Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury
Abstract
:1. Introduction
2. Structural Disruption
3. Primary and Secondary Injury to the Spinal Cord
3.1. Primary Traumatic Injury
3.2. Secondary Injury
4. Bioinformatics and Acute Sci Pathophysiology
5. Classification of Traumatic Sci
5.1. Clinical Classification
- A = Complete. No sensory or motor function is preserved in the sacral segments S4–S5.
- B = Sensory incomplete. Sensory but not motor function is preserved below the neurological level. It includes the sacral segments S4–S5, and no motor function is preserved more than three levels below the motor level on either side of the body.
- C = Motor incomplete. Motor function is preserved below the neurological level, with detectable voluntary rectal contraction and/or more than half of key muscles below the single neurological level of injury have a muscle grade < 3/5 (Grades 0–2).
- D = Motor incomplete. Motor function is preserved below the neurological level, and at least half of key muscles below the NLI have a muscle grade > 3.
- E = Normal. If sensation and motor function as tested with the ISNCSCI are graded as normal in all segments, and the patient had prior deficits, the AIS grade is E. Note, pathological spasticity and autonomic dysreflexia may be present despite normal motor and sensory function. Someone without an SCI does not receive an AIS grade.
5.2. MRI Classification
- BASIC 0: No appreciable intramedullary cord signal abnormality.
- BASIC 1: Intramedullary T2 hyperintensity confined to central gray matter.
- BASIC 2: Intramedullary T2 hyperintensity extends beyond the expected gray matter margin to involve spinal white matter but does not involve the entire transverse extent of the spinal cord.
- BASIC 3: Intramedullary T2 hyperintensity involves the entire transverse extent of the spinal cord.
- BASIC 4: Grade 3 injury plus discrete T2 hypointense foci, consistent with macro-hemorrhage.
5.3. Molecular Classification
6. Prognosis for Recovery
7. SCI Comorbidities
7.1. Functional Mobility and Activities of Daily Living (ADLs)
7.2. Respiratory Dysfunction
7.3. Cardiovascular Dysfunction
7.4. Cardiometabolic Syndrome
7.5. Neuropathic Pain
7.6. Spasticity
7.7. Neurogenic Bladder
7.8. Neurogenic Bowel
7.9. Pressure Injuries
7.10. Bone Metabolism Dysfunction
7.11. Sexual Dysfunction, Infertility and Pregnancy after SCI
7.12. Psychosocial Dysfunction
7.13. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Honey, C.M.; Ivanishvili, Z.; Honey, C.R.; Heran, M.K.S. Somatotopic organization of the human spinothalamic tract: In vivo computed tomography-guided mapping in awake patients undergoing cordotomy. J. Neurosurg. Spine 2019, 30, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Kirshblum, S.; Botticello, A.; Benedetto, J.; Donovan, J.; Marino, R.; Hsieh, S.; Wagaman, N. A comparison of diagnostic stability of the ASIA impairment scale versus frankel classification systems for traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 2020, 101, 1556–1562. [Google Scholar] [CrossRef]
- Nouri, A.; Tessitore, E.; Molliqaj, G.; Meling, T.; Schaller, K.; Nakashima, H.; Yukawa, Y.; Bednarik, J.; Martin, A.R.; Vajkoczy, P.; et al. Degenerative cervical myelopathy: Development and natural history [AO Spine RECODE-DCM Research Priority Number 2]. Glob. Spine J. 2022, 12 (Suppl. S1), 39S–54S. [Google Scholar] [CrossRef]
- Ban, J.; Samano, C.; Mladinic, M.; Munitic, I. Glia in amyotrophic lateral sclerosis and spinal cord injury: Common therapeutic targets. Croat. Med. J. 2019, 60, 109–120. [Google Scholar] [CrossRef]
