Clinical and Genetic Risk Factors for Drug-Induced Liver Injury Associated with Anti-Tuberculosis Treatment—A Study from Patients of Portuguese Health Centers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. Patients Characteristics and Univariate Analysis
3.2. Multivariate Analysis
3.3. Quartile Analysis of Risk Scores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. Global Tubeculosis Report 2020; WHO: Geneva, Switzerland, 2020; ISBN 9789240013131. [Google Scholar]
- WHO. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care; WHO: Geneva, Switzerland, 2017; Volume 62, ISBN 9789241550000. [Google Scholar]
- Saukkonen, J.J.; Cohn, D.L.; Jasmer, R.M.; Schenker, S.; Jereb, J.A.; Nolan, C.M.; Peloquin, C.A.; Gordin, F.M.; Nunes, D.; Strader, D.B.; et al. An official ATS statement: Hepatotoxicity of antituberculosis therapy. Am. J. Respir. Crit. Care Med. 2006, 174, 935–952. [Google Scholar] [CrossRef] [PubMed]
- Metushi, I.; Uetrecht, J.; Phillips, E. Mechanism of isoniazid-induced hepatotoxicity: Then and now. Br. J. Clin. Pharmacol. 2016, 81, 1030–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, M.A.; Burk, R.F.; DesPrez, R.M. Toxic Hepatitis with Isoniazid and Rifampin. Chest 1991, 99, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Bernuau, J.; Pessayre, D.; Samuel, D.; Belaiche, J.; Degott, C.; Bismuth, H.; Belghiti, J.; Erlinger, S.; Rueff, B.; et al. Deleterious influence of pyrazinamide on the outcome of patients with fulminant or subfulminant liver failure during antituberculous treatment including isoniazid. Hepatology 1995, 21, 929–932. [Google Scholar] [CrossRef]
- Daly, A.K. Are Polymorphisms in Genes Relevant to Drug Disposition Predictors of Susceptibility to Drug-Induced Liver Injury? Pharm. Res. 2017, 34, 1564–1569. [Google Scholar] [CrossRef] [Green Version]
- Dakhoul, L.; Ghabril, M.; Gu, J.; Navarro, V.; Chalasani, N.; Serrano, J. Heavy Consumption of Alcohol is Not Associated With Worse Outcomes in Patients With Idiosyncratic Drug-induced Liver Injury Compared to Non-Drinkers. Clin. Gastroenterol. Hepatol. 2018, 16, 722–729.e2. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Hein, D.W. Functional effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1. Pharm. J. 2008, 8, 339–348. [Google Scholar] [CrossRef]
- Selinski, S.; Blaszkewicz, M.; Ickstadt, K.; Hengstler, J.G.; Golka, K. Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk. Arch. Toxicol. 2013, 87, 2129–2139. [Google Scholar] [CrossRef]
- Suvichapanich, S.; Fukunaga, K.; Zahroh, H.; Mushiroda, T.; Mahasirimongkol, S.; Toyo-Oka, L.; Chaikledkaew, U.; Jittikoon, J.; Yuliwulandari, R.; Yanai, H.; et al. NAT2 ultra-slow acetylator and risk of anti-tuberculosis drug-induced liver injury: A genotype-based meta-analysis. Pharm. Genom. 2018, 28, 167–176. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Wilffert, B.; Tong, R.; van Soolingen, D.; van den Hof, S.; Alffenaar, J.W. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2018, 84, 2747–2760. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.; Kirkham, J.; Dwan, K.; Sloan, D.J.; Davies, G.; Jorgensen, A.L. NAT2 variants and toxicity related to anti-tuberculosis agents: A systematic review and meta-analysis. Int. J. Tuberc. Lung Dis. 2019, 23, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Kinzig-schippers, M.; Tomalik-scharte, D.; Jetter, A.; Scheidel, B.; Jakob, V.; Rodamer, M.; Cascorbi, I.; Doroshyenko, O.; So, F.; Fuhr, U. Should We Use N-Acetyltransferase Type 2 Genotyping To Personalize Isoniazid Doses? Society 2005, 49, 1733–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, P.R.; Parkin, D.P.; Seifart, H.I.; Schaaf, H.S.; van Helden, P.D.; Werely, C.J.; Sirgel, F.A.; Venter, A.; Maritz, J.S. The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur. J. Clin. Pharmacol. 2007, 63, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Azuma, J.; Ohno, M.; Kubota, R.; Yokota, S.; Nagai, T.; Tsuyuguchi, K.; Okuda, Y.; Takashima, T.; Kamimura, S.; Fujio, Y.; et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: A randomized controlled trial for pharmacogenetics-based therapy. Eur. J. Clin. Pharmacol. 2013, 69, 1091–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Pradhan, K.; Zhong, X.-B.; Ma, X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B 2016, 6, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ren, S.; Zhang, J.; Xu, D.; Jiang, F.; Jiang, P.; Feng, J.; Deng, F. The association between cytochrome P450 polymorphisms and anti-tuberculosis drug-induced liver injury: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 6518–6534. [Google Scholar] [CrossRef]
