.0 (5.5) | 97.0 (4.7) | 97.2 (4.2) |
2 | 135° | 41.3 (4.0) | 63.3 (7.1) | 94.1 (6.7) | 97.8 (5.9) |
2 | 180° | 12.1 (1.6) | 10.5 (1.6) | 19.4 (2.2) | 10.3 (1.4) |
3 | 0° | 59.3 (8.9) | 48.9 (6.2) | 44.3 (9.2) | 34.1 (8.2) |
3 | 45° | 64.1 (6.5) | 56.5 (6.6) | 51.7 (6.8) | 43.7 (11.7) |
3 | 90° | 62.2 (6.9) | 61.3 (6.6) | 58.8 (6.9) | 48.8 (6.9) |
3 | 135° | 17.5 (1.8) | 29.6 (5.1) | 55.0 (9.8) | 52.5 (6.3) |
3 | 180° | 4.1 (0.5) | 3.3 (1.5) | 5.6 (0.8) | 3.4 (0.7) |
4 | 0° | 10.9 (1.3) | 5.2 (0.7) | 5.5 (1.2) | 2.0 (0.4) |
4 | 45° | 14.7 (1.8) | 5.7 (0.8) | 6.4 (0.7) | 2.4 (0.6) |
4 | 90° | 11.7 (1.1) | 6.5 (0.7) | 6.8 (0.5) | 2.9 (0.4) |
4 | 135° | 4.8 (0.6) | 3.5 (0.6) | 5.7 (0.9) | 2.8 (0.4) |
4 | 180° | 1.7 (0.5) | 0.9 (0.3) | 1.7 (0.5) | 0.9 (0.3) |
Plaque | FPD (mm) | T (h) | D (Gy) |
---|---|---|---|
COB | 7.0 | 4.73 | 3.97 |
COC | 9.4 | 17.75 | 5.04 |
CIA | 5.4 | 2.55 | 2.98 |
CIB | 6.4 | 3.68 | 3.45 |
Plaque Type | D | R | s | a | r1 | r2 |
---|---|---|---|---|---|---|
CIA | 15.3 | 12 | 0.4 (0.75) | 5.40 (5.5) | 5.70 (7.0) | 1.86 (1.75) |
CIB | 20.2 | 12 | 0.6 (0.75) | 6.10 (7.0) | 7.80 (11.75) | 1.78 (1.75) |
COB | 19.8 | 12 | 1.0 | 5.18 (6.0) | 2.28 (3.5) | 3.055 (3.5) |
COC | 25.4 | 14 | 1.0 | 8.21 (10.2) | 2.48 (4.2) | 2.742 (3.5) |
Circle | Angle | CIA | CIB | COB | COC | ||||
---|---|---|---|---|---|---|---|---|---|
Official (%) | Modified (%) | Official (%) | Modified (%) | Official (%) | Modified (%) | Official (%) | Modified (%) | ||
1 | 0° | 6.2 | 2.7 | 8.0 | 2.2 | 5.2 | 3.3 | 18.4 | 7.2 |
1 | 45° | 5.0 | 1.3 | 7.0 | 2.2 | 5.0 | 2.8 | 16.4 | 4.1 |
1 | 90° | 0.4 | −0.3 | 2.1 | −0.6 | 1.0 | 0.1 | 9.2 | 1.1 |
1 | 135° | −10.9 | 3.3 | −24.8 | −3.7 | −9.9 | −3.2 | −41.7 | −1.2 |
1 | 180° | −9.2 | 2.3 | −31.3 | −0.5 | −27.0 | 1.2 | −18.4 | 6.8 |
2 | 0° | 3.1 | 0.8 | 4.7 | −0.7 | −0.8 | −2.5 | 17.2 | 3.3 |
2 | 45° | −0.2 | −2.5 | 2.2 | −2.2 | 0.5 | −1.7 | 15.5 | 3.0 |
2 | 90° | −2.4 | −3.2 | −0.5 | −3.4 | −1.9 | −2.8 | 11.8 | −0.4 |
2 | 135° | −13.7 | 1.6 | −40.1 | −4.1 | −22.7 | −7.7 | −28.3 | −7.2 |
2 | 180° | −2.7 | 0.1 | −4.8 | −0.6 | −8.5 | 0.1 | −7.0 | −0.2 |
3 | 0° | −8.4 | 1.5 | 3.5 | 8.4 | 5.4 | 9.1 | 20.8 | 13.2 |
3 | 45° | −13.4 | −3.7 | −4.3 | 0.2 | −1.8 | 2.2 | 11.6 | 3.4 |
3 | 90° | −14.6 | −3.6 | −10.8 | −5.3 | −9.4 | −5.5 | 6.1 | −1.7 |
3 | 135° | −6.7 | 0.8 | −21.9 | −3.7 | −27.4 | −7.1 | −29.1 | −7.6 |
3 | 180° | −0.7 | 0.1 | −1.9 | −0.8 | −2.6 | 0.1 | −2.7 | 0.2 |
4 | 0° | −1.8 | 0.1 | 0.4 | 1.1 | 0.4 | 0.8 | 1.3 | 0.9 |
4 | 45° | −5.7 | −3.8 | 0.0 | 0.5 | −0.4 | −0.3 | 0.8 | 0.4 |
4 | 90° | −3.5 | −1.5 | −1.3 | −0.5 | −1.1 | −0.6 | 0.3 | −0.1 |
4 | 135° | −1.7 | −0.3 | −1.9 | −0.4 | −2.4 | −0.8 | −1.1 | −0.4 |
4 | 180° | −0.5 | −0.2 | −0.6 | −0.3 | −0.9 | −0.2 | −0.8 | −0.3 |