- Van Middendorp, J.J.; Sanchez, G.M.; Burridge, A.L. The Edwin Smith papyrus: A clinical reappraisal of the oldest known document on spinal injuries. Eur. Spine J. 2010, 19, 1815–1823. [Google Scholar] [CrossRef] [Green Version]
- Donovan, W.H. Donald Munro Lecture. Spinal cord injury—Past, present, and future. J. Spinal Cord Med. 2007, 30, 85–100. [Google Scholar] [CrossRef]
- Weiner, M.F.; Silver, J.R. The origins of the treatment of traumatic spinal injuries. Eur. Neurol. 2014, 72, 363–369. [Google Scholar] [CrossRef]
- Benarroch, E.E. Physiology and pathophysiology of the autonomic nervous system. CONTINUUM Lifelong Learn. Neurol. 2020, 26, 12–24. [Google Scholar] [CrossRef]
- Burnside, E.R.; Bradbury, E.J. Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 2014, 40, 26–59. [Google Scholar] [CrossRef]
- Dias, D.O.; Kalkitsas, J.; Kelahmetoglu, Y.; Estrada, C.P.; Tatarishvili, J.; Holl, D.; Jansson, L.; Banitalebi, S.; Amiry-Moghaddam, M.; Ernst, A.; et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat. Commun. 2021, 12, 5501. [Google Scholar] [CrossRef]
- Saadoun, S.; Papadopoulos, M.C. Targeted perfusion therapy in spinal cord trauma. Neurotherapeutics 2020, 17, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Hitchon, P.W.; Dyste, G.N.; Osenbach, R.K.; Todd, M.M.; Yamada, T.; Jensen, A.E. Spinal cord blood flow in response to focal compression. J. Spinal Disord. 1990, 3, 210–219. [Google Scholar] [CrossRef]
- Bunge, R.P.; Puckett, W.R.; Becerra, J.L.; Marcillo, A.; Quencer, R.M. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 1993, 59, 75–89. [Google Scholar]
- Greer, J.E.; Hanell, A.; McGinn, M.J.; Povlishock, J.T. Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol. 2013, 126, 59–74. [Google Scholar] [CrossRef]
- Choo, A.M.; Liu, J.; Lam, C.K.; Dvorak, M.; Tetzlaff, W.; Oxland, T.R. Contusion, dislocation, and distraction: Primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J. Neurosurg. Spine 2007, 6, 255–266. [Google Scholar] [CrossRef]
- Sparrey, C.J.; Choo, A.M.; Liu, J.; Tetzlaff, W.; Oxland, T.R. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity. Spine 2008, 33, E812–E819. [Google Scholar] [CrossRef]
- Carlstedt, T.; Havton, L. The longitudinal spinal cord injury: Lessons from intraspinal plexus, cauda equina and medullary conus lesions. Handb. Clin. Neurol. 2012, 109, 337–354. [Google Scholar] [CrossRef]
- Smith, J.A.; Siegel, J.H.; Siddiqi, S.Q. Spine and spinal cord injury in motor vehicle crashes: A function of change in velocity and energy dissipation on impact with respect to the direction of crash. J. Trauma 2005, 59, 117–131. [Google Scholar] [CrossRef]
- Chen, Y.Y.; He, Y.; DeVivo, M.J. Changing Demographics and Injury Profile of New Traumatic Spinal, Cord Injuries in the United States, 1972–2014. Arch. Phys. Med. Rehabil. 2016, 97, 1610–1619. [Google Scholar] [CrossRef]
- Miyanji, F.; Furlan, J.C.; Aarabi, B.; Arnold, P.M.; Fehlings, M.G. Acute cervical traumatic spinal cord injury: MR Imaging findings correlated with neurologic outcome–Prospective study with 100 consecutive patients. Radiology 2007, 243, 820–827. [Google Scholar] [CrossRef]
- Tefanopoulos, P.K.; Filippakis, K.; Soupiou, O.T.; Pazarakiotis, V.C. Wound ballistics of firearm-related injurie–Part 1: Missile characteristics and mechanisms of soft tissue wounding. Int. J. Oral Maxillofac. Surg. 2014, 43, 1445–1458. [Google Scholar] [CrossRef]
