Novel Biomarkers of Renal Dysfunction and Congestion in Heart Failure
Abstract
:1. Introduction
2. Natriuretic Peptides
3. Biomarkers of Renal Dysfunction and Injury
3.1. NGAL
3.1.1. Clinical Value in Diagnosis and/or Prognosis
3.1.2. Practical Considerations and Limitations
3.2. KIM-1
3.2.1. Clinical Value in Diagnosis and/or Prognosis
3.2.2. Practical Considerations and Limitations
3.3. CysC
3.3.1. Clinical Value in Diagnosis and/or Prognosis
3.3.2. Practical Considerations and Limitations
3.4. NAG
3.4.1. Clinical Value in Diagnosis and/or Prognosis
3.4.2. Practical Considerations and Limitations
3.5. FGF-23
3.5.1. Clinical Value in Diagnosis and/or Prognosis
3.5.2. Practical Considerations and Limitations
3.6. Urinary Sodium Excretion
3.6.1. Clinical Value in Diagnosis and/or Prognosis
3.6.2. Practical Considerations and Limitations
4. Exosomes and Non-Coding RNA
5. Multimarker Panels and Clustering
6. Congestions
6.1. Cancer Antigen 125 (CA-125)
6.1.1. Clinical Value in Diagnosis and/or Prognosis
6.1.2. Role of CA-125 in Heart Failure Treatment
6.1.3. Practical Considerations and Limitations
7. Neurohumoral Activation
7.1. Adrenomedullin
7.1.1. Clinical Value in Diagnosis and/or Prognosis
7.1.2. Practical Considerations and Limitations
7.2. Arginine Vasopressin and Copeptin
7.2.1. Clinical Value in Diagnosis and/or Prognosis
7.2.2. Practical Considerations and Limitations
7.3. Chromogranin A
7.3.1. Clinical Value in Diagnosis and/or Prognosis
7.3.2. Practical Considerations and Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, W.L. Fluid Volume Overload and Congestion in Heart Failure. Circ. Heart Fail. 2016, 9, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boorsma, E.M.; ter Maaten, J.M.; Damman, K.; Dinh, W.; Gustafsson, F.; Goldsmith, S.; Burkhoff, D.; Zannad, F.; Udelson, J.E.; Voors, A.A. Congestion in Heart Failure: A Contemporary Look at Physiology, Diagnosis and Treatment. Nat. Rev. Cardiol. 2020, 17, 641–655. [Google Scholar] [CrossRef] [PubMed]
- Sokolska, J.M.; Sokolski, M.; Zymliński, R.; Biegus, J.; Siwołowski, P.; Nawrocka-Millward, S.; Swoboda, K.; Gajewski, P.; Jankowska, E.A.; Banasiak, W.; et al. Distinct Clinical Phenotypes of Congestion in Acute Heart Failure: Characteristics, Treatment Response, and Outcomes. ESC Heart Fail. 2020, 7, 3830–3840. [Google Scholar] [CrossRef]
- Zymliński, R.; Biegus, J.; Ponikowski, P. Not All Fluid Overloads Are the Same: Some Practical Considerations for Better Decongestion. Eur. J. Heart Fail. 2021, 23, 1106–1109. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Hernandez, A.F.; Felker, G.M. Role of Volume Redistribution in the Congestion of Heart Failure. J. Am. Heart Assoc. 2017, 6, e006817. [Google Scholar] [CrossRef] [PubMed]
- Ambrosy, A.P.; Cerbin, L.P.; Armstrong, P.W.; Butler, J.; Coles, A.; DeVore, A.D.; Dunlap, M.E.; Ezekowitz, J.A.; Felker, G.M.; Fudim, M.; et al. Body Weight Change During and After Hospitalization for Acute Heart Failure: Patient Characteristics, Markers of Congestion, and Outcomes: Findings From the ASCEND-HF Trial. JACC Heart Fail. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Voors, A.A.; Davison, B.A.; Teerlink, J.R.; Felker, G.M.; Cotter, G.; Filippatos, G.; Greenberg, B.H.; Pang, P.S.; Levin, B.; Hua, T.A.; et al. Diuretic Response in Patients with Acute Decompensated Heart Failure: Characteristics and Clinical Outcome—An Analysis from RELAX-AHF. Eur. J. Heart Fail. 2014, 16, 1230–1240. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Follath, F.; Ponikowski, P.; Barsuk, J.H.; Blair, J.E.A.; Cleland, J.G.; Dickstein, K.; Drazner, M.H.; Fonarow, G.C.; Jaarsma, T.; et al. Assessing and Grading Congestion in Acute Heart Failure: A Scientific Statement from the Acute Heart Failure Committee of the Heart Failure Association of the European Society of Cardiology and Endorsed by the European Society of Intensive Care Medicine. Eur. J. Heart Fail. 2010, 12, 423–433. [Google Scholar] [CrossRef]
- Januzzi, J.L. Natriuretic Peptides as Biomarkers in Heart Failure. J. Investig. Med. 2013, 61, 950–955. [Google Scholar] [CrossRef]
- Koratala, A.; Kazory, A. Natriuretic Peptides as Biomarkers for Congestive States: The Cardiorenal Divergence. Dis. Markers 2017, 2017, 1454986. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.E.; Januzzi, J.L. Established and Emerging Roles of Biomarkers in Heart Failure. Circ. Res. 2018, 123, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.A.; Cotts, W.G. Interpretation of B-type natriuretic peptide in cardiac disease and other comorbid conditions. Heart Fail. Rev. 2007, 12, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Schou, M.; Gustafsson, F.; Kistorp, C.N.; Corell, P.; Kjaer, A.; Hildebrandt, P.R. Effects of Body Mass Index and Age on N-Terminal Pro–Brain Natriuretic Peptide Are Associated with Glomerular Filtration Rate in Chronic Heart Failure Patients. Clin. Chem. 2007, 53, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; McCullough, P.; Anker, S.D.; Anand, I.; Aspromonte, N.; Bagshaw, S.M.; Bellomo, R.; Berl, T.; Bobek, I.; Cruz, D.N.; et al. Cardio-Renal Syndromes: Report from the Consensus Conference of the Acute Dialysis Quality Initiative. Eur. Heart J. 2010, 31, 703–711. [Google Scholar] [CrossRef]
- Costanzo, M.R. The Cardiorenal Syndrome in Heart Failure. Heart Fail. Clin. 2020, 16, 81–97. [Google Scholar] [CrossRef]
- Ceconi, C.; Ferrari, R.; Bachetti, T.; Opasich, C.; Volterrani, M.; Colombo, B.; Parrinello, G.; Corti, A. Chromogranin A in Heart Failure; a Novel Neurohumoral Factor and a Predictor for Mortality. Eur. Heart. J. 2002, 23, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Strack, C.; Bauer, S.; Hubauer, U.; Ücer, E.; Birner, C.; Luchner, A.; Maier, L.; Jungbauer, C. N-Acetyl-ß-D-Glucosaminidase Is Predictive of Mortality in Chronic Heart Failure: A 10-Year Follow-Up. Biomark Med. 2021, 15, 1143–1153. [Google Scholar] [CrossRef]
- Grodin, J.L.; Perez, A.L.; Wu, Y.; Hernandez, A.F.; Butler, J.; Metra, M.; Felker, G.M.; Voors, A.A.; McMurray, J.J.; Armstrong, P.W.; et al. Circulating Kidney Injury Molecule-1 Levels in Acute Heart Failure. JACC Heart Fail. 2015, 3, 777–785. [Google Scholar] [CrossRef]
