HR-pQCT for the Evaluation of Muscle Quality and Intramuscular Fat Infiltration in Ageing Skeletal Muscle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Grouping
2.2. Micro-CT Analysis of Animal Muscle
2.3. Histological Analysis of Animal Muscle
2.4. Subject Recruitment
2.5. HR-pQCT Measurement of Subjects
2.6. Evaluation of Soft Tissue and Intramuscular Fat Content by HR-pQCT
2.7. Muscle Strength and Functional Assessment
2.8. Statistical Analysis
3. Results
3.1. IMAT and MD Reflect Intramuscular Fat Content and Muscle Quality in Rats
3.2. HR-pQCT Parameters Associated with Intramuscular Fat Content and Muscle Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Wong, R.M.Y.; Wong, H.; Zhang, N.; Chow, S.K.H.; Chau, W.W.; Wang, J.; Chim, Y.N.; Leung, K.S.; Cheung, W.H. The relationship between sarcopenia and fragility fracture-a systematic review. Osteoporos. Int. 2019, 30, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Health AgingBody Composition Study; Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Boudreau, R.; Manini, T.M.; Nevitt, M.; et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Carlson, C.L.; Visser, M.; Kelley, D.E.; Scherzinger, A.; Harris, T.B.; Stamm, E.; Newman, A.B. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J. Appl. Physiol. 2001, 90, 2157–2165. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cui, C.; Chim, Y.N.; Yao, H.; Shi, L.; Xu, J.; Wang, J.; Wong, R.M.Y.; Leung, K.; Chow, S.K.; et al. Vibration and beta-hydroxy-beta-methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J. Cachexia Sarcopenia Muscle 2020, 11, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.; Seibel, M.; Cumming, R.; Naganathan, V.; Blyth, F.; Le Couteur, D.; Handelsman, D.J.; Waite, L.M.; Hirani, V. Sarcopenic Obesity and Its Temporal Associations With Changes in Bone Mineral Density, Incident Falls, and Fractures in Older Men: The Concord Health and Ageing in Men Project. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017, 32, 575–583. [Google Scholar] [CrossRef]
- Yu, R.; Leung, J.; Woo, J. Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: Results from the Osteoporotic Fractures in Men (MrOs) Study. J. Am. Med. Dir. Assoc. 2014, 15, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Adamek, M.; Gonzalez, M.C.; Jia, G.; Thomas, D.M. Assessing skeletal muscle mass: Historical overview and state of the art. J. Cachexia Sarcopenia Muscle 2014, 5, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Lester, R.; Akima, H.; Gorgey, A.S. Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders. Neural Regen. Res. 2017, 12, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.L.; Addison, O.; Dibble, L.E.; Foreman, K.B.; Morrell, G.; LaStayo, P. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J. Aging Res. 2012, 2012, 629637. [Google Scholar] [CrossRef] [PubMed]
- Maddocks, M.; Shrikrishna, D.; Vitoriano, S.; Natanek, S.A.; Tanner, R.J.; Hart, N.; Kemp, P.R.; Moxham, J.; Polkey, M.I.; Hopkinson, N.S. Skeletal muscle adiposity is associated with physical activity, exercise capacity and fibre shift in COPD. Eur. Respir. J. 2014, 44, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Borkan, G.A.; Hults, D.E.; Gerzof, S.G.; Robbins, A.H.; Silbert, C.K. Age changes in body composition revealed by computed tomography. J. Gerontol. 1983, 38, 673–677. [Google Scholar] [CrossRef]
- Wong, A.K.O.; Szabo, E.; Erlandson, M.; Sussman, M.S.; Duggina, S.; Song, A.; Reitsma, S.; Gillick, H.; Adachi, J.D.; Cheung, A.M. A Valid and Precise Semiautomated Method for Quantifying INTERmuscular Fat INTRAmuscular Fat in Lower Leg Magnetic Resonance Images. J. Clin. Densitom. 2018, 23, 611–622. [Google Scholar] [CrossRef]
- Sunil, K.C. Hong Kong Free Press: Years-long waiting times at Hong Kong hospitals – inefficient at best, corrupt at wors. Hong Kong. 2018. Available online: https://hongkongfp.com/2018/12/30/years-long-waiting-times-hong-kong-hospitals-inefficient-best-corrupt-worse/ (accessed on 21 June 2021).