- Bell, R.S.; Vo, A.H.; Neal, C.J.; Tigno, J.; Roberts, R.; Mossop, C.; Dunne, J.R.; Armonda, R.A. Military traumatic brain and spinal column injury: A 5-year study of the impact blast and other military grade weaponry on the central nervous system. J. Trauma-Inj. Infect. Crit. Care 2009, 66, S104–S111. [Google Scholar] [CrossRef]
- Harrop, J.S.; Sharan, A.D.; Vaccaro, A.R.; Przybylski, G.J. The cause of neurologic deterioration after acute cervical spinal cord injury. Spine 2001, 26, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Sabry, J.; O’Connor, T.P.; Kirschner, M.W. Axonal transport of tubulin in Ti1 pioneer neurons in situ. Neuron 1995, 14, 1247–1256. [Google Scholar] [CrossRef] [Green Version]
- Young, W. The role of calcium in spinal cord injury. Cent. Nerv. Syst. Trauma 1985, 2, 109–114. [Google Scholar] [CrossRef]
- Pacelli, C.; Giguere, N.; Bourque, M.J.; Levesque, M.; Slack, R.S.; Trudeau, L.E. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 2015, 25, 2349–2360. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.T. Regeneration in the human spinal-cord—A review of the response to injury of the various constituents of the human spinal-cord. Paraplegia 1984, 22, 131–137. [Google Scholar] [CrossRef]
- Badhiwala, J.H.; Wilson, J.R.; Witiw, C.D.; Harrop, J.S.; Vaccaro, A.R.; Aarabi, B.; Grossman, R.G.; Geisler, F.H.; Fehlings, M.G. The influence of timing of surgical decompression for acute spinal cord injury: A pooled analysis of individual patient data. Lancet Neurol. 2021, 20, 117–126. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, K.T.; Kwon, B.K. Hemodynamic management of acute spinal cord injury: A literature review. Neurospine 2021, 18, 7–14. [Google Scholar] [CrossRef]
- Bracken, M.B.; Shepard, M.J.; Collins, W.F.; Holford, T.R.; Young, W.; Baskin, D.S.; Eisenberg, H.M.; Flamm, E.; Leosummers, L.; Maroon, J.; et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury—Results of the 2nd national acute spinal-cord injury study. N. Engl. J. Med. 1990, 322, 1405–1411. [Google Scholar] [CrossRef]
- Geisler, F.H.; Coleman, W.P.; Grieco, G.; Poonian, D.; The Sygen Study Group. The Sygen® multicenter acute spinal cord injury study. Spine 2001, 26, S87–S98. [Google Scholar] [CrossRef]
- Grossman, R.G.; Fehlings, M.G.; Frankowski, R.F.; Burau, K.D.; Chow, D.S.; Tator, C.; Teng, A.; Toups, E.G.; Harrop, J.S.; Aarabi, B.; et al. A Prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J. Neurotrauma 2014, 31, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Albin, M.S.; White, R.J.; Locke, G.S.; Massopus, L.C.; Kretchme, H.E. Localized spinal cord hypothermia—Anesthetic effects and application to spinal cord injury. Anesth. Analg. Curr. Res. 1967, 46, 8–16. [Google Scholar]
- Vedantam, A.; Jimsheleishvili, G.; Harrop, J.S.; Alberga, L.R.; Ahmad, F.U.; Murphy, R.K.; Jackson, J.B.; Rodgers, R.B.; Levi, A.D. A prospective multi-center study comparing the complication profile of modest systemic hypothermia versus normothermia for acute cervical spinal cord injury. Spinal Cord 2022, 60, 510–515. [Google Scholar] [CrossRef]
- Hall, E.D.; Braughler, J.M. Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and Na+ + K+)-ATPase activity. Dose-response analysis during 1st hour after contusion injury in the cat. J. Neurosurg. 1982, 57, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Velumian, A.A.; Fehlings, M.G. The role of excitotoxicity in secondary mechanisms of spinal cord injury: A review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 2004, 21, 754–774. [Google Scholar] [CrossRef]