- Sokolski, M.; Zymliński, R.; Biegus, J.; Siwołowski, P.; Nawrocka-Millward, S.; Todd, J.; Yerramilli, M.R.; Estis, J.; Jankowska, E.A.; Banasiak, W.; et al. Urinary Levels of Novel Kidney Biomarkers and Risk of True Worsening Renal Function and Mortality in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2017, 19, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Maisel, A.S.; Mueller, C.; Fitzgerald, R.; Brikhan, R.; Hiestand, B.C.; Iqbal, N.; Clopton, P.; van Veldhuisen, D.J. Prognostic Utility of Plasma Neutrophil Gelatinase-Associated Lipocalin in Patients with Acute Heart Failure: The NGAL EvaLuation Along with B-Type NaTriuretic Peptide in Acutely Decompensated Heart Failure (GALLANT) Trial. Eur. J. Heart Fail. 2011, 13, 846–851. [Google Scholar] [CrossRef]
- Damman, K.; Masson, S.; Hillege, H.L.; Maggioni, A.P.; Voors, A.A.; Opasich, C.; van Veldhuisen, D.J.; Montagna, L.; Cosmi, F.; Tognoni, G.; et al. Clinical Outcome of Renal Tubular Damage in Chronic Heart Failure. Eur. Heart J. 2011, 32, 2705–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ter Maaten, J.M.; Voors, A.A.; Damman, K.; van der Meer, P.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; van der Harst, P.; Hillege, H.L.; et al. Fibroblast Growth Factor 23 Is Related to Profiles Indicating Volume Overload, Poor Therapy Optimization and Prognosis in Patients with New-Onset and Worsening Heart Failure. Int. J. Cardiol. 2018, 253, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, L.; Kleber, M.E.; Brandenburg, V.M.; Goliasch, G.; Richter, B.; Sulzgruber, P.; Scharnagl, H.; Silbernagel, G.; Grammer, T.B.; Delgado, G.; et al. Fibroblast Growth Factor 23 Is an Independent and Specific Predictor of Mortality in Patients with Heart Failure and Reduced Ejection Fraction. Circ. Heart Fail. 2015, 8, 1059–1067. [Google Scholar] [CrossRef]
- Damman, K.; ter Maaten, J.M.; Coster, J.E.; Krikken, J.A.; van Deursen, V.M.; Krijnen, H.K.; Hofman, M.; Nieuwland, W.; van Veldhuisen, D.J.; Voors, A.A.; et al. Clinical Importance of Urinary Sodium Excretion in Acute Heart Failure. Eur. J. Heart Fail. 2020, 22, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Dupont, M.; Verbrugge, F.H.; Damman, K.; Degryse, N.; Nijst, P.; Reynders, C.; Penders, J.; Tang, W.H.W.; Testani, J.; et al. Urinary Sodium Profiling in Chronic Heart Failure to Detect Development of Acute Decompensated Heart Failure. JACC Heart Fail. 2019, 7, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.; Llàcer, P.; Bertomeu-González, V.; Bosch, M.J.; Merlos, P.; García-Blas, S.; Montagud, V.; Bodí, V.; Bertomeu-Martínez, V.; Pedrosa, V.; et al. Carbohydrate Antigen-125–Guided Therapy in Acute Heart Failure. JACC Heart Fail. 2016, 4, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.; Sanchis, J.; Bodí, V.; Fonarow, G.C.; Núñez, E.; Bertomeu-González, V.; Miñana, G.; Consuegra, L.; Bosch, M.J.; Carratalá, A.; et al. Improvement in Risk Stratification with the Combination of the Tumour Marker Antigen Carbohydrate 125 and Brain Natriuretic Peptide in Patients with Acute Heart Failure. Eur. Heart J. 2010, 31, 1752–1763. [Google Scholar] [CrossRef] [Green Version]
- Mansour, I.N.; Napan, S.; Tarek Alahdab, M.; Stamos, T.D. Carbohydrate Antigen 125 Predicts Long-Term Mortality in African American Patients with Acute Decompensated Heart Failure. Congest. Heart Fail. 2010, 16, 15–20. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Yang, D.H.; Cho, H.J.; Kim, N.K.; Kim, C.-Y.; Son, J.; Roh, J.-H.; Jang, S.Y.; Bae, M.H.; Lee, J.H.; et al. Serum Levels of Carbohydrate Antigen 125 in Combination with N-Terminal pro-Brain Natriuretic Peptide in Patients with Acute Decompensated Heart Failure. Korean J. Intern. Med. 2019, 34, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Li, K.H.C.; Gong, M.; Li, G.; Baranchuk, A.; Liu, T.; Wong, M.C.S.; Jesuthasan, A.; Lai, R.W.C.; Lai, J.C.L.; Lee, A.P.W.; et al. Cancer Antigen-125 and Outcomes in Acute Heart Failure: A Systematic Review and Meta-Analysis. Heart Asia 2018, 10, e011044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nägele, H.; Bahlo, M.; Klapdor, R.; Schaeperkoetter, D.; Rödiger, W. CA 125 and Its Relation to Cardiac Function. Am. Heart J. 1999, 137, 1044–1049. [Google Scholar] [CrossRef]
- D’Aloia, A.; Faggiano, P.; Aurigemma, G.; Bontempi, L.; Ruggeri, G.; Metra, M.; Nodari, S.; Dei Cas, L. Serum Levels of Carbohydrate Antigen 125 in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2003, 41, 1805–1811. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Muñoz, V.M.; Sobrino-Márquez, J.M.; Rangel-Sousa, D.; Fernández-Cisnal, A.; Lage-Gallé, E.; García-Pinilla, J.M.; Martínez-Martínez, Á.; de Teresa-Galván, E. Long-Term Prognostic Role of CA-125 in Noncongestive Patients Undergoing a Cardiac Transplantation. Biomark Med. 2017, 11, 239–243. [Google Scholar] [CrossRef]
- Tolppanen, H.; Rivas-Lasarte, M.; Lassus, J.; Sans-Roselló, J.; Hartmann, O.; Lindholm, M.; Arrigo, M.; Tarvasmäki, T.; Köber, L.; Thiele, H.; et al. Adrenomedullin: A Marker of Impaired Hemodynamics, Organ Dysfunction, and Poor Prognosis in Cardiogenic Shock. Ann. Intensive Care 2017, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- ter Maaten, J.M.; Kremer, D.; Demissei, B.G.; Struck, J.; Bergmann, A.; Anker, S.D.; Ng, L.L.; Dickstein, K.; Metra, M.; Samani, N.J.; et al. Bio-Adrenomedullin as a Marker of Congestion in Patients with New-Onset and Worsening Heart Failure. Eur. J. Heart Fail. 2019, 21, 732–743. [Google Scholar] [CrossRef] [Green Version]
- Schill, F.; Timpka, S.; Nilsson, P.M.; Melander, O.; Enhörning, S. Copeptin as a Predictive Marker of Incident Heart Failure. ESC Heart Fail. 2021, 8, 3180–3188. [Google Scholar] [CrossRef]
