Risk Factors Associated with Cartilage Defects after Anterior Cruciate Ligament Rupture in Military Draftees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
- Group 1: conservative treatment after ACL rupture.
- Group 2: status post-ACLR, but graft rupture.
- Group 3: status post-ACLR and intact graft.
2.2. Measurements
2.2.1. MRI Assessment
2.2.2. Thigh Circumference Difference
2.2.3. Knee Joint Anterior Translation Assessment
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study
3.2. Relationship with Cartilage Defects
4. Discussion
4.1. BMI
4.2. Meniscus Tear
4.3. Side-to-Side Thigh Circumference Difference
4.4. Side-to-Side Difference of Anterior Knee Laxity with KT-2000
4.5. ACL and Military Draftees
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moses, B.; Orchard, J.; Orchard, J. Systematic review: Annual incidence of ACL injury and surgery in various populations. Res. Sports Med. 2012, 20, 157–179. [Google Scholar] [CrossRef] [PubMed]
- Owens, B.D.; Mountcastle, S.B.; Dunn, W.R.; DeBerardino, T.M.; Taylor, D.C. Incidence of anterior cruciate ligament injury among active duty U.S. military servicemen and servicewomen. Mil. Med. 2007, 172, 90–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soderman, T.; Wretling, M.L.; Hanni, M.; Mikkelsen, C.; Johnson, R.J.; Werner, S.; Sundin, A.; Shalabi, A. Higher frequency of osteoarthritis in patients with ACL graft rupture than in those with intact ACL grafts 30 years after reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2139–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oiestad, B.E.; Engebretsen, L.; Storheim, K.; Risberg, M.A. Knee osteoarthritis after anterior cruciate ligament injury: A systematic review. Am. J. Sports Med. 2009, 37, 1434–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Meer, B.L.; Oei, E.H.; Meuffels, D.E.; van Arkel, E.R.; Verhaar, J.A.; Bierma-Zeinstra, S.M.; Reijman, M. Degenerative Changes in the Knee 2 Years After Anterior Cruciate Ligament Rupture and Related Risk Factors: A Prospective Observational Follow-up Study. Am. J. Sports Med. 2016, 44, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Dragicevic-Cvjetkovic, D.; Jandric, S.; Bijeljac, S.; Palija, S.; Manojlovic, S.; Talic, G. The effects of rehabilitation protocol on functional recovery after anterior cruciate ligament reconstruction. Med. Arch. 2014, 68, 350–352. [Google Scholar] [CrossRef] [Green Version]
- Kessler, M.A.; Behrend, H.; Henz, S.; Stutz, G.; Rukavina, A.; Kuster, M.S. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 442–448. [Google Scholar] [CrossRef]
- Schurz, M.; Tiefenboeck, T.M.; Winnisch, M.; Syre, S.; Plachel, F.; Steiner, G.; Hajdu, S.; Hofbauer, M. Clinical and Functional Outcome of All-Inside Anterior Cruciate Ligament Reconstruction at a Minimum of 2 Years’ Follow-up. Arthroscopy 2016, 32, 332–337. [Google Scholar] [CrossRef]
- Louboutin, H.; Debarge, R.; Richou, J.; Selmi, T.A.; Donell, S.T.; Neyret, P.; Dubrana, F. Osteoarthritis in patients with anterior cruciate ligament rupture: A review of risk factors. Knee 2009, 16, 239–244. [Google Scholar] [CrossRef]
- Tennent, D.J.; Posner, M.A. The Military ACL. J. Knee Surg. 2019, 32, 118–122. [Google Scholar] [CrossRef]