- Fleming, J.C.; Norenberg, M.D.; Ramsay, D.A.; Dekaban, G.A.; Marcillo, A.E.; Saenz, A.D.; Pasquale-Styles, M.; Dietrich, W.D.; Weaver, L.C. The cellular inflammatory response in human spinal cords after injury. Brain 2006, 129, 3249–3269. [Google Scholar] [CrossRef]
- Ziegler, G.; Grabher, P.; Thompson, A.; Altmann, D.; Hupp, M.; Ashburner, J.; Friston, K.; Weiskopf, N.; Curt, A.; Freund, P. Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology 2018, 90, e1257–e1266. [Google Scholar] [CrossRef] [Green Version]
- Bilgen, M.; Abbe, R.; Liu, S.J.; Narayana, P.A. Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury: In vivo magnetic resonance imaging. Magn. Reson. Med. 2000, 43, 594–600. [Google Scholar] [CrossRef]
- Santamaria, A.J.; Benavides, F.D.; Padgett, K.R.; Guada, L.G.; Nunez-Gomez, Y.; Solano, J.P.; Guest, J.D. Dichotomous locomotor recoveries are predicted by acute changes in segmental blood flow after thoracic spinal contusion injuries in pigs. J. Neurotrauma 2019, 36, 1399–1415. [Google Scholar] [CrossRef]
- Simard, J.M.; Woo, S.K.; Schwartzbauer, G.T.; Gerzanich, V. Sulfonylurea receptor 1 in central nervous system injury: A focused review. J. Cereb. Blood Flow Metab. 2012, 32, 1699–1717. [Google Scholar] [CrossRef]
- Chan, P.H. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 2004, 29, 1943–1949. [Google Scholar] [CrossRef] [PubMed]
- Ehsanian, R.; Haefeli, J.; Quach, N.; Kosarchuk, J.; Torres, D.; Stuck, E.D.; Endo, J.; Crew, J.D.; Dirlikov, B.; Bresnahan, J.C.; et al. Exploration of surgical blood pressure management and expected motor recovery in individuals with traumatic spinal cord injury. Spinal Cord 2020, 58, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharm. 2015, 74, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.W. Excitotoxic cell-death. J. Neurobiol. 1992, 23, 1261–1276. [Google Scholar] [CrossRef]
- Azbill, R.D.; Mu, X.J.; BruceKeller, A.J.; Mattson, M.P.; Springer, J.E. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 1997, 765, 283–290. [Google Scholar] [CrossRef]
- Hall, E.D. The neuroprotective pharmacology of methylprednisolone. J. Neurosurg. 1992, 76, 13–22. [Google Scholar] [CrossRef]
- Radi, R.; Beckman, J.S.; Bush, K.M.; Freeman, B.A. Peroxynitrite-induced membrane lipid-peroxidation—The cytotoxic potential of superoxide and nitric-oxide. Arch. Biochem. Biophys. 1991, 288, 481–487. [Google Scholar] [CrossRef]
- Hughes, J.T. The Edwin Smith surgical papyrus: An analysis of the first case reports of spinal cord injuries. Paraplegia 1988, 26, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Cervantes, M.C.; Castaneda-Arellano, R.; Castro-Torres, R.D.; Gudino-Cabrera, G.; Feria y Velasco, A.I.; Camins, A.; Beas-Zarate, C. P38 MAPK inhibition protects against glutamate neurotoxicity and modifies NMDA and AMPA receptor subunit expression. J. Mol. Neurosci. 2015, 55, 596–608. [Google Scholar] [CrossRef]
- Moussawi, K.; Riegel, A.; Nair, S.; Kalivas, P.W. Extracellular glutamate: Functional compartments operate in different concentration ranges. Front. Syst. Neurosci. 2011, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Armada-Moreira, A.; Gomes, J.I.; Pina, C.C.; Savchak, O.K.; Goncalves-Ribeiro, J.; Rei, N.; Pinto, S.; Morais, T.P.; Martins, R.S.; Ribeiro, F.F.; et al. Going the extra (synaptic) mile: Excitotoxicity as the road toward neurodegenerative diseases. Front. Cell Neurosci. 2020, 14, 90. [Google Scholar] [CrossRef]