- Maisel, A.; Xue, Y.; Shah, K.; Mueller, C.; Nowak, R.; Peacock, W.F.; Ponikowski, P.; Mockel, M.; Hogan, C.; Wu, A.H.B.; et al. Increased 90-Day Mortality in Patients with Acute Heart Failure with Elevated Copeptin: Secondary Results from the Biomarkers in Acute Heart Failure (BACH) Study. Circ. Heart Fail 2011, 4, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Ottesen, A.H.; Carlson, C.R.; Louch, W.E.; Dahl, M.B.; Sandbu, R.A.; Johansen, R.F.; Jarstadmarken, H.; Bjørås, M.; Høiseth, A.D.; Brynildsen, J.; et al. Glycosylated Chromogranin A in Heart Failure: Implications for Processing and Cardiomyocyte Calcium Homeostasis. Circ. Heart Fail. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Avci, A.; Ozturk, B.; Demir, K.; Akyürek, F.; Altunkeser, B.B. The Prognostic Utility of Plasma NGAL Levels in ST Segment Elevation in Myocardial Infarction Patients. Adv. Prev. Med. 2020, 2020, 4637043. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, Y.; Hu, L.; He, L.; Yao, F.; Wang, Y.; Deng, J.; Xu, J.; Wang, Y.; Xu, F.; et al. Assessment of 17 clinically available renal biomarkers to predict acute kidney injury in critically ill patients. J. Transl. Intern. Med. 2021, 9, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Chang, C.-H.; Chen, T.-H.; Fan, P.-C.; Chang, S.-W.; Chen, C.-C.; Chu, P.-H.; Chen, Y.-T.; Yang, H.-Y.; Yang, C.-W.; et al. Combination of Urinary Biomarkers Improves Early Detection of Acute Kidney Injury in Patients with Heart Failure. Circ. J. 2016, 80, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pöss, J.; Mahfoud, F.; Seiler, S.; Heine, G.H.; Fliser, D.; Böhm, M.; Link, A. FGF-23 is associated with increased disease severity and early mortality in cardiogenic shock. Eur. Heart J. Acute Cardiovasc. Care 2013, 2, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Ordu, S.; Ozhan, H.; Alemdar, R.; Aydin, M.; Caglar, O.; Yuksel, H.; Kandis, H. Carbohydrate antigen-125 and N-terminal pro-brain natriuretic peptide levels: Compared in heart-failure prognostication. Tex. Heart Inst. J. 2012, 39, 30–35. [Google Scholar] [PubMed]
- Lundberg, O.H.M.; Bergenzaun, L.; Rydén, J.; Rosenqvist, M.; Melander, O.; Chew, M.S. Adrenomedullin and endothelin-1 are associated with myocardial injury and death in septic shock patients. Crit. Care 2016, 20, 178. [Google Scholar] [CrossRef] [Green Version]
- el shafey, W.E.D.H.; Ahmedy, I.A. Diagnostic values of Copeptin as a novel cardiac marker in relation to traditional markers in acute myocardial infarction. Clin. Trials Regul. Sci. Cardiol. 2016, 19, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.N.; Fard, A.; Clementi, A.; Ronco, C.; Maisel, A. Role of Biomarkers in the Diagnosis and Management of Cardio-Renal Syndromes. Semin. Nephrol. 2012, 32, 79–92. [Google Scholar] [CrossRef]
- Cernaro, V.; Bolignano, D.; Donato, V.; Lacquaniti, A.; Buemi, A.; Crascì, E.; Lucisano, S.; Buemi, M. NGAL Is a Precocious Marker of Therapeutic Response. Curr. Pharm. Des. 2011, 17, 844–849. [Google Scholar] [CrossRef]
- van Deursen, V.M.; Damman, K.; Voors, A.A.; van der Wal, M.H.; Jaarsma, T.; van Veldhuisen, D.J.; Hillege, H.L. Prognostic Value of Plasma Neutrophil Gelatinase-Associated Lipocalin for Mortality in Patients with Heart Failure. Circ. Heart Fail. 2014, 7, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Nawrocka-Millward, S.; Biegus, J.; Hurkacz, M.; Guzik, M.; Rosiek-Biegus, M.; Jankowska, E.A.; Ponikowski, P.; Zymliński, R. Differences in the Biomarker Profile of De Novo Acute Heart Failure versus Decompensation of Chronic Heart Failure. Biomolecules 2021, 11, 1701. [Google Scholar] [CrossRef] [PubMed]
- Aghel, A.; Shrestha, K.; Mullens, W.; Borowski, A.; Tang, W.H.W. Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Predicting Worsening Renal Function in Acute Decompensated Heart Failure. J. Card. Fail. 2010, 16, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvelos, M.; Pimentel, R.; Pinho, E.; Gomes, A.; Lourenço, P.; Teles, M.J.; Almeida, P.; Guimarães, J.T.; Bettencourt, P. Neutrophil Gelatinase-Associated Lipocalin in the Diagnosis of Type 1 Cardio-Renal Syndrome in the General Ward. Clin. J. Am. Soc. Nephrol. 2011, 6, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Helanova, K.; Spinar, J.; Parenica, J. Diagnostic and Prognostic Utility of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Patients with Cardiovascular Diseases—Review. Kidney Blood Press. Res. 2014, 39, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Tousoulis, D.; Michalea, S.; Oikonomou, E.; Vavuranakis, M.; Athanasiou, D.; Tourikis, P.; Gouliopoulos, N.; Miliou, A.; Mourouzis, K.; et al. Novel Biomarkers Assessing Renal Function in Heart Failure: Relation to Inflammatory Status and Cardiac Remodelling. Curr. Med. Chem. 2014, 21, 3976–3983. [Google Scholar] [CrossRef]
- Damman, K.; Masson, S.; Hillege, H.L.; Voors, A.A.; van Veldhuisen, D.J.; Rossignol, P.; Proietti, G.; Barbuzzi, S.; Nicolosi, G.L.; Tavazzi, L.; et al. Tubular Damage and Worsening Renal Function in Chronic Heart Failure. JACC Heart Fail. 2013, 1, 417–424. [Google Scholar] [CrossRef]
- Murray, P.T.; Wettersten, N.; van Veldhuisen, D.J.; Mueller, C.; Filippatos, G.; Nowak, R.; Hogan, C.; Kontos, M.C.; Cannon, C.M.; Müeller, G.A.; et al. Utility of Urine Neutrophil Gelatinase-Associated Lipocalin for Worsening Renal Function during Hospitalization for Acute Heart Failure: Primary Findings of the Urine N-Gal Acute Kidney Injury N-Gal Evaluation of Symptomatic Heart Failure Study (AKINESIS). J. Card. Fail. 2019, 25, 654–665. [Google Scholar] [CrossRef]
- Maisel, A.S.; Wettersten, N.; van Veldhuisen, D.J.; Mueller, C.; Filippatos, G.; Nowak, R.; Hogan, C.; Kontos, M.C.; Cannon, C.M.; Müller, G.A.; et al. Neutrophil Gelatinase-Associated Lipocalin for Acute Kidney Injury During Acute Heart Failure Hospitalizations: The AKINESIS Study. J. Am. Coll. Cardiol. 2016, 68, 1420–1431. [Google Scholar] [CrossRef]
- Damman, K.; Valente, M.A.E.; van Veldhuisen, D.J.; Cleland, J.G.F.; O’Connor, C.M.; Metra, M.; Ponikowski, P.; Cotter, G.; Davison, B.; Givertz, M.M.; et al. Plasma Neutrophil Gelatinase-Associated Lipocalin and Predicting Clinically Relevant Worsening Renal Function in Acute Heart Failure. Int. J. Mol. Sci. 2017, 18, 1470. [Google Scholar] [CrossRef]