Depth (mm) | CIA | CIB | COB | COC | ||||
---|---|---|---|---|---|---|---|---|
Official | Modified | Official | Modified | Official | Modified | Official | Modified | |
1 | −1.56 | −4.79 | 1.08 | −2.22 | −0.07 | −2.46 | 2.19 | −2.65 |
2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
3 | 0.75 | 1.54 | −0.32 | 0.83 | 0.35 | 0.84 | 0.43 | 1.84 |
4 | 1.25 | 2.18 | 0.97 | 2.50 | 1.10 | 1.95 | 1.84 | 2.72 |
5 | 0.76 | 1.47 | 0.75 | 1.84 | 1.28 | 1.89 | 1.56 | 2.12 |
6 | 0.45 | 1.13 | 0.39 | 1.27 | 0.91 | 1.31 | 0.95 | 1.42 |
7 | 0.20 | 0.67 | 0.30 | 0.81 | 0.55 | 0.77 | 0.67 | 0.87 |
8 | 0.04 | 0.38 | 0.22 | 0.64 | 0.15 | 0.53 | 0.34 | 0.55 |
9 | 0.03 | 0.25 | −0.01 | 0.32 | 0.17 | 0.31 | 0.16 | 0.39 |
10 | 0.00 | 0.16 | 0.00 | 0.22 | 0.00 | 0.14 | 0.00 | −0.08 |
Case ID | Patient 2 | Patient 3 | Patient 4 | Patient 5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plaque | CIA | CIB | COB | COC | ||||||||
Official | Mod. | PS | Official | Mod. | PS | Official | Mod. | PS | Official | Mod. | PS | |
Apex | 82.1 | 83.3 | 85.0 | 84.1 | 86.0 | 85.0 | 80.1 | 81.4 | 85.0 | 89.6 | 89.7 | 85.0 |
Tumor | 156.4 | 151.4 | 156.4 | 153.9 | 147.5 | 140.2 | 289.0 | 289.1 | 301.8 | 315.3 | 294.5 | 259.5 |
Sclera | 12.7 | 13.4 | 12.3 | 24.9 | 25.8 | 23.4 | 67.1 | 69.6 | 67.2 | 112.9 | 111.0 | 89.4 |
Macula | - | - | - | - | - | - | 334.1 | 361.2 | 372.7 | 128.9 | 238.1 | 208.6 |
Optic nerve | - | - | - | - | - | - | 18.9 | 27.8 | 59.6 | 12.7 | 33.7 | 28.4 |
Retina | 7.6 | 8.3 | 8.3 | 13.2 | 14.6 | 11.9 | 33.1 | 33.9 | 32.3 | 48.5 | 49.8 | 41.6 |
Lens | 13.1 | 15.8 | 21.3 | 5.3 | 8.9 | 10.6 | - | - | - | - | - | - |
Cornea | 25.5 | 33.0 | 30.7 | 5.3 | 12.3 | 16.6 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miras, H.; Terrón, J.A.; Bertolet, A.; Leal, A. Modified Geometry of 106Ru Asymmetric Eye Plaques to Improve Dosimetric Calculations in Ophthalmic Brachytherapy. J. Pers. Med. 2022, 12, 723. https://doi.org/10.3390/jpm12050723
Miras H, Terrón JA, Bertolet A, Leal A. Modified Geometry of 106Ru Asymmetric Eye Plaques to Improve Dosimetric Calculations in Ophthalmic Brachytherapy. Journal of Personalized Medicine. 2022; 12(5):723. https://doi.org/10.3390/jpm12050723
Chicago/Turabian StyleMiras, Héctor, José Antonio Terrón, Alejandro Bertolet, and Antonio Leal. 2022. "Modified Geometry of 106Ru Asymmetric Eye Plaques to Improve Dosimetric Calculations in Ophthalmic Brachytherapy" Journal of Personalized Medicine 12, no. 5: 723. https://doi.org/10.3390/jpm12050723
APA StyleMiras, H., Terrón, J. A., Bertolet, A., & Leal, A. (2022). Modified Geometry of 106Ru Asymmetric Eye Plaques to Improve Dosimetric Calculations in Ophthalmic Brachytherapy. Journal of Personalized Medicine, 12(5), 723. https://doi.org/10.3390/jpm12050723