- Katayama, Y.; Becker, D.P.; Tamura, T.; Hovda, D.A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg. 1990, 73, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mealing, G.A.; Morley, P.; Stys, P.K. Novel injury mechanism in anoxia and trauma of spinal cord white matter: Glutamate release via reverse Na+-dependent glutamate transport. J. Neurosci. 1999, 19, RC16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasov, A.I.; Griffiths, E.J.; Rutter, G.A. Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 2012, 52, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vosler, P.S.; Brennan, C.S.; Chen, J. Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol. Neurobiol. 2008, 38, 78–100. [Google Scholar] [CrossRef] [Green Version]
- Michel, L.Y.; Hoenderop, J.G.; Bindels, R.J. Towards understanding the role of the Na(+)-Ca(+) exchanger isoform 3. Rev. Physiol. Biochem. Pharm. 2015, 168, 31–57. [Google Scholar] [CrossRef]
- Formentini, L.; Macchiarulo, A.; Cipriani, G.; Camaioni, E.; Rapizzi, E.; Pellicciari, R.; Moroni, F.; Chiarugi, A. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J. Biol. Chem. 2009, 284, 17668–17676. [Google Scholar] [CrossRef] [Green Version]
- Almad, A.; Sahinkaya, F.R.; McTigue, D.M. Oligodendrocyte fate after spinal cord injury. Neurotherapeutics 2011, 8, 262–273. [Google Scholar] [CrossRef] [Green Version]
- De Rivero Vaccari, J.P.; Lotocki, G.; Marcillo, A.E.; Dietrich, W.D.; Keane, R.W. A molecular platform in neurons regulates inflammation after spinal cord injury. J. Neurosci. 2008, 28, 3404–3414. [Google Scholar] [CrossRef]
- Kigerl, K.A.; Gensel, J.C.; Ankeny, D.P.; Alexander, J.K.; Donnelly, D.J.; Popovich, P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 2009, 29, 13435–13444. [Google Scholar] [CrossRef] [Green Version]
- Gris, D.; Marsh, D.R.; Oatway, M.A.; Chen, Y.H.; Hamilton, E.F.; Dekaban, G.A.; Weaver, L.C. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J. Neurosci. 2004, 24, 4043–4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovich, P.G.; Guan, Z.; Wei, P.; Huitinga, I.; van Rooijen, N.; Stokes, B.T. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 1999, 158, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Fehlberg, C.R.; Lee, J.K. Fibrosis in the central nervous system: From the meninges to the vasculature. Cell Tissue Res. 2022, 387, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Wanner, I.B.; Anderson, M.A.; Song, B.; Levine, J.; Fernandez, A.; Gray-Thompson, Z.; Ao, Y.; Sofroniew, M.V. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 2013, 33, 12870–12886. [Google Scholar] [CrossRef] [Green Version]
- Noble, L.J.; Donovan, F.; Igarashi, T.; Goussev, S.; Werb, Z. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J. Neurosci. 2002, 22, 7526–7535. [Google Scholar] [CrossRef]
- Gensel, J.C.; Zhang, B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015, 1619, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bethea, J.R.; Castro, M.; Keane, R.W.; Lee, T.T.; Dietrich, W.D.; Yezierski, R.P. Traumatic spinal cord injury induces nuclear factor-kappa B activation. J. Neurosci. 1998, 18, 3251–3260. [Google Scholar] [CrossRef]
- Belov Kirdajova, D.; Kriska, J.; Tureckova, J.; Anderova, M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front. Cell Neurosci. 2020, 14, 51. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.J.; Zahid, I.; Losey, P.; Law, S.; Jiang, Y.; Bilgen, M.; van Rooijen, N.; Morsali, D.; Davis, A.E.; Anthony, D.C. Liver Kupffer cells control the magnitude of the inflammatory response in the injured brain and spinal cord. Neuropharmacology 2008, 55, 780–787. [Google Scholar] [CrossRef]