- Bailly, V.; Zhang, Z.; Meier, W.; Cate, R.; Sanicola, M.; Bonventre, J.V. Shedding of Kidney Injury Molecule-1, a Putative Adhesion Protein Involved in Renal Regeneration. J. Biol. Chem. 2002, 277, 39739–39748. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, V.S.; Ramirez, V.; Ichimura, T.; Bobadilla, N.A.; Bonventre, J.V. Urinary Kidney Injury Molecule-1: A Sensitive Quantitative Biomarker for Early Detection of Kidney Tubular Injury. Am. J. Physiol. Renal. Physiol. 2006, 290, F517–F529. [Google Scholar] [CrossRef]
- Ichimura, T.; Hung, C.C.; Yang, S.A.; Stevens, J.L.; Bonventre, J.V. Kidney Injury Molecule-1: A Tissue and Urinary Biomarker for Nephrotoxicant-Induced Renal Injury. Am. J. Physiol. Renal. Physiol. 2004, 286, F552–F563. [Google Scholar] [CrossRef]
- Ichimura, T.; Asseldonk, E.J.P.V.; Humphreys, B.D.; Gunaratnam, L.; Duffield, J.S.; Bonventre, J.V. Kidney Injury Molecule-1 Is a Phosphatidylserine Receptor That Confers a Phagocytic Phenotype on Epithelial Cells. J. Clin. Investig. 2008, 118, 1657–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A Urinary Biomarker and Much More. Nephrol. Dial. Transpl. 2009, 24, 3265–3268. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Qiu, Y.; Qin, Z.; Su, B. The Value of Kidney Injury Molecule 1 in Predicting Acute Kidney Injury in Adult Patients: A Systematic Review and Bayesian Meta-Analysis. J. Transl. Med. 2021, 19. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.M.; Qin, X.L.; Liu, T.T.; Wei, W.X.; Cheng, D.H.; Lu, H.; Guo, Q.; Jing, L. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: A prospective study. Eur Rev Med Pharmacol Sci. 2017, 21, 4203–4213. [Google Scholar] [PubMed]
- Jungbauer, C.G.; Birner, C.; Jung, B.; Buchner, S.; Lubnow, M.; von Bary, C.; Endemann, D.; Banas, B.; MacK, M.; Böger, C.A.; et al. Kidney Injury Molecule-1 and N-Acetyl-β-D-Glucosaminidase in Chronic Heart Failure: Possible Biomarkers of Cardiorenal Syndrome. Eur. J. Heart Fail. 2011, 13, 1104–1110. [Google Scholar] [CrossRef]
- Damman, K.; van Veldhuisen, D.J.; Navis, G.; Vaidya, V.S.; Smilde, T.D.J.; Westenbrink, B.D.; Bonventre, J.V.; Voors, A.A.; Hillege, H.L. Tubular Damage in Chronic Systolic Heart Failure Is Associated with Reduced Survival Independent of Glomerular Filtration Rate. Heart 2010, 96, 1297. [Google Scholar] [CrossRef] [Green Version]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G.; et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1231–1239. [Google Scholar] [CrossRef]
- Sarhene, M.; Wang, Y.; Wei, J.; Huang, Y.; Li, M.; Li, L.; Acheampong, E.; Zhengcan, Z.; Xiaoyan, Q.; Yunsheng, X.; et al. Biomarkers in Heart Failure: The Past, Current and Future. Heart Fail. Rev. 2019, 24, 867–903. [Google Scholar] [CrossRef]
- Levey, A.S.; Inker, L.A. Assessment of Glomerular Filtration Rate in Health and Disease: A State of the Art Review. Clin. Pharmacol. Ther. 2017, 102, 405–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanzo, M.R.; Barasch, J. Creatinine and Cystatin C: Not the Troponin of the Kidney. Circulation 2018, 137, 2029–2031. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Shlipak, M.G.; Chertow, G.M.; Whooley, M.A. Association of Cystatin C with Mortality, Cardiovascular Events, and Incident Heart Failure among Persons with Coronary Heart Disease: Data from the Heart and Soul Study. Circulation 2007, 115, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Tang, Y.; Zhou, X. Cystatin C for Predicting All-Cause Mortality and Rehospitalization in Patients with Heart Failure: A Meta-Analysis. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed]
- Huerta, A.; López, B.; Ravassa, S.; José, G.S.; Querejeta, R.; Beloqui, Ó.; Zubillaga, E.; Rábago, G.; Brugnolaro, C.; Díez, J.; et al. Association of Cystatin C with Heart Failure with Preserved Ejection Fraction in Elderly Hypertensive Patients: Potential Role of Altered Collagen Metabolism. J. Hypertens 2016, 34, 130–138. [Google Scholar] [CrossRef]
- Berezin, A.; Berezin, A.E. Up-to-Date Clinical Approaches of Biomarkers’ Use in Heart Failure. Biomed. Res. Ther. 2017, 4, 1344–1373. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Li, G.; Li, G. Correlation between Serum Urea Nitrogen, Cystatin C, Homocysteine, and Chronic Heart Failure. Am. J. Transl. Res. 2021, 13, 3254. [Google Scholar]
- Selcuk, H.; Selcuk, M.T.; Maden, O.; Balci, K.G.; Balci, M.M.; Tekeli, S.; Çetin, E.H.; Temizhan, A.; Balci, M.; Karabiber, N. The Impact of Admission Cystatin C Levels on In-Hospital and Three-Year Mortality Rates in Acute Decompensated Heart Failure. Cardiovasc J. Afr. 2018, 29, 305–309. [Google Scholar] [CrossRef]
- Bazzi, C.; Petrini, C.; Rizza, V.; Arrigo, G.; Napodano, P.; Paparella, M.; D’Amico, G. Urinary N-Acetyl-Beta-Glucosaminidase Excretion Is a Marker of Tubular Cell Dysfunction and a Predictor of Outcome in Primary Glomerulonephritis. Nephrol. Dial. Transplant. 2002, 17, 1890–1896. [Google Scholar] [CrossRef] [Green Version]
- Damman, K.; Ng Kam Chuen, M.J.; MacFadyen, R.J.; Lip, G.Y.H.; Gaze, D.; Collinson, P.O.; Hillege, H.L.; van Oeveren, W.; Voors, A.A.; van Veldhuisen, D.J. Volume Status and Diuretic Therapy in Systolic Heart Failure and the Detection of Early Abnormalities in Renal and Tubular Function. J. Am. Coll. Cardiol. 2011, 57, 2233–2241. [Google Scholar] [CrossRef] [Green Version]
- Jungbauer, C.G.; Uecer, E.; Stadler, S.; Birner, C.; Buchner, S.; Maier, L.S.; Luchner, A. N-Acteyl-ß-D-Glucosaminidase and Kidney Injury Molecule-1: New Predictors for Long-Term Progression of Chronic Kidney Disease in Patients with Heart Failure. Nephrology 2016, 21, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shiizaki, K.; Kuro-o, M.; Moe, O.W. Fibroblast Growth Factor 23 and Klotho: Physiology and Pathophysiology of an Endocrine Network of Mineral Metabolism. Annu. Rev. Physiol. 2013, 75, 503–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Sánchez, S.; Poveda, J.; Navarro-García, J.A.; González-Lafuente, L.; Rodríguez-Sánchez, E.; Ruilope, L.M.; Ruiz-Hurtado, G. An Overview of FGF-23 as a Novel Candidate Biomarker of Cardiovascular Risk. Front. Physiol. 2021, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Navarro-García, J.A.; Fernández-Velasco, M.; Delgado, C.; Delgado, J.F.; Kuro-o, M.; Ruilope, L.M.; Ruiz-Hurtado, G. PTH, Vitamin D, and the FGF-23–Klotho Axis and Heart: Going beyond the Confines of Nephrology. Eur. J. Clin. Investig. 2018, 48, e12902. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Mendes, F.; Carias, E.; Gonçalves, R.B.; Fragoso, A.; Dias, C.; Tavares, N.; Café, H.M.; Santos, N.; Rato, F.; et al. Plasmatic Klotho and FGF23 Levels as Biomarkers of CKD-Associated Cardiac Disease in Type 2 Diabetic Patients. Int. J. Mol. Sci. 2019, 20, 1536. [Google Scholar] [CrossRef] [Green Version]