- Richardson, M.; Kirkham, J.; Dwan, K.; Sloan, D.J.; Davies, G.; Jorgensen, A.L. CYP genetic variants and toxicity related to anti-tubercular agents: A systematic review and meta-analysis. Syst. Rev. 2018, 7, 204. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, S.; He, J. Are genetic variations in glutathione S-transferases involved in anti-tuberculosis drug-induced liver injury? A meta-analysis. J. Clin. Pharm. Ther. 2019, 44, 844–857. [Google Scholar] [CrossRef]
- Yang, S.; Hwang, S.J.; Park, J.Y.; Chung, E.K.; Lee, J.I. Association of genetic polymorphisms of CYP2E1, NAT2, GST and SLCO1B1 with the risk of anti-tuberculosis drug-induced liver injury: A systematic review and meta-analysis. BMJ Open 2019, 9, e027940. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, J.; Tang, S.; Zhang, Y.; Lv, X.; Wu, S.; Yang, Z.; Xia, Y.; Chen, D.; Zhan, S. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort. Sci. Rep. 2016, 6, 27750. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.X.; Xu, X.F.; Zhang, Q.Z.; Li, C.; Deng, Y.; Jiang, P.; He, L.Y.; Peng, W.X. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity. Toxicol. Mech. Methods 2015, 25, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Reeh, H.; Rudolph, N.; Billing, U.; Christen, H.; Streif, S.; Bullinger, E.; Schliemann-Bullinger, M.; Findeisen, R.; Schaper, F.; Huber, H.J.; et al. Response to IL-6 trans- A nd IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: Fusing experimental insights and dynamic modelling. Cell Commun. Signal. 2019, 17, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Zimmers, T.A.; Perez, E.A.; Pierce, R.H.; Zhang, Z.; Koniaris, L.G. Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair. Hepatology 2006, 43, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, S.; Liao, J.; Zhong, L.; Xing, T.; Fan, J.; Peng, Z. Interleukin-6 and rs1800796 locus single nucleotide polymorphisms in response to hypoxia/reoxygenation in hepatocytes. Int. J. Mol. Med. 2016, 38, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Mastana, S.; Singh, S.; Juneja, P.K.; Kaur, T.; Singh, P. Promoter polymorphisms in IL-6 gene influence pro-inflammatory cytokines for the risk of osteoarthritis. Cytokine 2020, 127, 154985. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Z.; Ye, Q. Interleukin-6 gene polymorphisms and susceptibility to liver diseases: A meta-analysis. Medicine 2019, 98, e18408. [Google Scholar] [CrossRef]
- Li, Y.; Tang, H.; Qi, H.; Shen, C.; Sun, L.; Li, J.; Xu, F.; Jiao, W.; Yang, X.; Shen, A. rs1800796 of the IL6 gene is associated with increased risk for anti-tuberculosis drug-induced hepatotoxicity in Chinese Han children. Tuberculosis 2018, 111, 71–77. [Google Scholar] [CrossRef]
- Danan, G.; Teschke, R. RUCAM in drug and herb induced liver injury: The update. Int. J. Mol. Sci. 2016, 17, 10014. [Google Scholar] [CrossRef]
- WHO. Treatment of Tuberculosis: Guidelines for National Programmes, 3rd ed.; WHO: Geneva, Switzerland, 2003; Volume 93, p. 72. [Google Scholar] [CrossRef]
- World Health Organization. Treatment of Tuberculosis: Guidelines, 4th ed.; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Bénichou, C. Criteria of drug-induced liver disorders: Report of an International Consensus Meeting. J. Hepatol. 1990, 11, 272–276. [Google Scholar] [CrossRef]
- Aithal, G.P.; Watkins, P.B.; Andrade, R.J.; Larrey, D.; Molokhia, M.; Takikawa, H.; Hunt, C.M.; Wilke, R.A.; Avigan, M.; Kaplowitz, N.; et al. Case Definition and Phenotype Standardization in Drug-Induced Liver Injury. Clin. Pharmacol. Ther. 2011, 89, 806–815. [Google Scholar] [CrossRef]
- Schane, R.E.; Ling, P.M.; Glantz, S.A. Glantz Health Effects of Light and Intermittent Smoking: A Review. Circulation 2010, 121, 1518–1522. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed. Available online: https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015 (accessed on 25 April 2022).