- Kopp, M.A.; Watzlawick, R.; Martus, P.; Failli, V.; Finkenstaedt, F.W.; Chen, Y.; DeVivo, M.J.; Dirnagl, U.; Schwab, J.M. Long-term functional outcome in patients with acquired infections after acute spinal cord injury. Neurology 2017, 88, 892–900. [Google Scholar] [CrossRef] [Green Version]
- Kigerl, K.A.; Mostacada, K.; Popovich, P.G. Gut microbiota are disease-modifying factors after traumatic spinal cord injury. Neurotherapeutics 2018, 15, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Kopp, M.A.; Druschel, C.; Meisel, C.; Liebscher, T.; Prilipp, E.; Watzlawick, R.; Cinelli, P.; Niedeggen, A.; Schaser, K.D.; Wanner, G.A.; et al. The SCIentinel study-prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS)-study protocol and interim feasibility data. BMC Neurol. 2013, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Schwab, J.M.; Zhang, Y.; Kopp, M.A.; Brommer, B.; Popovich, P.G. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp. Neurol. 2014, 258, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kil, K.; Zang, Y.C.; Yang, D.; Markowski, J.; Fuoco, G.S.; Vendetti, G.C.; Rivera, V.M.; Zhang, J.Z. T cell responses to myelin basic protein in patients with spinal cord injury and multiple sclerosis. J. Neuroimmunol. 1999, 98, 201–207. [Google Scholar] [CrossRef]
- Tadié, M.; Gaviria, M.; Kamenka, J.M.; Privat, A.; Carli, P.; Mathe, J.F. Early care and treatment with a neuroprotective drug, gacyclidine, in patients with acute spinal cord injury. Rachis 2003, 15, 363–376. [Google Scholar]
- Fehlings, M.G.; Baptiste, D.C. Current status of clinical trials for acute spinal cord injury. Injury 2005, 36 (Suppl. S2), B113–B122. [Google Scholar] [CrossRef]
- Streijger, F.; Lee, J.H.; Manouchehri, N.; Okon, E.B.; Tigchelaar, S.; Anderson, L.M.; Dekaban, G.A.; Rudko, D.A.; Menon, R.S.; Iaci, J.F.; et al. The evaluation of magnesium chloride within a polyethylene glycol formulation in a porcine model of acute spinal cord injury. J. Neurotrauma 2016, 33, 2202–2216. [Google Scholar] [CrossRef]
- Zhao, S.J.; Zhou, W.; Chen, J.; Luo, Y.J.; Yin, G.Y. Bioinformatics analysis of the molecular mechanisms underlying traumatic spinal cord injury. Mol. Med. Rep. 2018, 17, 8484–8492. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.; Hou, J.; Wang, F.; Zhang, Y.; Zhang, T.; Sun, T. Comparative analysis of molecular mechanism of spinal cord injury with time based on bioinformatics data. Spinal Cord 2016, 54, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.D.; Gercel-Taylor, C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans. R Soc. Lond. B Biol. Sci. 2014, 369, 20130503. [Google Scholar] [CrossRef] [Green Version]
- Kyritsis, N.; Torres-Espin, A.; Schupp, P.G.; Huie, J.R.; Chou, A.; Duong-Fernandez, X.; Thomas, L.H.; Tsolinas, R.E.; Hemmerle, D.D.; Pascual, L.U.; et al. Diagnostic blood RNA profiles for human acute spinal cord injury. J. Exp. Med. 2021, 218, e20201795. [Google Scholar] [CrossRef] [PubMed]
- Ditunno, J.F., Jr.; Young, W.; Donovan, W.H.; Creasey, G. The international standards booklet for neurological and functional classification of spinal cord injury. American spinal injury association. Paraplegia 1994, 32, 70–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankel, H.L.; Hancock, D.O.; Hyslop, G.; Melzak, J.; Michaelis, L.S.; Ungar, G.H.; Vernon, J.D.; Walsh, J.J. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia 1969, 7, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Kirshblum, S.C.; Botticello, A.L.; Dyson-Hudson, T.A.; Byrne, R.; Marino, R.J.; Lammertse, D.P. Patterns of sacral sparing components on neurologic recovery in newly injured persons with traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 2016, 97, 1647–1655. [Google Scholar] [CrossRef]