- Andersen, I.A.; Huntley, B.K.; Sandberg, S.S.; Heublein, D.M.; Burnett, J.C. Elevation of Circulating but Not Myocardial FGF23 in Human Acute Decompensated Heart Failure. Nephrol. Dial. Transplant. 2016, 31, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Gruson, D.; Lepoutre, T.; Ketelslegers, J.M.; Cumps, J.; Ahn, S.A.; Rousseau, M.F. C-Terminal FGF23 Is a Strong Predictor of Survival in Systolic Heart Failure. Peptides 2012, 37, 258–262. [Google Scholar] [CrossRef]
- Scialla, J.J.; Xie, H.; Rahman, M.; Anderson, A.H.; Isakova, T.; Ojo, A.; Zhang, X.; Nessel, L.; Hamano, T.; Grunwald, J.E.; et al. Fibroblast Growth Factor-23 and Cardiovascular Events in CKD. J. Am. Soc. Nephrol. 2014, 25, 349–360. [Google Scholar] [CrossRef] [Green Version]
- de Buyzere, M.L.; Delanghe, J.R. Fibroblast Growth Factor 23 and the Quest for the Holy Grail in Heart Failure: Will the Crusaders Be Forced to Surrender? Eur. J. Heart Fail. 2020, 22, 710–712. [Google Scholar] [CrossRef]
- Stöhr, R.; Brandenburg, V.M.; Heine, G.H.; Maeder, M.T.; Leibundgut, G.; Schuh, A.; Jeker, U.; Pfisterer, M.; Sanders-van Wijk, S.; Brunner-la Rocca, H.P. Limited Role for Fibroblast Growth Factor 23 in Assessing Prognosis in Heart Failure Patients: Data from the TIME-CHF Trial. Eur. J. Heart Fail. 2020, 22, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Biegus, J.; Zymliński, R.; Testani, J.; Marciniak, D.; Zdanowicz, A.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Renal Profiling Based on Estimated Glomerular Filtration Rate and Spot Urine Sodium Identifies High-Risk Acute Heart Failure Patients. Eur. J. Heart Fail. 2020, 23, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Nawrocka-Millward, S.; Zymliński, R.; Fudim, M.; Testani, J.; Marciniak, D.; Rosiek-Biegus, M.; Ponikowska, B.; Guzik, M.; Garus, M.; et al. Distinct Renin/Aldosterone Activity Profiles Correlate with Renal Function, Natriuretic Response, Decongestive Ability and Prognosis in Acute Heart Failure. Int. J. Cardiol. 2021, 345, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Todd, J.; Cotter, G.; Metra, M.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Serial Assessment of Spot Urine Sodium Predicts Effectiveness of Decongestion and Outcome in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2019, 21, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Zymliński, R.; Fudim, M.; Testani, J.; Sokolski, M.; Marciniak, D.; Ponikowska, B.; Guzik, M.; Garus, M.; Urban, S.; et al. Spot Urine Sodium in Acute Heart Failure: Differences in Prognostic Value on Admission and Discharge. ESC Heart Fail. 2021, 8, 2597–2602. [Google Scholar] [CrossRef] [PubMed]
- Zymliński, R.; Sierpiński, R.; Metra, M.; Cotter, G.; Sokolski, M.; Siwołowski, P.; Garus, M.; Gajewski, P.; Tryba, J.; Samorek, M.; et al. Elevated Plasma Endothelin-1 Is Related to Low Natriuresis, Clinical Signs of Congestion, and Poor Outcome in Acute Heart Failure. ESC Heart Fail. 2020, 7, 3536–3544. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Han, Y.; Yang, J.; Li, G.; Yang, C. A Narrative Review of the Research Status of Exosomes in Cardiovascular Disease. Ann. Palliat. Med. 2022, 11, 363–377. [Google Scholar] [CrossRef]
- Tschuschke, M.; Kocherova, I.; Bryja, A.; Mozdziak, P.; Volponi, A.A.; Janowicz, K.; Sibiak, R.; Piotrowska-Kempisty, H.; Iżycki, D.; Bukowska, D.; et al. Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular Exosomes. J. Clin. Med. 2020, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Huo, M.; Li, B.; Wang, W.; Piao, H.; Wang, Y.; Zhu, Z.; Li, D.; Wang, T.; Liu, K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front. Cell Dev. Biol. 2021, 8, 1810. [Google Scholar] [CrossRef]
- Raposo, G.; Nijman, H.W.; Stoorvogel, W.; Leijendekker, R.; Harding, C.V.; Melief, C.J.M.; Geuze, H.J. B Lymphocytes Secrete Antigen-Presenting Vesicles. J. Exp. Med. 1996, 183, 1161–1172. [Google Scholar] [CrossRef]
- Asgarpour, K.; Shojaei, Z.; Amiri, F.; Ai, J.; Mahjoubin-Tehran, M.; Ghasemi, F.; Arefnezhad, R.; Hamblin, M.R.; Mirzaei, H. Exosomal MicroRNAs Derived from Mesenchymal Stem Cells: Cell-to-Cell Messages. Cell Commun. Signal. 2020, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Biasucci, L.M.; Maino, A.; Grimaldi, M.C.; Cappannoli, L.; Aspromonte, N. Novel Biomarkers in Heart Failure: New Insight in Pathophysiology and Clinical Perspective. J. Clin. Med. 2021, 10, 2771. [Google Scholar] [CrossRef] [PubMed]
- Bang, C.; Batkai, S.; Dangwal, S.; Gupta, S.K.; Foinquinos, A.; Holzmann, A.; Just, A.; Remke, J.; Zimmer, K.; Zeug, A.; et al. Cardiac Fibroblast-Derived MicroRNA Passenger Strand-Enriched Exosomes Mediate Cardiomyocyte Hypertrophy. J. Clin. Investig. 2014, 124, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Stroud, M.J.; Ouyang, K.; Fang, L.; Zhang, J.; Dalton, N.D.; Gu, Y.; Wu, T.; Peterson, K.L.; da Huang, H.; et al. Adipocyte-Specific Loss of PPAR γ Attenuates Cardiac Hypertrophy. JCI Insight 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Xue, R.; Tan, W.; Wu, Y.; Dong, B.; Xie, Z.; Huang, P.; He, J.; Dong, Y.; Liu, C. Role of Exosomal MiRNAs in Heart Failure. Front. Cardiovasc. Med. 2020, 7, 347. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Wang, F.; Gao, R.; Wu, J.; Ou, Y.; Chen, X.; Wang, T.; Zhou, X.; Zhu, W.; Li, P.; et al. Autophagy Inhibition of Hsa-MiR-19a-3p/19b-3p by Targeting TGF-β R II during TGF-Β1-Induced Fibrogenesis in Human Cardiac Fibroblasts. Sci. Rep. 2016, 6, 24747. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Hu, S.; Liu, S.; Zhang, H.; Ma, H.; Huang, K.; Li, Z.; Su, T.; Vandergriff, A.; Tang, J.; et al. MicroRNA-21-5p Dysregulation in Exosomes Derived from Heart Failure Patients Impairs Regenerative Potential. J. Clin. Investig. 2019, 129, 2237–2250. [Google Scholar] [CrossRef]