- Showery, J.E.; Kusnezov, N.A.; Dunn, J.C.; Bader, J.O.; Belmont, P.J., Jr.; Waterman, B.R. The Rising Incidence of Degenerative and Posttraumatic Osteoarthritis of the Knee in the United States Military. J. Arthroplast. 2016, 31, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Antosh, I.J.; Patzkowski, J.C.; Racusin, A.W.; Aden, J.K.; Waterman, S.M. Return to Military Duty After Anterior Cruciate Ligament Reconstruction. Mil. Med. 2018, 183, e83–e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delincé, P.; Ghafil, D. Anterior cruciate ligament tears: Conservative or surgical treatment? A critical review of the literature. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Konrads, C.; Reppenhagen, S.; Belder, D.; Goebel, S.; Rudert, M.; Barthel, T. Long-term outcome of anterior cruciate ligament tear without reconstruction: A longitudinal prospective study. Int. Orthop. 2016, 40, 2325–2330. [Google Scholar] [CrossRef]
- Meuffels, D.E.; Favejee, M.M.; Vissers, M.M.; Heijboer, M.P.; Reijman, M.; Verhaar, J.A. Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br. J. Sports Med. 2009, 43, 347–351. [Google Scholar] [CrossRef]
- van Yperen, D.T.; Reijman, M.; van Es, E.M.; Bierma-Zeinstra, S.M.A.; Meuffels, D.E. Twenty-Year Follow-up Study Comparing Operative Versus Nonoperative Treatment of Anterior Cruciate Ligament Ruptures in High-Level Athletes. Am. J. Sports Med. 2018, 46, 1129–1136. [Google Scholar] [CrossRef]
- Krause, M.; Freudenthaler, F.; Frosch, K.H.; Achtnich, A.; Petersen, W.; Akoto, R. Operative Versus Conservative Treatment of Anterior Cruciate Ligament Rupture. Dtsch. Arztebl. Int. 2018, 115, 855–862. [Google Scholar] [CrossRef]
- Neuman, P.; Englund, M.; Kostogiannis, I.; Fridén, T.; Roos, H.; Dahlberg, L.E. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: A prospective cohort study. Am. J. Sports Med. 2008, 36, 1717–1725. [Google Scholar] [CrossRef]
- Li, R.T.; Lorenz, S.; Xu, Y.; Harner, C.D.; Fu, F.H.; Irrgang, J.J. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am. J. Sports Med. 2011, 39, 2595–2603. [Google Scholar] [CrossRef]
- Oiestad, B.E.; Holm, I.; Engebretsen, L.; Risberg, M.A. The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10-15 years after anterior cruciate ligament reconstruction. Br. J. Sports Med. 2011, 45, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Dini, F.; Tecame, A.; Ampollini, A.; Adravanti, P. Multiple ACL Revision: Failure Analysis and Clinical Outcomes. J. Knee Surg. 2021, 34, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.G.; DePhillipo, N.N.; Kennedy, M.I.; Dekker, T.J.; Dornan, G.J.; LaPrade, R.F. Beighton Score, Tibial Slope, Tibial Subluxation, Quadriceps Circumference Difference, and Family History Are Risk Factors for Anterior Cruciate Ligament Graft Failure: A Retrospective Comparison of Primary and Revision Anterior Cruciate Ligament Reconstructions. Arthroscopy 2021, 37, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Liechti, D.J.; Chahla, J.; Dean, C.S.; Mitchell, J.J.; Slette, E.; Menge, T.J.; LaPrade, R.F. Outcomes and Risk Factors of Rerevision Anterior Cruciate Ligament Reconstruction: A Systematic Review. Arthroscopy 2016, 32, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Arianjam, A.; Inacio, M.C.S.; Funahashi, T.T.; Maletis, G.B. Analysis of 2019 Patients Undergoing Revision Anterior Cruciate Ligament Reconstruction From a Community-Based Registry. Am. J. Sports Med. 2017, 45, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.L.; Pareek, A.; Hewett, T.E.; Levy, B.A.; Dahm, D.L.; Stuart, M.J.; Krych, A.J. Long-term rate of graft failure after ACL reconstruction: A geographic population cohort analysis. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 222–228. [Google Scholar] [CrossRef]
- Andrä, K.; Prill, R.; Kayaalp, E.; Irlenbusch, L.; Liesaus, E.; Trommer, T.; Ullmann, P.; Becker, R. Increase in cartilage degeneration in all knee compartments after failed ACL reconstruction at 4 years of follow-up. J. Orthop. Traumatol. 2021, 22, 54. [Google Scholar] [CrossRef]
- Brophy, R.H.; Haas, A.K.; Huston, L.J.; Nwosu, S.K.; Wright, R.W. Association of Meniscal Status, Lower Extremity Alignment, and Body Mass Index With Chondrosis at Revision Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2015, 43, 1616–1622. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Sasaki, E.; Yamamoto, Y.; Sasaki, S.; Tsuda, E.; Ishibashi, Y. Incidence and Risk Factors of Subsequent Meniscal Surgery After Successful Anterior Cruciate Ligament Reconstruction: A Retrospective Study With a Minimum 2-Year Follow-up. Am. J. Sports Med. 2020, 48, 3525–3533. [Google Scholar] [CrossRef]
- Snaebjörnsson, T.; Svantesson, E.; Sundemo, D.; Westin, O.; Sansone, M.; Engebretsen, L.; Hamrin-Senorski, E. Young age and high BMI are predictors of early revision surgery after primary anterior cruciate ligament reconstruction: A cohort study from the Swedish and Norwegian knee ligament registries based on 30,747 patients. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 3583–3591. [Google Scholar] [CrossRef] [Green Version]
- Traven, S.A.; Wolf, G.J.; Goodloe, J.B.; Reeves, R.A.; Woolf, S.K.; Slone, H.S. Elevated BMI increases concurrent pathology and operative time in adolescent ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 4182–4187. [Google Scholar] [CrossRef]
- Yoshii, R.; Konishi, Y.; Ando, D.; Ochiai, S.; Hagino, T.; Dobashi, S. Effect of Subcutaneous Tissue on Changes in Thigh Circumference Following Anterior Cruciate Ligament Reconstruction. Int. J. Sports Med. 2019, 40, 544–550. [Google Scholar] [CrossRef]
- Otzel, D.M.; Chow, J.W.; Tillman, M.D. Long-term deficits in quadriceps strength and activation following anterior cruciate ligament reconstruction. Phys. Ther. Sport 2015, 16, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Andrä, K.; Kayaalp, E.; Prill, R.; Irlenbusch, L.; Liesaus, E.; Trommer, T.; Ullmann, P.; Becker, R. Joint effusion, anteroposterior stability, muscle strength and degree of patellofemoral osteoarthritis significantly impact outcome following revision ACL reconstruction. J. Exp. Orthop. 2021, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.D.; Dieppe, P.; Radin, E.L. Etiopathogenesis of osteoarthritis. Rheum. Dis. Clin. N. Am. 2008, 34, 531–559. [Google Scholar] [CrossRef] [PubMed]