- Andrade, R.J.; Aithal, G.P.; Björnsson, E.S.; Kaplowitz, N.; Kullak-Ublick, G.A.; Larrey, D.; Karlsen, T.H. EASL Clinical Practice Guidelines: Drug-induced liver injury. J. Hepatol. 2019, 70, 1222–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deitz, A.C.; Rothman, N.; Rebbeck, T.R.; Hayes, R.B.; Chow, W.H.; Zheng, W.; Hein, D.W.; García-Closas, M. Impact of misclassification in genotype-exposure interaction studies: Example of N-acetyltransferase 2 (NAT2), smoking, and bladder cancer. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1543–1546. [Google Scholar]
- Hein, D.W.; Doll, M.A. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 2012, 13, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, M.C.; Coutinho, E.; Gomes, L.; Carrilho, F.; Rodrigues, F.; Regateiro, F.J.; Carvalheiro, M. Combined GSTM1 and GSTT1 null genotypes are associated with a lower risk of papillary thyroid cancer. J. Endocrinol. Investig. 2008, 31, 542–545. [Google Scholar] [CrossRef]
- Lemos, M.C.; Regateiro, F.J. N-acetyltransferase genotypes in the Portuguese population. Pharmacogenetics 1998, 8, 561–564. [Google Scholar] [CrossRef]
- Fountain, F.F.; Tolley, E.; Chrisman, C.R.; Self, T.H. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: A 7-year evaluation from a public health tuberculosis clinic. Chest 2005, 128, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Onji, M.; Fujioka, S.; Takeuchi, Y.; Takaki, T.; Osawa, T.; Yamamoto, K.; Itoshima, T. Clinical characteristics of drug-induced liver injury in the elderly. Hepatol. Res. 2009, 39, 546–552. [Google Scholar] [CrossRef]
- Ortega-Alonso, A.; Stephens, C.; Lucena, M.I.; Andrade, R.J. Case characterization, clinical features and risk factors in drug-induced liver injury. Int. J. Mol. Sci. 2016, 17, 50714. [Google Scholar] [CrossRef] [Green Version]
- John, P.; Kale, P.P. Prominence of Oxidative Stress in the Management of Anti-tuberculosis Drugs Related Hepatotoxicity. Drug Metab. Lett. 2019, 13, 95–101. [Google Scholar] [CrossRef]
- Nicoletti, P.; Devarbhavi, H.; Goel, A.; Venkatesan, R.; Eapen, C.E.; Grove, J.I.; Zafer, S.; Bjornsson, E.; Lucena, M.I.; Andrade, R.J.; et al. Genetic Risk Factors in Drug-Induced Liver Injury Due to Isoniazid-Containing Antituberculosis Drug Regimens. Clin. Pharmacol. Ther. 2021, 109, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Hasnat, A.; Al Maruf, A.; Ahmed, M.U.; Pirmohamed, M.; Day, C.P.; Aithal, G.P.; Daly, A.K. N-acetyltransferase 2 (NAT2) genotype as a risk factor for development of drug-induced liver injury relating to antituberculosis drug treatment in a mixed-ethnicity patient group. Eur. J. Clin. Pharmacol. 2014, 70, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Urban, T.J.; Goldstein, D.B.; Watkins, P.B. Genetic basis of susceptibility to drug-induced liver injury: What have we learned and where do we go from here? Pharmacogenomics 2012, 13, 735–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, K.; Hamada, M.; Sugimoto, K.; Nakano, T. A novel mechanism for drug-induced liver failure: Inhibition of histone acetylation by hydralazine derivatives. J. Hepatol. 2007, 46, 322–329. [Google Scholar] [CrossRef] [PubMed]