- Goren, Y.; Kushnir, M.; Zafrir, B.; Tabak, S.; Lewis, B.S.; Amir, O. Serum Levels of MicroRNAs in Patients with Heart Failure. Eur. J. Heart Fail. 2012, 14, 147–154. [Google Scholar] [CrossRef]
- dos Reis Schneider, S.I.; Silvello, D.; Martinelli, N.C.; Garbin, A.; Biolo, A.; Clausell, N.; Andrades, M.; dos Santos, K.G.; Rohde, L.E. Plasma Levels of MicroRNA-21, -126 and -423-5p Alter during Clinical Improvement and Are Associated with the Prognosis of Acute Heart Failure. Mol. Med. Rep. 2018, 17, 4736–4746. [Google Scholar] [CrossRef] [Green Version]
- Endo, K.; Naito, Y.; Ji, X.; Nakanishi, M.; Noguchi, T.; Goto, Y.; Nonogi, H.; Ma, X.; Weng, H.; Hirokawa, G.; et al. MicroRNA 210 as a Biomarker for Congestive Heart Failure. Biol. Pharm. Bull. 2013, 36, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Ovchinnikova, E.S.; Schmitter, D.; Vegter, E.L.; ter Maaten, J.M.; Valente, M.A.E.; Liu, L.C.Y.; van der Harst, P.; Pinto, Y.M.; de Boer, R.A.; Meyer, S.; et al. Signature of Circulating MicroRNAs in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2016, 18, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Chen, Y.; Du, Y.; Tao, J.; Li, W.; Zhou, Z.; Yang, Z. Circulating Exosomal MiR-92b-5p Is a Promising Diagnostic Biomarker of Heart Failure with Reduced Ejection Fraction Patients Hospitalized for Acute Heart Failure. J. Thorac. Dis. 2018, 10, 6211–6220. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ni, M.; Song, B.; Cao, L. Circulating Circular RNAs: Novel Biomarkers for Heart Failure. Front. Pharmacol. 2020, 11, 1649. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the Diagnosis and Management of Heart Failure. Heart Fail. Rev. 2021, 27, 625–664. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Orlenko, A.; Zhao, L.; Basso, M.D.; Cvijic, M.E.; Li, Z.; Spires, T.E.; Yarde, M.; Wang, Z.; Seiffert, D.A.; et al. Multiple Plasma Biomarkers for Risk Stratification in Patients with Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2020, 75, 1281–1295. [Google Scholar] [CrossRef]
- He, T.; Mischak, M.; Clark, A.L.; Campbell, R.T.; Delles, C.; Díez, J.; Filippatos, G.; Mebazaa, A.; McMurray, J.J.V.; González, A.; et al. Urinary Peptides in Heart Failure: A Link to Molecular Pathophysiology. Eur. J. Heart Fail. 2021, 23, 1875–1887. [Google Scholar] [CrossRef]
- Zeillemaker, A.M.; Verbrugh, H.A.; Hoynck van Papendrecht, A.A.; Leguit, P. CA 125 Secretion by Peritoneal Mesothelial Cells. J. Clin. Pathol. 1994, 47, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.W.T.; Lloyd, K.O. Molecular Cloning of the CA125 Ovarian Cancer Antigen. J. Biol. Chem. 2001, 276, 27371–27375. [Google Scholar] [CrossRef] [Green Version]
- Vizzardi, E.; D’Aloia, A.; Curnis, A.; Dei Cas, L. Carbohydrate Antigen 125. Cardiol. Rev. 2013, 21, 23–26. [Google Scholar] [CrossRef]
- Bulska-Będkowska, W.; Chełmecka, E.; Owczarek, A.J.; Mizia-Stec, K.; Witek, A.; Szybalska, A.; Grodzicki, T.; Olszanecka-Glinianowicz, M.; Chudek, J. CA125 as a Marker of Heart Failure in the Older Women: A Population-Based Analysis. J. Clin. Med. 2019, 8, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SEO, T.; IKEDA, Y.; ONAKA, H.; HAYASHI, T.; KAWAGUCHI, K.; KOTAKE, C.; TODA, T.; KOBAYASHI, K. Usefulness of Serum CA125 Measurement for Monitoring Pericardial Effusion. Jpn. Circ. J. 1993, 57, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.; Bayés-Genís, A.; Revuelta-López, E.; ter Maaten, J.M.; Miñana, G.; Barallat, J.; Cserkóová, A.; Bodi, V.; Fernández-Cisnal, A.; Núñez, E.; et al. Clinical Role of CA125 in Worsening Heart Failure. JACC Heart Fail. 2020, 8, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhou, M.; Jian, Y.; Zeng, Y.; Wang, M.; Chen, F. CA125: An Increasingly Promising Biomarker of Heart Failure. Curr. Pharm. Des. 2021, 27, 3871–3880. [Google Scholar] [CrossRef]
- Wussler, D.; Bayes-Genis, A.; Belkin, M.; Strebel, I.; Kozhuharov, N.; Revuelta-Lopez, E.; Nowak, A.; Lupon, J.; Gualandro, D.M.; Shrestha, S.; et al. CA 125 in the diagnosis and risk stratification of acute heart failure. Eur. Heart J. 2021, 42 (Suppl. 1), ehab724.1021. [Google Scholar] [CrossRef]
- Yilmaz, M.B.; Zorlu, A.; Tandogan, I. Plasma CA-125 Level Is Related to Both Sides of the Heart: A Retrospective Analysis. Int. J. Cardiol. 2011, 149, 80–82. [Google Scholar] [CrossRef]
- Núñez, J.; Núñez, E.; Bayés-Genís, A.; Fonarow, G.C.; Miñana, G.; Bodí, V.; Pascual-Figal, D.; Santas, E.; Garcia-Blas, S.; Chorro, F.J.; et al. Long-Term Serial Kinetics of N-Terminal pro B-Type Natriuretic Peptide and Carbohydrate Antigen 125 for Mortality Risk Prediction Following Acute Heart Failure. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 685–696. [Google Scholar] [CrossRef]
- Monteiro, S.; Franco, F.; Costa, S.; Monteiro, P.; Vieira, H.; Coelho, L.; Oliveira, L.; Providência, L.A. Prognostic Value of CA125 in Advanced Heart Failure Patients. Int. J. Cardiol. 2010, 140, 115–118. [Google Scholar] [CrossRef]
- Frigy, A.; Belényi, B.; Kirchmaier, Á.; Fekete, N.; Szabó, I.A. Elevated CA-125 as Humoral Biomarker of Congestive Heart Failure: Illustrative Cases and a Short Review of Literature. Case Rep. Cardiol. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Soler, M.; Miñana, G.; Santas, E.; Núñez, E.; de la Espriella, R.; Valero, E.; Bodí, V.; Chorro, F.J.; Fernández-Cisnal, A.; D’Ascoli, G.; et al. CA125 Outperforms NT-ProBNP in Acute Heart Failure with Severe Tricuspid Regurgitation. Int. J. Cardiol. 2020, 308, 54–59. [Google Scholar] [CrossRef]
- Núñez, J.; Miñana, G.; González, M.; Garcia-Ramón, R.; Sanchis, J.; Bodí, V.; Núñez, E.; Chorro, F.J.; Llàcer, A.; Miguel, A. Antigen Carbohydrate 125 in Heart Failure: Not Just a Surrogate for Serosal Effusions? Int. J. Cardiol. 2011, 146, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Miñana, G.; Palau, P.; Núñez, J.; Sanchis, J. The Tumor Marker CA125 and Heart Failure. Rev. Española De Cardiol. 2010, 63, 1213–1214. [Google Scholar] [CrossRef]