- Speziali, A.; Placella, G.; Tei, M.M.; Georgoulis, A.; Cerulli, G. Diagnostic value of the clinical investigation in acute meniscal tears combined with anterior cruciate ligament injury using arthroscopic findings as golden standard. Musculoskelet. Surg. 2016, 100, 31–35. [Google Scholar] [CrossRef]
- Wang, Y.; Wluka, A.E.; Jones, G.; Ding, C.; Cicuttini, F.M. Use magnetic resonance imaging to assess articular cartilage. Ther. Adv. Musculoskelet. Dis. 2012, 4, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Park, Y.B.; Kim, S.H. Diagnostic Value of Stress Radiography and Arthrometer Measurement for Anterior Instability in Anterior Cruciate Ligament Injured Knees at Different Knee Flexion Position. Arthroscopy 2019, 35, 1721–1732. [Google Scholar] [CrossRef]
- Bencardino, J.T.; Beltran, J.; Feldman, M.I.; Rose, D.J. MR imaging of complications of anterior cruciate ligament graft reconstruction. Radiographics 2009, 29, 2115–2126. [Google Scholar] [CrossRef]
- Hunter, D.J.; Guermazi, A.; Lo, G.H.; Grainger, A.J.; Conaghan, P.G.; Boudreau, R.M.; Roemer, F.W. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr. Cartil. 2011, 19, 990–1002. [Google Scholar] [CrossRef] [Green Version]
- Runhaar, J.; Schiphof, D.; van Meer, B.; Reijman, M.; Bierma-Zeinstra, S.M.; Oei, E.H. How to define subregional osteoarthritis progression using semi-quantitative MRI osteoarthritis knee score (MOAKS). Osteoarthr. Cartil. 2014, 22, 1533–1536. [Google Scholar] [CrossRef] [Green Version]
- Czamara, A.; Tomaszewski, W.; Bober, T.; Lubarski, B. The effect of physiotherapy on knee joint extensor and flexor muscle strength after anterior cruciate ligament reconstruction using hamstring tendon. Med. Sci. Monit. 2011, 17, Cr35–Cr41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, D.; Heyworth, B.E.; Yates, B.A.; Kramer, D.E.; Kocher, M.S.; Micheli, L.J. Effect of Graft Type on Thigh Circumference, Knee Range of Motion, and Lower-Extremity Strength in Pediatric and Adolescent Males Following Anterior Cruciate Ligament Reconstruction. J. Sport Rehabil. 2020, 29, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Myrer, J.W.; Schulthies, S.S.; Fellingham, G.W. Relative and absolute reliability of the KT-2000 arthrometer for uninjured knees. Testing at 67, 89, 134, and 178 N and manual maximum forces. Am. J. Sports Med. 1996, 24, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Maitland, M.E.; Bell, G.D. A modeling study of partial ACL injury: Simulated KT-2000 arthrometer tests. J. Biomech. Eng. 2002, 124, 294–301. [Google Scholar] [CrossRef]
- Rangger, C.; Daniel, D.M.; Stone, M.L.; Kaufman, K. Diagnosis of an ACL disruption with KT-1000 arthrometer measurements. Knee Surg. Sports Traumatol. Arthrosc. 1993, 1, 60–66. [Google Scholar] [CrossRef]
- Steiner, M.E.; Brown, C.; Zarins, B.; Brownstein, B.; Koval, P.S.; Stone, P. Measurement of anterior-posterior displacement of the knee. A comparison of the results with instrumented devices and with clinical examination. J. Bone Jt. Surg. Am. 1990, 72, 1307–1315. [Google Scholar] [CrossRef]
- Cuzzolin, M.; Previtali, D.; Zaffagnini, S.; Deabate, L.; Candrian, C.; Filardo, G. Anterior Cruciate Ligament Reconstruction versus Nonoperative Treatment: Better Function and Less Secondary Meniscectomies But No Difference in Knee Osteoarthritis-A Meta-Analysis. Cartilage 2021, 13, 1658s–1670s. [Google Scholar] [CrossRef]