- Kirshblum, S.C.; Burns, S.P.; Biering-Sorensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.J.; et al. International standards for neurological classification of spinal cord injury (revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Rupp, R.; Biering-Sorensen, F.; Burns, S.P.; Graves, D.E.; Guest, J.; Jones, L.; Read, M.S.; Rodriguez, G.M.; Schuld, C.; Tansey-Md, K.E.; et al. International standards for neurological classification of spinal cord injury: Revised 2019. Top. Spinal Cord Inj. Rehabil. 2021, 27, 1–22. [Google Scholar] [CrossRef]
- Kirshblum, S.; Snider, B.; Eren, F.; Guest, J. Characterizing natural recovery after traumatic spinal cord injury. J. Neurotrauma 2021, 38, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Wecht, J.M.; Krassioukov, A.V.; Alexander, M.; Handrakis, J.P.; McKenna, S.L.; Kennelly, M.; Trbovich, M.; Biering-Sorensen, F.; Burns, S.; Elliott, S.L.; et al. International standards to document autonomic function following SCI (ISAFSCI): Second edition. Top. Spinal Cord Inj. Rehabil. 2021, 27, 23–49. [Google Scholar] [CrossRef] [PubMed]
- Curt, A.; Weinhardt, C.; Dietz, V. Significance of sympathetic skin response in the assessment of autonomic failure in patients with spinal cord injury. J. Auton. Nerv. Syst. 1996, 61, 175–180. [Google Scholar] [CrossRef]
- Marino, R.J.; Schmidt-Read, M.; Kirshblum, S.C.; Dyson-Hudson, T.A.; Tansey, K.; Morse, L.R.; Graves, D.E. Reliability and validity of S3 Pressure sensation as an alternative to deep anal pressure in neurologic classification of persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2016, 97, 1642–1646. [Google Scholar] [CrossRef] [Green Version]
- Zariffa, J.; Kramer, J.L.; Jones, L.A.; Lammertse, D.P.; Curt, A.; European Multicenter Study about Spinal Cord Injury Study Group; Steeves, J.D. Sacral sparing in SCI: Beyond the S4–S5 and anorectal examination. Spine J. 2012, 12, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.P.; Tansey, K.E. The expedited international standards for neurological classification of spinal cord injury (E-ISNCSCI). Spinal Cord 2020, 58, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Itzkovich, M.; Gelernter, I.; Biering-Sorensen, F.; Weeks, C.; Laramee, M.T.; Craven, B.C.; Tonack, M.; Hitzig, S.L.; Glaser, E.; Zeilig, G.; et al. The spinal cord independence measure (SCIM) version III: Reliability and validity in a multi-center international study. Disabil. Rehabil. 2007, 29, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Steeves, J.D.; Kramer, J.K.; Fawcett, J.W.; Cragg, J.; Lammertse, D.P.; Blight, A.R.; Marino, R.J.; Ditunno, J.F., Jr.; Coleman, W.P.; Geisler, F.H.; et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 2011, 49, 257–265. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Chen, Y.; Aarabi, B.; Ahmad, F.; Anderson, K.D.; Dumont, T.; Fourney, D.R.; Harrop, J.S.; Kim, K.D.; Kwon, B.K.; et al. A randomized controlled trial of local delivery of a rho inhibitor (VX-210) in patients with acute traumatic cervical spinal cord injury. J. Neurotrauma 2021, 38, 2065–2072. [Google Scholar] [CrossRef]
- Hales, M.; Biros, E.; Reznik, J.E. Reliability and validity of the sensory component of the international standards for neurological classification of spinal cord injury (ISNCSCI): A systematic review. Top. Spinal Cord Inj. Rehabil. 2015, 21, 241–249. [Google Scholar] [CrossRef]