- Kumric, M.; Ticinovic Kurir, T.; Bozic, J.; Glavas, D.; Saric, T.; Marcelius, B.; D’Amario, D.; Borovac, J.A. Carbohydrate Antigen 125: A Biomarker at the Crossroads of Congestion and Inflammation in Heart Failure. Card. Fail. Rev. 2021, 7, e19. [Google Scholar] [CrossRef] [PubMed]
- Fonarow, G.C.; Albert, N.M.; Curtis, A.B.; Stough, W.G.; Gheorghiade, M.; Heywood, J.T.; McBride, M.L.; Inge, P.J.; Mehra, M.R.; O’Connor, C.M.; et al. Improving Evidence-Based Care for Heart Failure in Outpatient Cardiology Practices: Primary Results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Circulation 2010, 122, 585–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartupee, J.; Mann, D.L. Neurohormonal Activation in Heart Failure with Reduced Ejection Fraction. Nat. Rev. Cardiol. 2017, 14, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.; Li, A.; McNamara, J.; dos Remedios, C.; Lal, S. Pathogenesis and Pathophysiology of Heart Failure with Reduced Ejection Fraction: Translation to Human Studies. Heart Fail. Rev. 2019, 24, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Nakao, K.; Kangawa, K. Adrenomedullin in Heart Failure: Molecular Mechanism and Therapeutic Implication. Curr. Hypertens. Rev. 2011, 7, 273–283. [Google Scholar] [CrossRef]
- Voors, A.A.; Kremer, D.; Geven, C.; ter Maaten, J.M.; Struck, J.; Bergmann, A.; Pickkers, P.; Metra, M.; Mebazaa, A.; Düngen, H.-D.; et al. Adrenomedullin in Heart Failure: Pathophysiology and Therapeutic Application. Eur. J. Heart Fail. 2019, 21, 163–171. [Google Scholar] [CrossRef]
- Mehmood, M. Adrenomedullin: A Double-Edged Sword in Septic Shock and Heart Failure Therapeutics? Am. J. Respir. Crit. Care Med. 2020, 201, 1164–1165. [Google Scholar] [CrossRef]
- Krzeminski, K. The Role of Adrenomedullin in Cardiovascular Response to Exercise—A Review. J. Hum. Kinet. 2016, 53, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Nishikimi, T.; Yoshihara, F.; Mori, Y.; Kangawa, K.; Matsuoka, H. Cardioprotective Effect of Adrenomedullin in Heart Failure. Hypertens. Res. 2003, 26, S121–S127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruda, T.; Kato, J.; Hatakeyama, K.; Masuyama, H.; Cao, Y.-N.; Imamura, T.; Kitamura, K.; Asada, Y.; Eto, T. Antifibrotic Effect of Adrenomedullin on Coronary Adventitia in Angiotensin II-Induced Hypertensive Rats. Cardiovasc. Res. 2005, 65, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Rademaker, M.T.; Cameron, V.A.; Charles, C.J.; Lainchbury, J.G.; Nicholls, M.G.; Richards, A.M. Adrenomedullin and Heart Failure. Regul. Pept. 2003, 112, 51–60. [Google Scholar] [CrossRef]
- Cockcroft, J.R.; Noon, J.P.; Gardner-Medwin, J.; Bennett, T. Haemodynamic Effects of Adrenomedullin in Human Resistance and Capacitance Vessels. Br. J. Clin. Pharmacol. 1997, 44, 57–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, E.; Israel, A. Effect of Adrenomedullin Receptor and Calcitonin Gene-Related Peptide Receptor Antagonists on Centrally Mediated Adrenomedullin Renal Action. Brain. Res. Bull. 2001, 55, 29–35. [Google Scholar] [CrossRef]
- Brain, S.D.; Grant, A.D. Vascular Actions of Calcitonin Gene-Related Peptide and Adrenomedullin. Physiol. Rev. 2004, 84, 903–934. [Google Scholar] [CrossRef] [Green Version]
- Ebara, T.; Miura, K.; Okumura, M.; Matsuura, T.; Kim, S.; Yukimura, T.; Iwao, H. Effect of Adrenomedullin on Renal Hemodynamics and Functions in Dogs. Eur. J. Pharmacol. 1994, 263, 69–73. [Google Scholar] [CrossRef]
- Geven, C.; Kox, M.; Pickkers, P. Adrenomedullin and Adrenomedullin-Targeted Therapy As Treatment Strategies Relevant for Sepsis. Front. Immunol. 2018, 9, 292. [Google Scholar] [CrossRef]
- Möckel, M.; Searle, J.; Hartmann, O.; Anker, S.D.; Peacock, W.F.; Wu, A.H.B.; Maisel, A. Mid-regional pro-adrenomedullin improves disposition strategies for patients with acute dyspnoea: Results from the BACH trial. Emerg. Med. J. 2013, 30, 633–637. [Google Scholar] [CrossRef]
- Peacock, W.F. Novel biomarkers in acute heart failure: MR-pro-adrenomedullin. Clin. Chem. Lab. Med. 2014, 52, 1433–1435. [Google Scholar] [CrossRef]
- Czajkowska, K.; Zbroch, E.; Bielach-Bazyluk, A.; Mitrosz, K.; Bujno, E.; Kakareko, K.; Rydzewska-Rosolowska, A.; Hryszko, T. Mid-Regional Proadrenomedullin as a New Biomarker of Kidney and Cardiovascular Diseases—Is It the Future? J. Clin. Med. 2021, 10, 524. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Kuriyama, N.; Suzuki, Y.; Saito, S.; Tanaka, R.; Iwao, M.; Tanaka, M.; Maki, T.; Itoh, H.; Ihara, M.; et al. Mid-regional pro-adrenomedullin is a novel biomarker for arterial stiffness as the criterion for vascular failure in a cross-sectional study. Sci. Rep. 2021, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Pandhi, P.; ter Maaten, J.M.; Emmens, J.E.; Struck, J.; Bergmann, A.; Cleland, J.G.; Givertz, M.M.; Metra, M.; O’Connor, C.M.; Teerlink, J.R.; et al. Clinical Value of Pre-Discharge Bio-Adrenomedullin as a Marker of Residual Congestion and High Risk of Heart Failure Hospital Readmission. Eur. J. Heart Fail. 2020, 22, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Kimmenade, R.R.J.; Januzzi, J.L. Emerging Biomarkers in Heart Failure. Clin. Chem. 2012, 58, 127–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuzzo, B.; Padala, S.A.; Lappin, S.L. Physiology, Vasopressin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bankir, L. Antidiuretic Action of Vasopressin: Quantitative Aspects and Interaction between V1a and V2 Receptor-Mediated Effects. Cardiovasc. Res. 2001, 51, 372–390. [Google Scholar] [CrossRef]
- Gilotra, N.A. Arginine Vasopressin as a Target in the Treatment of Acute Heart Failure. World J. Cardiol. 2014, 6, 1252. [Google Scholar] [CrossRef]
- Goldsmith, S.R. Arginine Vasopressin Antagonism in Heart Failure: Current Status and Possible New Directions. J. Cardiol. 2019, 74, 49–52. [Google Scholar] [CrossRef]
- Goldsmith, S.R. The Role of Vasopressin in Congestive Heart Failure. Cleve Clin. J. Med. 2006, 73 (Suppl. 3), S19–S23. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Sardana, M.; Oldland, G.; Ansari, B.; Lee, J.; Hussain, A.; Mustafa, A.; Akers, S.R.; Wei, W.; Lakatta, E.G.; et al. Association of Arginine Vasopressin with Low Atrial Natriuretic Peptide Levels, Left Ventricular Remodelling, and Outcomes in Adults with and without Heart Failure. ESC Heart Fail. 2018, 5, 911–919. [Google Scholar] [CrossRef]