- Borchers, J.R.; Kaeding, C.C.; Pedroza, A.D.; Huston, L.J.; Spindler, K.P.; Wright, R.W. Intra-articular findings in primary and revision anterior cruciate ligament reconstruction surgery: A comparison of the MOON and MARS study groups. Am. J. Sports Med. 2011, 39, 1889–1893. [Google Scholar] [CrossRef] [Green Version]
- Coggon, D.; Reading, I.; Croft, P.; McLaren, M.; Barrett, D.; Cooper, C. Knee osteoarthritis and obesity. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Meunier, A.; Odensten, M.; Good, L. Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: A randomized study with a 15-year follow-up. Scand. J. Med. Sci. Sports 2007, 17, 230–237. [Google Scholar] [CrossRef]
- Lewek, M.D.; Rudolph, K.S.; Snyder-Mackler, L. Quadriceps femoris muscle weakness and activation failure in patients with symptomatic knee osteoarthritis. J. Orthop. Res. 2004, 22, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Berth, A.; Nehring, M.; Awiszus, F. Neuromuscular quadriceps dysfunction prior to osteoarthritis of the knee. J. Orthop. Res. 2004, 22, 768–773. [Google Scholar] [CrossRef]
- Westlake, C.G.; Milner, C.E.; Zhang, S.; Fitzhugh, E.C. Do thigh circumference and mass changes alter knee biomechanics during walking? Gait Posture 2013, 37, 359–362. [Google Scholar] [CrossRef]
- Noyes, F.R.; Grood, E.S.; Suntay, W.J.; Butler, D.L. The Three Dimensional Laxity of the Anterior Cruciate Deficient Knee as Determined by Clinical Laxity Tests. Iowa Orthop. J. 1983, 3, 32–44. [Google Scholar]
- Butler, D.L.; Noyes, F.R.; Grood, E.S. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J. Bone Jt. Surg. Am. 1980, 62, 259–270. [Google Scholar] [CrossRef]
- Sernert, N.; Kartus, J.; Köhler, K.; Stener, S.; Larsson, J.; Eriksson, B.I.; Karlsson, J. Analysis of subjective, objective and functional examination tests after anterior cruciate ligament reconstruction. A follow-up of 527 patients. Knee Surg. Sports Traumatol. Arthrosc. 1999, 7, 160–165. [Google Scholar] [CrossRef]
- Perry, M.C.; Morrissey, M.C.; King, J.B.; Morrissey, D.; Earnshaw, P. Effects of closed versus open kinetic chain knee extensor resistance training on knee laxity and leg function in patients during the 8- to 14-week post-operative period after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2005, 13, 357–369. [Google Scholar] [CrossRef]
- Higuchi, H.; Terauchi, M.; Kimura, M.; Kobayashi, A.; Takeda, M.; Watanabe, H.; Takagishi, K. The relation between static and dynamic knee stability after ACL reconstruction. Acta Orthop. Belg. 2003, 69, 257–266. [Google Scholar]
- Patel, R.R.; Hurwitz, D.E.; Bush-Joseph, C.A.; Bach, B.R., Jr.; Andriacchi, T.P. Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency. Am. J. Sports Med. 2003, 31, 68–74. [Google Scholar] [CrossRef]
- Cameron, K.L.; Hsiao, M.S.; Owens, B.D.; Burks, R.; Svoboda, S.J. Incidence of physician-diagnosed osteoarthritis among active duty United States military service members. Arthritis Rheum. 2011, 63, 2974–2982. [Google Scholar] [CrossRef] [Green Version]
- Marotta, N.; Demeco, A.; Moggio, L.; Isabello, L.; Iona, T. Correlation between dynamic knee valgus and quadriceps activation time in female athletes. J. Phys. Educ. Sport 2020, 20, 2508–2512. [Google Scholar]