Hepatitis Pattern | Grade of Hepatotoxicity | ||
---|---|---|---|
Mild n (%) | DILI n (%) | Total n (%) | |
Hepatocellular | 10 (33.3%) | 60 (90.9%) | 70 (72.9%) |
Cholestatic | 7 (23.3%) | 4 (6.1%) | 11 (11.5%) |
Mixed | 13 (43.4%) | 2 (3.0%) | 15 (15.6%) |
Total | 30 (100%) | 66 (100%) | 96 (100%) |
Clinical Variables | Controls n (%) | Cases n (%) | Global n (%) | p | OR (95% IC) |
---|---|---|---|---|---|
Age (17–87 years) | |||||
<55 years | 96 (73.8%) | 46 (44.7%) | 142 (60.9%) | <0.001 | |
≥55 years | 34 (26.2%) | 57 (55.3%) | 91 (39.1%) | 3.49 (2.02–6.07) | |
Mean (sd) | 45.1 (16.1) | 55.2 (19.0) | 49.6 (18.1) | ||
Gender | |||||
Female | 39 (30.0%) | 36 (35.0%) | 7 (32.2%) | 0.422 | 1.25 (0.72–2.18) |
Male | 91 (70.0%) | 67 (65.0%) | 158 (67.8%) | ||
Race | |||||
Caucasian | 120 (92.3%) | 95 (92.42%) | 215 (92.3%) | 0.983 | |
Non-Caucasian | 10 (7.7%) | 8 (7.8%) | 18 (7.7%) | 1.01 (0.38–2.66) | |
Weight (33–103 kg) | |||||
Mean (sd) | 61.5 (11.3) | 62.2 (11.8) | 61.8 (11.5) | 0.419 | |
Chronic Diseases | |||||
No | 63 (48.5%) | 36 (35.0%) | 99 (42.5%) | 0.039 | |
Yes | 67 (51.5%) | 67 (65.0%) | 134 (57.5%) | 1.75 (1.03–2.98) | |
Smoking Habits | |||||
No | 79 (60.8%) | 82 (79.6%) | 161 (69.1%) | 0.002 | |
Yes | 51 (39.2%) | 21 (20.4%) | 72 (30.9%) | 0.39 (0.22–0.72) | |
Alcohol Consumption | |||||
No | 85 (65.4%) | 82 (79.6%) | 167 (71.7%) | 0.018 | |
Yes | 45 (34.6%) | 21 (20.4%) | 66 (28.3%) | 0.48 (0.26–0.88) | |
Other Medication | |||||
<3 drugs | 114 (87.7%) | 76 (73.8%) | 190 (81.5%) | 0.008 | |
≥3 drugs | 16 (12.3%) | 29 (26.2%) | 43 (18.5%) | 2.53 (1.28–5.01) | |
Other Hepatotoxic Drugs | |||||
No | 106 (81.5%) | 57 (55.3%) | 163 (70.0%) | <0.001 | |
Yes | 24 (18.5%) | 46 (44.7%) | 70 (30.0%) | 3.56 (1.98–6.42) |
Genotypes | Controls n (%) | Cases n (%) | Global n (%) | p | OR (95% IC) |
---|---|---|---|---|---|
NAT2/Acetylation status | |||||
SA | 58 (44.6%) | 68 (66.0%) | 126 (54.1%) | ||
IA | 65 (50.0%) | 30 (29.1%) | 95 (40.8%) | 0.001 | 0.39 (0.23–0.69) |
RA | 7 (5.4%) | 5 (4.9%) | 12 (5.1%) | 0.418 | 0.61 (0.18–2.02) |
RA + IA vs. SA | 72 (55.4%) | 35 (34.0%) | 107 (45.9%) | 0.001 | 0.42 (0.24–0.71) |
ABCB11 | |||||
TT + TC | 21 + 76 (74.6%) | 13 + 48 (59.2%) | 158 (67.8%) | 0.013 | |
CC | 33 (25.4%) | 42 (40.8%) | 75 (32.2%) | 2.024 (1.16–3.53) | |
GSTM1 | |||||
Null | 69 (53.1%) | 49 (47.6%) | 118 (50.6%) | 0.404 | |
Positive | 61 (46.9%) | 54 (52.4%) | 115 (49.4%) | 1.247 (0.74–2.09) | |
GSTT1 | |||||
Null | 17 (13.1%) | 9 (8.7%) | 26 (11.2%) | 0.299 | |
Positive | 113 (85.9%) | 94 (91.3%) | 207 (88.8%) | 1.571 (0.67–3.69) | |
IL6 rs1800797 | |||||
AA + AG | 16 + 54 (53.8%) | 8 + 54 (60.2%) | 132 (56.7%) | 0.332 | |
GG | 60 (46.2%) | 41 (39.8%) | 101 (43.3%) | 0.772 (0.46–1.30) | |
IL6 rs1800796 | |||||
CC + CG | 2 + 16 (13.8%) | 1 + 17 (17.5%) | 36 (15.5%) | 0.447 | |