- Jia, J.; Chang, G.-L.; Qin, S.; Chen, J.; He, W.-Y.; Lu, K.; Li, Y.; Zhang, D.-Y. Comparative evaluation of copeptin and NT-proBNP in patients with severe acute decompensated heart failure, and prediction of adverse events in a 90-day follow-up period: A prospective clinical observation trial. Exp. Ther. Med. 2017, 13, 1554–1560. [Google Scholar] [CrossRef] [Green Version]
- Nickel, C.H.; Bingisser, R.; Morgenthaler, N.G. The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med. 2012, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.N.; Yang, D.H.; Park, B.E.; Park, Y.J.; Kim, H.J.; Jang, S.Y.; Bae, M.H.; Lee, J.H.; Park, H.S.; Cho, Y.; et al. Prognostic impact of chromogranin A in patients with acute heart failure. Yeungnam Univ. J. Med. 2021, 38, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Wohlschlaeger, J.; von Winterfeld, M.; Milting, H.; El Banayosy, A.; Schmitz, K.J.; Takeda, A.; Takeda, N.; Azhari, P.; Schmid, C.; August, C.; et al. Decreased myocardial chromogranin a expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading. J. Heart Lung Transplant. 2008, 27, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Goetze, J.P.; Alehagen, U.; Flyvbjerg, A.; Rehfeld, J.F. Chromogranin A as a Biomarker in Cardiovascular Disease. Biomark Med. 2014, 8, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Goetze, J.P.; Hilsted, L.M.; Rehfeld, J.F.; Alehagen, U. Plasma chromogranin A is a marker of death in elderly patients presenting with symptoms of heart failure. Endocr. Connect. 2014, 3, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathophysiological Pathway | Biomarkers |
---|---|
Kidney injury and dysfunction | Neutrophil gelatinase-associated lipocalin (NGAL) Kidney injury molecule-1 (KIM-1) Cystatin C (cysC) N-acetyl-ß-D-glucosaminidase (NAG) Fibroblast growth factor 23 (FGF-23) Natriuresis |
Congestion | Cancer antigen 125 (Ca-125) Adrenomedullin (ADM) NT-proBNP |
Neurohumoral activation | Adrenomedullin (ADM) Arginine vasopressin (AVP) Copeptin (CT-proAVP) Chromogranin A (CgA) |
Wide spectrum of pathological pathways | microRNA |
Biomarker | Pathophysiological Mechanism | Clinical Applicability in AHF | Clinical Applicability in CHF |
---|---|---|---|
NAG | Tubulointerstitial damage | Worse clinical outcome (death, worsening HF) [17]. | Increase in mortality and rehospitalization [18]. |
KIM-1 | Tubulointerstitial damage | No impact on prognosis [19]. Correlation with worsening of renal function in AHF [20]. | Increase in 10-year all-cause mortality [18]. Increase in mortality and rehospitalization [18]. |
NGAL | Tubulointerstitial damage | Strong prognostic indicator of 30-day outcome [21]. Correlation with worsening of renal function in AHF [20]. | Increase in all-cause mortality and rehospitalization [22]. |
FGF-23 | Renal function mineral metabolism | Increased risk of all-cause mortality and HF hospitalization [23]. | Increased risk of mortality in HFrEF [24]. |
Spot urine sodium | Renal function | Low urinary sodium at hospital admission is independently associated with all-cause mortality [25]. | Chronically low urine, high risk of hospitalization for decompensation [26]. |
CA-125 | Congestion | Increase in mortality and readmission [27,28,29,30,31]. | Increase in mortality and readmission [32,33,34]. |
ADM | Residual congestion neurohumoral activation | Increased risk of all-cause mortality and HF hospitalization [35]. High risk of early hospital readmission [36]. | Increased risk of all-cause mortality and HF hospitalization [35]. |
AVP/CT-proAVP | Neurohumoral activation | Increase in 90-day mortality. High risk of rehospitalization [37]. Increase in all-cause mortality [38]. | Increase in all-cause mortality [38]. |
Chromogranin A | Neurohumoral activation | Increase in mortality [39]. | Increase in mortality [17]. |
MicroRNA | Broad spectrum of mechanisms and correlations with HF prognosis, depending on the specific molecule. |
Biomarker | Cutoff Value | Specificity | Sensitivity | AUC | Clinical Value |
---|---|---|---|---|---|
NGAL | 84 ng/mL | 0.6 | 0.8 | 0.72 | Mortality in CHF [40]. |
NAG | 4.69 | - | - | 0.708 | AKI prediction in critically ill patients [41]. |
KIM1 | 1.62 | 0.44 | 0.80 | 0.757 | AKI in ADHF [42]. |
FGF-23 | 1180 RU/mL | 0.8 | 0.5 | 0.686 | 28-day mortality in cardiogenic shock [43]. |
Spot urine sodium | 50–70 mEq/L | - | - | - | Diuretic response prognosis and evaluation [44]. |
CA-125 | 32 U/mL | 0.72 | 0.83 | 0.784 | 1-year death in CHF [45]. |
MR-proADM | 4.6 nmol/L | 0.810 | 0,577 | 0.729 | Myocardial injury [46]. |
3.5 | 0.605 | 0.80 | 0.730 | Mortality at 28 days [46]. | |
CT-proAVP | 112.5 pg/mL | 87% | 86% | 0.91 | Early diagnosis of acute myocardial infarction [47]. |
Chromogranin A | 158 pmol/L | - | - | 0.697 | 1-year death and hospitalization in AHF [17]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowicz, A.; Urban, S.; Ponikowska, B.; Iwanek, G.; Zymliński, R.; Ponikowski, P.; Biegus, J. Novel Biomarkers of Renal Dysfunction and Congestion in Heart Failure. J. Pers. Med. 2022, 12, 898. https://doi.org/10.3390/jpm12060898
Zdanowicz A, Urban S, Ponikowska B, Iwanek G, Zymliński R, Ponikowski P, Biegus J. Novel Biomarkers of Renal Dysfunction and Congestion in Heart Failure. Journal of Personalized Medicine. 2022; 12(6):898. https://doi.org/10.3390/jpm12060898
Chicago/Turabian StyleZdanowicz, Agata, Szymon Urban, Barbara Ponikowska, Gracjan Iwanek, Robert Zymliński, Piotr Ponikowski, and Jan Biegus. 2022. "Novel Biomarkers of Renal Dysfunction and Congestion in Heart Failure" Journal of Personalized Medicine 12, no. 6: 898. https://doi.org/10.3390/jpm12060898
APA StyleZdanowicz, A., Urban, S., Ponikowska, B., Iwanek, G., Zymliński, R., Ponikowski, P., & Biegus, J. (2022). Novel Biomarkers of Renal Dysfunction and Congestion in Heart Failure. Journal of Personalized Medicine, 12(6), 898. https://doi.org/10.3390/jpm12060898