Suppressors of Cytokine Signaling Are Decreased in Major Depressive Disorder Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Clinical Assessment
2.2. Real-Time RT-PCR
2.3. Enzyme-Linked Immunosorbent Assay (ELISA)
2.4. Statistical Analysis
3. Results
3.1. Characteristics
3.2. Associations of IL-1β, IL-6 and TNF-α mRNA Expressions with Depressive Symptoms
3.3. Serum Concentrations of IL-1β and IL-6
3.4. Associations of Negative Regulator of Cytokine Signaling mRNA Expression in Blood and Depressive Symptoms
3.5. Examination of Confounding Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belmaker, R.H.; Agam, G. Major depressive disorder. N. Engl. J. Med. 2008, 358, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, J.J.; Apter, A.; Bertolote, J.; Beautrais, A.; Currier, D.; Haas, A.; Hegerl, U.; Lonnqvist, J.; Malone, K.; Marusic, A.; et al. Suicide prevention strategies: A systematic review. JAMA 2005, 294, 2064–2074. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Koretz, D.; Merikangas, K.R.; Rush, A.J.; Walters, E.E.; Wang, P.S.; National Comorbidity Survey, R. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003, 289, 3095–3105. [Google Scholar] [CrossRef] [PubMed]
- Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry 2018, 75, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Gold, P.W. The organization of the stress system and its dysregulation in depressive illness. Mol. Psychiatry 2015, 20, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Gibney, S.M.; Drexhage, H.A. Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J. Neuroimmune Pharm. 2013, 8, 900–920. [Google Scholar] [CrossRef]
- Kohler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.L.; Chen, J.G.; Wang, F. Microglia: A Central Player in Depression. Curr. Med. Sci. 2020, 40, 391–400. [Google Scholar] [CrossRef]
- Hepgul, N.; Cattaneo, A.; Zunszain, P.A.; Pariante, C.M. Depression pathogenesis and treatment: What can we learn from blood mRNA expression? BMC Med. 2013, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Kohler, O.; Krogh, J.; Mors, O.; Benros, M.E. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr. Neuropharmacol. 2016, 14, 732–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 21, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
- Kohler-Forsberg, O.; Lydholm, C.N.; Hjorthoj, C.; Nordentoft, M.; Mors, O.; Benros, M.E. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatr. Scand. 2019, 139, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Lamacchia, C.; Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 2010, 6, 232–241. [Google Scholar] [CrossRef]
- Keating, N.; Nicholson, S.E. SOCS-mediated immunomodulation of natural killer cells. Cytokine 2019, 118, 64–70. [Google Scholar] [CrossRef]
- Cattaneo, A.; Gennarelli, M.; Uher, R.; Breen, G.; Farmer, A.; Aitchison, K.J.; Craig, I.W.; Anacker, C.; Zunsztain, P.A.; McGuffin, P.; et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: Differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2013, 38, 377–385. [Google Scholar] [CrossRef]
- Chen, M.H.; Li, C.T.; Lin, W.C.; Hong, C.J.; Tu, P.C.; Bai, Y.M.; Cheng, C.M.; Su, T.P. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: A randomized, double-blind control study. Psychiatry Res. 2018, 269, 207–211. [Google Scholar] [CrossRef]
- Montgomery, S.A.; Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef]
- Takahashi, N.; Tomita, K.; Higuchi, T.; Inada, T. The inter-rater reliability of the Japanese version of the Montgomery-Asberg depression rating scale (MADRS) using a structured interview guide for MADRS (SIGMA). Hum. Psychopharmacol. 2004, 19, 187–192. [Google Scholar] [CrossRef]
- Kobayashi, N.; Oka, N.; Takahashi, M.; Shimada, K.; Ishii, A.; Tatebayashi, Y.; Shigeta, M.; Yanagisawa, H.; Kondo, K. Human Herpesvirus 6B Greatly Increases Risk of Depression by Activating Hypothalamic-Pituitary—Adrenal Axis during Latent Phase of Infection. iScience 2020, 23, 101187. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snaith, R.P.; Harrop, F.M.; Newby, D.A.; Teale, C. Grade scores of the Montgomery-Asberg Depression and the Clinical Anxiety Scales. Br. J. Psychiatry 1986, 148, 599–601. [Google Scholar] [CrossRef] [PubMed]