GG | 112 (86.2%) | 85 (82.5%) | 197 (84.5%) | 0.759 (0.37–1.55) | |
CYP2E1 | |||||
CC | 114 (87.7%) | 93 (90.3%) | 207 (88.8%) | 0.532 | |
TT + CT | 1 + 15 (12.3%) | 0 + 10 (9.7%) | 26 (11.2%) | 1.305 (0.57–3.01) |
All Cases vs. Controls | DILI Cases vs. Controls | |||||
---|---|---|---|---|---|---|
Variables | OR | IC 95% | p | OR | IC 95% | p |
Age ≥ 55 years | 2.78 | 1.45–5.31 | 0.002 | 3.65 | 1.74–7.62 | 0.001 |
Chronic Diseases | 0.94 | 0.49–1.81 | 0.854 | 0.84 | 0.42–1.77 | 0.654 |
Alcohol intake | 0.72 | 0.34–1.51 | 0.382 | 0.66 | 0.27–1.58 | 0.350 |
Smoking habits | 0.61 | 0.29–1.25 | 0.175 | 0.66 | 0.29–1.51 | 0.325 |
Other medication ≥3 drugs | 1.19 | 0.49–2.87 | 0.691 | 1.00 | 0.37–2.69 | 0.993 |
Other hepatotoxic drugs | 2.35 | 1.15–4.81 | 0.019 | 2.31 | 1.01–5.28 | 0.048 |
Slow Acetylator | 2.52 | 1.39–4.57 | 0.002 | 2.55 | 1.28–5.07 | 0.008 |
ABCB11–CC | 1.91 | 1.03–3.56 | 0.044 | 1.96 | 0.96–4.00 | 0.064 |
All Cases vs. Controls | DILI Cases vs. Controls | |||||
---|---|---|---|---|---|---|
Variables | OR | IC 95% | p | OR | IC 95% | p |
Age ≥ 55 years | 2.97 | 1.62–5.43 | <0.001 | 3.67 | 1.82–7.41 | <0.001 |
Other hepatotoxic drugs | 2.74 | 1.44–5.21 | 0.002 | 2.54 | 1.23–5.26 | 0.012 |
Slow Acetylator | 2.40 | 1.34–4.31 | 0.003 | 2.46 | 1.25–4.84 | 0.009 |
ABCB11-CC | 1.98 | 1.07–3.67 | 0.030 | 2.06 | 1.02–4.17 | 0.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavaco, M.J.; Alcobia, C.; Oliveiros, B.; Mesquita, L.A.; Carvalho, A.; Matos, F.; Carvalho, J.M.; Villar, M.; Duarte, R.; Mendes, J.; et al. Clinical and Genetic Risk Factors for Drug-Induced Liver Injury Associated with Anti-Tuberculosis Treatment—A Study from Patients of Portuguese Health Centers. J. Pers. Med. 2022, 12, 790. https://doi.org/10.3390/jpm12050790
Cavaco MJ, Alcobia C, Oliveiros B, Mesquita LA, Carvalho A, Matos F, Carvalho JM, Villar M, Duarte R, Mendes J, et al. Clinical and Genetic Risk Factors for Drug-Induced Liver Injury Associated with Anti-Tuberculosis Treatment—A Study from Patients of Portuguese Health Centers. Journal of Personalized Medicine. 2022; 12(5):790. https://doi.org/10.3390/jpm12050790
Chicago/Turabian StyleCavaco, Maria João, Celeste Alcobia, Bárbara Oliveiros, Luís Alcides Mesquita, Aurora Carvalho, Fernando Matos, José Miguel Carvalho, Miguel Villar, Raquel Duarte, João Mendes, and et al. 2022. "Clinical and Genetic Risk Factors for Drug-Induced Liver Injury Associated with Anti-Tuberculosis Treatment—A Study from Patients of Portuguese Health Centers" Journal of Personalized Medicine 12, no. 5: 790. https://doi.org/10.3390/jpm12050790
APA StyleCavaco, M. J., Alcobia, C., Oliveiros, B., Mesquita, L. A., Carvalho, A., Matos, F., Carvalho, J. M., Villar, M., Duarte, R., Mendes, J., Ribeiro, C., Cordeiro, C. R., Regateiro, F., & Silva, H. C. (2022). Clinical and Genetic Risk Factors for Drug-Induced Liver Injury Associated with Anti-Tuberculosis Treatment—A Study from Patients of Portuguese Health Centers. Journal of Personalized Medicine, 12(5), 790. https://doi.org/10.3390/jpm12050790