Variables | Group 1 (n = 40) | Group 2 (n = 28) | Group 3 (n = 37) | p-Value * |
---|---|---|---|---|
Age, M ± SD | 27.8 ± 3.3 | 26.8 ± 2.7 | 26.7 ± 3.4 | 0.298 |
BMI, M ± SD | 24.2 ± 2.5 | 24.8 ± 2.4 | 24.6 ± 2.7 | 0.692 |
Thigh circumference | 13.7 ± 9.0 | 18.3 ± 14.7 | 21.4 ± 16.3 | 0.049 |
Difference, M ± SD | ||||
KT-2000 | 3.1 ± 2.7 | 4.7 ± 4.2 | 4.9 ± 8.8 | |
Difference, M ± SD | 0.324 | |||
Meniscus tear, n (%) | ||||
None | 8 (20.0%) | 3 (10.7%) | 10 (27.0%) | 0.574 |
LM | 4 (10.0%) | 3 (10.7%) | 3 (8.1%) | |
MM | 11 (27.5%) | 12 (42.9%) | 14 (37.8%) | |
LM&MM | 17 (42.5%) | 10 (35.7%) | 10 (27.0%) | |
Cartilage defect, n (%) | ||||
Present | 8 (20.0%) | 14 (50.0%) | 6 (16.2%) | 0.005 |
Absent | 32 (80.0%) | 14 (50.0%) | 31 (83.8%) |
Cartilage Defects Present | Cartilage Defects Absent | p-Value * | |
---|---|---|---|
Group, n (%) | 0.005 | ||
1 | 8 (20.0%) | 32 (80.0%) | |
2 | 14 (50.0%) | 14 (50.0%) | |
3 | 6 (16.2%) | 31 (83.8%) | |
Meniscus tear, n (%) | 0.014 | ||
None | 1 (4.8%) | 20 (95.2%) | |
LM | 2 (20.0%) | 8 (80.0%) | |
MM | 9 (24.3%) | 28 (75.7%) | |
LM&MM | 16 (43.2%) | 21 (56.8%) | |
Age, M ± SD | 27.5 ± 3.1 | 27.1 ± 3.3 | 0.54 |
BMI, M ± SD | 25.5 ± 2.7 | 24.2 ± 2.4 | 0.015 |
Thigh circumference | 22.7 ± 15.4 | 14.2 ± 12.5 | 0.043 |
Difference, M ± SD | |||
KT-2000 | 4.2 ± 4.3 | 4.1 ± 6.4 | 0.923 |
Difference, M ± SD |
β | SE | Odds Ratio (95% CI) | p-Value | |
---|---|---|---|---|
Age | 0.155 | 0.095 | 1.168 (0.969–1.406) | 0.103 |
BMI | 0.265 | 0.127 | 1.303 (1.016–1.672) | 0.037 |
Thigh circumference | 0.042 | 0.02 | 1.043 (1.003–1.084) | 0.034 |
Difference | ||||
KT-2000 | −0.038 | 0.062 | 0.963 (0.853–1.087) | 0.541 |
Difference | ||||
Meniscus tear | ||||
LM/None | 0.874 | 1.406 | 2.396 (0.152–37.724) | 0.534 |
MM/none | 1.296 | 1.182 | 3.655 (0.361–37.042) | 0.273 |
LM&MM/none | 2.623 | 1.183 | 13.773 (1.354–140.09) | 0.027 |
Group | ||||
Group 2/Group 1 | 1.647 | 0.673 | 5.191 (1.388–19.419) | 0.014 |
Group 3/Group 1 | −0.497 | 0.768 | 0.608 (0.135–2.740) | 0.517 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.-Y.; Hsu, C.-L.; Tseng, W.-C.; Yeh, T.-T.; Huang, G.-S.; Shen, P.-H. Risk Factors Associated with Cartilage Defects after Anterior Cruciate Ligament Rupture in Military Draftees. J. Pers. Med. 2022, 12, 1076. https://doi.org/10.3390/jpm12071076
Sun T-Y, Hsu C-L, Tseng W-C, Yeh T-T, Huang G-S, Shen P-H. Risk Factors Associated with Cartilage Defects after Anterior Cruciate Ligament Rupture in Military Draftees. Journal of Personalized Medicine. 2022; 12(7):1076. https://doi.org/10.3390/jpm12071076
Chicago/Turabian StyleSun, Ting-Yi, Chun-Liang Hsu, Wei-Cheng Tseng, Tsu-Te Yeh, Guo-Shu Huang, and Pei-Hung Shen. 2022. "Risk Factors Associated with Cartilage Defects after Anterior Cruciate Ligament Rupture in Military Draftees" Journal of Personalized Medicine 12, no. 7: 1076. https://doi.org/10.3390/jpm12071076
APA StyleSun, T. -Y., Hsu, C. -L., Tseng, W. -C., Yeh, T. -T., Huang, G. -S., & Shen, P. -H. (2022). Risk Factors Associated with Cartilage Defects after Anterior Cruciate Ligament Rupture in Military Draftees. Journal of Personalized Medicine, 12(7), 1076. https://doi.org/10.3390/jpm12071076