- Cheng, K.Y.; Chow, S.K.; Hung, V.W.; Wong, C.H.; Wong, R.M.; Tsang, C.S.; Kwok, T.; Cheung, W. Diagnosis of sarcopenia by evaluating skeletal muscle mass by adjusted bioimpedance analysis validated with dual-energy X-ray absorptiometry. J. Cachexia Sarcopenia Muscle 2021, 12, 2163–2173. [Google Scholar] [CrossRef]
- Hung, V.W.; Zhu, T.; Cheung, W.H.; Fong, T.-N.; Yu, F.W.P.; Hung, L.-K.; Leung, K.-S.; Cheng, J.; Lam, T.-P.; Qin, L. Age-related differences in volumetric bone mineral density, microarchitecture, and bone strength of distal radius and tibia in Chinese women: A high-resolution pQCT reference database study. Osteoporos. Int. 2015, 26, 1691–1703. [Google Scholar] [CrossRef]
- Zhu, T.Y.; Hung, V.W.Y.; Cheung, W.-H.; Cheng, J.C.Y.; Qin, L.; Leung, K.-S. Value of Measuring Bone Microarchitecture in Fracture Discrimination in Older Women with Recent Hip Fracture: A Case-control Study with HR-pQCT. Sci. Rep. 2016, 6, 34185. [Google Scholar] [CrossRef] [Green Version]
- Cheung, W.H.; Hung, V.W.; Cheuk, K.; Chau, W.; Tsoi, K.K.; Wong, R.M.; Chow, S.K.; Lam, T.; Yung, P.S.; Law, S.; et al. Best Performance Parameters of HR-pQCT to Predict Fragility Fracture: Systematic Review and Meta-Analysis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2021, 36, 2381–2398. [Google Scholar] [CrossRef] [PubMed]
- Erlandson, M.C.; Wong, A.; Szabo, E.; Vilayphiou, N.; Zulliger, M.; Adachi, J.; Cheung, A. Muscle and Myotendinous Tissue Properties at the Distal Tibia as Assessed by High-Resolution Peripheral Quantitative Computed Tomography. J. Clin. Densitom. 2017, 20, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.Y.; Leung, K.S.; Qin, J.H.; Chow, S.K.; Cheung, W.H. Effect of Low-Magnitude, High-Frequency Vibration Treatment on Retardation of Sarcopenia: Senescence-Accelerated Mouse-P8 Model. Rejuvenation Res. 2016, 19, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.Y.; Leung, K.S.; Siu, P.M.F.; Qin, J.H.; Chow, S.K.H.; Qin, L.; Li, C.Y.; Cheung, W.H. Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8). Exp. Anim. 2015, 64, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frechette, D.M.; Krishnamoorthy, D.; Adler, B.J.; Chan, M.E.; Rubin, C.T. Diminished satellite cells and elevated adipogenic gene expression in muscle as caused by ovariectomy are averted by low-magnitude mechanical signals. J. Appl. Physiol. 2015, 119, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Leite, R.D.; Prestes, J.; Bernardes, C.F.; Shiguemoto, G.E.; Pereira, G.B.; Duarte, J.O.; Domingos, M.M.; Baldissera, V.; Perez, S.E.D.A. Effects of ovariectomy and resistance training on lipid content in skeletal muscle, liver, and heart; fat depots; and lipid profile. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2009, 34, 1079–1086. [Google Scholar] [CrossRef]
- Chow, S.K.; Leung, K.S.; Qin, J.; Guo, A.; Sun, M.; Qin, L.; Cheung, W.H. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats. Osteoporos. Int. 2016, 27, 2989–3000. [Google Scholar] [CrossRef]