- Preljevic, V.T.; Osthus, T.B.; Sandvik, L.; Opjordsmoen, S.; Nordhus, I.H.; Os, I.; Dammen, T. Screening for anxiety and depression in dialysis patients: Comparison of the Hospital Anxiety and Depression Scale and the Beck Depression Inventory. J. Psychosom. Res. 2012, 73, 139–144. [Google Scholar] [CrossRef]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar] [PubMed]
- Petersen, A.M.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Leisegang, K.; Sengupta, P.; Agarwal, A.; Henkel, R. Obesity and male infertility: Mechanisms and management. Andrologia 2021, 53, e13617. [Google Scholar] [CrossRef]
- Lee, Y.B.; Nagai, A.; Kim, S.U. Cytokines, chemokines, and cytokine receptors in human microglia. J. Neurosci. Res. 2002, 69, 94–103. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [Green Version]
- Skurk, T.; Alberti-Huber, C.; Herder, C.; Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 2007, 92, 1023–1033. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, H.; Wang, P.; Wang, J.; Zou, L. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand. J. Immunol. 2018, 88, e12727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, R.; Robles, T.F.; Sheridan, J.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch. Gen. Psychiatry 2003, 60, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Galecki, P.; Mossakowska-Wojcik, J.; Talarowska, M. The anti-inflammatory mechanism of antidepressants—SSRIs, SNRIs. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 291–294. [Google Scholar] [CrossRef] [PubMed]
NC (n = 30) | MDD (n = 36) | p | |
---|---|---|---|
Age (years) (mean ± SEM) | 44.9 ± 2.1 | 46.2 ± 1.8 | 0.643 |
Female:Male (%) | 53.3:46.7 | 30.6:69.4 | 0.061 |
BMI (median (IQR)) | 23.2 (21.2−25.3) | 23.6 (22.1−26.6) | 0.438 |
Duration of disease (years) (median (IQR)) | - | 5.5 (2.0−10.8) | - |
BDI scores (median (IQR)) | 2.0 (1.5−6.5) | 12.5 (6.5−23.3) | 0.000 |
MADRS scores (median (IQR)) | - | 11.5 (4.0−21.8) | - |
VS. | Age (n = 66) | BMI (n = 64) | Duration of Disease (n = 36) | |
---|---|---|---|---|
IL-1β mRNA | ρ | −0.160 | −0.085 | −0.355 |
p | 0.200 | 0.505 | 0.034 * | |
IL-6 mRNA | ρ | 0.054 | 0.131 | −0.223 |
p | 0.668 | 0.302 | 0.191 | |
TNF-α mRNA | ρ | 0.144 | 0.017 | −0.008 |
p | 0.247 | 0.897 | 0.962 | |
serum IL-1β | ρ | 0.019 | 0.019 | −0.263 |
p | 0.881 | 0.880 | 0.121 | |
serum IL-6 | ρ | 0.197 | 0.485 | −0.143 |
p | 0.113 | 0.000 **** | 0.405 | |
IL-10 mRNA | ρ | −0.027 | 0.157 | −0.344 |
p | 0.828 | 0.214 | 0.040 * | |
IL-1RA mRNA | ρ | 0.009 | −0.166 | −0.137 |
p | 0.944 | 0.189 | 0.425 | |
SOCS1 | ρ | −0.060 | −0.149 | −0.087 |
p | 0.631 | 0.238 | 0.616 | |
SOCS2 | ρ | 0.169 | −0.014 | −0.040 |
p | 0.174 | 0.911 | 0.819 | |
SOCS3 | ρ | −0.112 | −0.187 | −0.234 |
p | 0.371 | 0.138 | 0.170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, N.; Shinagawa, S.; Nagata, T.; Shigeta, M.; Kondo, K. Suppressors of Cytokine Signaling Are Decreased in Major Depressive Disorder Patients. J. Pers. Med. 2022, 12, 1040. https://doi.org/10.3390/jpm12071040
Kobayashi N, Shinagawa S, Nagata T, Shigeta M, Kondo K. Suppressors of Cytokine Signaling Are Decreased in Major Depressive Disorder Patients. Journal of Personalized Medicine. 2022; 12(7):1040. https://doi.org/10.3390/jpm12071040
Chicago/Turabian StyleKobayashi, Nobuyuki, Shunichiro Shinagawa, Tomoyuki Nagata, Masahiro Shigeta, and Kazuhiro Kondo. 2022. "Suppressors of Cytokine Signaling Are Decreased in Major Depressive Disorder Patients" Journal of Personalized Medicine 12, no. 7: 1040. https://doi.org/10.3390/jpm12071040
APA StyleKobayashi, N., Shinagawa, S., Nagata, T., Shigeta, M., & Kondo, K. (2022). Suppressors of Cytokine Signaling Are Decreased in Major Depressive Disorder Patients. Journal of Personalized Medicine, 12(7), 1040. https://doi.org/10.3390/jpm12071040