- Shi, H.F.; Cheung, W.H.; Qin, L.; Leung, A.H.; Leung, K.S. Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone 2010, 46, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Butner, K.L.; Creamer, K.W.; Nickols-Richardson, S.M.; Clark, S.F.; Ramp, W.K.; Herbert, W.G. Fat and muscle indices assessed by pQCT: Relationships with physical activity and type 2 diabetes risk. J. Clin. Densitom. 2012, 15, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Mehlem, A.; Hagberg, C.E.; Muhl, L.; Eriksson, U.; Falkevall, A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc. 2013, 8, 1149–1154. [Google Scholar] [CrossRef] [Green Version]
- Engelke, K.; Stampa, B.; Timm, W.; Dardzinski, B.; de Papp, A.E.; Genant, H.K.; Fuerst, T. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos. Int. 2012, 23, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.Y.; Yip, B.H.; Hung, V.W.; Choy, C.W.; Cheng, K.-L.; Kwok, T.C.; Cheng, J.; Qin, L. Normative Standards for HRpQCT Parameters in Chinese Men and Women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2018, 33, 1889–1899. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.S.; Li, C.Y.; Tse, Y.K.; Choy, T.K.; Leung, P.C.; Hung, V.W.Y.; Chan, S.Y.; Leung, A.H.C.; Cheung, W.H. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly—A cluster-randomized controlled trial. Osteoporos. Int. 2014, 25, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Rubin, C.T.; Capilla, E.; Luu, Y.K.; Busa, B.; Crawford, H.; Nolan, D.J.; Mittal, V.; Rosen, C.J.; Pessin, J.E.; Judex, S. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc. Natl. Acad. Sci. USA 2007, 104, 17879–17884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrick, M.W.; McGee-Lawrence, M.E.; Frechette, D.M. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front. Endocrinol. 2016, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.K. A comparison of peripheral imaging technologies for bone and muscle quantification: A technical review of image acquisition. J. Musculoskelet. Neuronal Interact. 2016, 16, 265–282. [Google Scholar]
- Nishiyama, K.K.; Shane, E. Clinical imaging of bone microarchitecture with HR-pQCT. Curr. Osteoporos. Rep. 2013, 11, 147–155. [Google Scholar] [CrossRef]
- Erlandson, M.C.; Lorbergs, A.L.; Mathur, S.; Cheung, A.M. Muscle analysis using pQCT, DXA and MRI. Eur. J. Radiol. 2016, 85, 1505–1511. [Google Scholar] [CrossRef]
- Hildebrand, K.N.; Sidhu, K.; Gabel, L.; Besler, B.A.; Burt, L.A.; Boyd, S.K. The Assessment of Skeletal Muscle and Cortical Bone by Second-generation HR-pQCT at the Tibial Midshaft. J. Clin. Densitom. 2021, 24, 465–473. [Google Scholar] [CrossRef]
- Samelson, E.J.; Broe, K.E.; Xu, H.; Yang, L.; Boyd, S.; Biver, E.; Szulc, P.; Adachi, J.; Amin, S.; Atkinson, E.; et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): A prospective study. Lancet Diabetes Endocrinol. 2019, 7, 34–43. [Google Scholar] [CrossRef]
- Pinheiro, P.A.; Carneiro, J.A.; Coqueiro, R.S.; Pereira, R.; Fernandes, M.H. "Chair Stand Test" as Simple Tool for Sarcopenia Screening in Elderly Women. J. Nutr. Health Aging 2016, 20, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.P.; Syddall, H.E.; Jameson, K.; Robinson, S.; Denison, H.; Roberts, H.C.; Edwards, M.; Dennison, E.; Cooper, C.; Aihie Sayer, A. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: Findings from the Hertfordshire Cohort Study (HCS). Age Ageing 2013, 42, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vettor, R.; Milan, G.; Franzin, C.; Sanna, M.; De Coppi, P.; Rizzuto, R.; Federspil, G. The origin of intermuscular adipose tissue and its pathophysiological implications. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E987–E998. [Google Scholar] [CrossRef] [PubMed]
Tibia CSA [cm2] | Total.Volume | Muscle.Volume | MV/TV | IMAT.Volume | IMAT/MV | Muscle.Density | Fat.Density | MCSA | IMAT.V | MUS.V | IMAT% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | −0.504 | −0.380 | −0.479 * | −0.208 | 0.309 | 0.620 ** | −0.763 ** | −0.074 | −0.479 * | 0.070 | −0.483 * | 0.559 ** |
Pmax | Pmax (Fracture) | Pmax ((Normal) | Total Time | Time per Test | Rise Time | Quadriceps Strength | Hamstring Strength | |
---|---|---|---|---|---|---|---|---|
Age | −0.608 ** | −0.406 | −0.633 ** | 0.507 * | 0.514 * | 0.434 * | −0.686 ** | −0.638 ** |
Tibia CSA | 0.615 * | 0.313 | 0.653 * | −0.112 | −0.304 | −0.099 | 0.468 | 0.454 |
TV | 0.631 ** | 0.497 * | 0.619 ** | −0.104 | −0.306 | −0.085 | 0.438 * | 0.330 |
MV | 0.317 | 0.207 | 0.338 | −0.413 * | −0.354 | −0.476 * | 0.245 | 0.282 |
MV/TV | −0.236 | −0.203 | −0.219 | −0.377 | −0.097 | −0.441 * | −0.078 | 0.064 |
IMAT.V. | −0.070 | 0.002 | −0.095 | 0.211 | 0.112 | 0.168 | −0.385 | −0.279 |
IMAT/MV | −0.214 | −0.089 | −0.249 | 0.452 * | 0.298 | 0.525 * | −0.560 ** | −0.429 * |
MD | 0.444 * | 0.262 | 0.489 * | −0.704 ** | −0.625 ** | −0.610 ** | 0.588 ** | 0.565 ** |
FD | −0.306 | −0.296 | −0.267 | −0.192 | 0.152 | −0.156 | −0.213 | −0.024 |
MCSA | 0.317 | 0.207 | 0.338 | −0.413 * | −0.354 | −0.476 * | 0.245 | 0.282 |
● IMAT.V | 0.003 | −0.067 | 0.052 | 0.055 | 0.024 | 0.086 | −0.273 | −0.080 |
● MUS.V | 0.301 | 0.190 | 0.327 | −0.486 * | −0.384 | −0.515 * | 0.254 | 0.291 |
● IMAT% | −0.245 | −0.252 | −0.200 | 0.436 * | 0.311 | 0.671 ** | −0.559 ** | −0.380 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, S.K.-H.; van Mourik, M.; Hung, V.W.-Y.; Zhang, N.; Li, M.M.-C.; Wong, R.M.-Y.; Leung, K.-S.; Cheung, W.-H. HR-pQCT for the Evaluation of Muscle Quality and Intramuscular Fat Infiltration in Ageing Skeletal Muscle. J. Pers. Med. 2022, 12, 1016. https://doi.org/10.3390/jpm12061016
Chow SK-H, van Mourik M, Hung VW-Y, Zhang N, Li MM-C, Wong RM-Y, Leung K-S, Cheung W-H. HR-pQCT for the Evaluation of Muscle Quality and Intramuscular Fat Infiltration in Ageing Skeletal Muscle. Journal of Personalized Medicine. 2022; 12(6):1016. https://doi.org/10.3390/jpm12061016
Chicago/Turabian StyleChow, Simon Kwoon-Ho, Marloes van Mourik, Vivian Wing-Yin Hung, Ning Zhang, Michelle Meng-Chen Li, Ronald Man-Yeung Wong, Kwok-Sui Leung, and Wing-Hoi Cheung. 2022. "HR-pQCT for the Evaluation of Muscle Quality and Intramuscular Fat Infiltration in Ageing Skeletal Muscle" Journal of Personalized Medicine 12, no. 6: 1016. https://doi.org/10.3390/jpm12061016
APA StyleChow, S. K. -H., van Mourik, M., Hung, V. W. -Y., Zhang, N., Li, M. M. -C., Wong, R. M. -Y., Leung, K. -S., & Cheung, W. -H. (2022). HR-pQCT for the Evaluation of Muscle Quality and Intramuscular Fat Infiltration in Ageing Skeletal Muscle. Journal of Personalized Medicine, 12(6), 1016. https://doi.org/10.3390/jpm12061016