- Kalsi-Ryan, S.; Beaton, D.; Ahn, H.; Askes, H.; Drew, B.; Curt, A.; Popovic, M.R.; Wang, J.; Verrier, M.C.; Fehlings, M.G. Responsiveness, sensitivity, and minimally detectable difference of the graded and redefined assessment of strength, sensibility, and prehension, Version 1.0. J. Neurotrauma 2016, 33, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Rupp, R.; Schliessmann, D.; Plewa, H.; Schuld, C.; Gerner, H.J.; Weidner, N.; Hofer, E.P.; Knestel, M. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: A prospective, pre-post intervention, proof-of-concept study. PLoS ONE 2015, 10, e0119167. [Google Scholar] [CrossRef] [Green Version]
- Reed, R.; Mehra, M.; Kirshblum, S.; Maier, D.; Lammertse, D.; Blight, A.; Rupp, R.; Jones, L.; Abel, R.; Weidner, N.; et al. Spinal cord ability ruler: An interval scale to measure volitional performance after spinal cord injury. Spinal Cord 2017, 55, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Van Middendorp, J.J.; Hosman, A.J.; Donders, A.R.; Pouw, M.H.; Ditunno, J.F., Jr.; Curt, A.; Geurts, A.C.; Van de Meent, H.; Group, E.-S.S. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: A longitudinal cohort study. Lancet 2011, 377, 1004–1010. [Google Scholar] [CrossRef]
- Marino, R.J.; Burns, S.; Graves, D.E.; Leiby, B.E.; Kirshblum, S.; Lammertse, D.P. Upper- and lower-extremity motor recovery after traumatic cervical spinal cord injury: An update from the national spinal cord injury database. Arch. Phys. Med. Rehabil. 2011, 92, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Tanadini, L.G.; Hothorn, T.; Jones, L.A.; Lammertse, D.P.; Abel, R.; Maier, D.; Rupp, R.; Weidner, N.; Curt, A.; Steeves, J.D. Toward inclusive trial protocols in heterogeneous neurological disorders: Prediction-based stratification of participants with incomplete cervical spinal cord injury. Neurorehabil. Neural Repair 2015, 29, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Flanders, A.E.; Spettell, C.M.; Friedman, D.P.; Marino, R.J.; Herbison, G.J. The relationship between the functional abilities of patients with cervical spinal cord injury and the severity of damage revealed by MR imaging. AJNR Am. J. Neuroradiol. 1999, 20, 926–934. [Google Scholar]
- Aarabi, B.; Simard, J.M.; Kufera, J.A.; Alexander, M.; Zacherl, K.M.; Mirvis, S.E.; Shanmuganathan, K.; Schwartzbauer, G.; Maulucci, C.M.; Slavin, J.; et al. Intramedullary lesion expansion on magnetic resonance imaging in patients with motor complete cervical spinal cord injury. J. Neurosurg. Spine 2012, 17, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarabi, B.; Olexa, J.; Chryssikos, T.; Galvagno, S.M.; Hersh, D.S.; Wessell, A.; Sansur, C.; Schwartzbauer, G.; Crandall, K.; Shanmuganathan, K.; et al. Extent of spinal cord decompression in motor complete (American spinal injury association impairment scale grades A and B) traumatic spinal cord injury patients: Post-operative magnetic resonance imaging analysis of standard operative approaches. J. Neurotrauma 2019, 36, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Talbott, J.F.; Whetstone, W.D.; Readdy, W.J.; Ferguson, A.R.; Bresnahan, J.C.; Saigal, R.; Hawryluk, G.W.; Beattie, M.S.; Mabray, M.C.; Pan, J.Z.; et al. The brain and spinal injury center score: A novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings. J. Neurosurg. Spine 2015, 23, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Zhan, S.; Xie, W.; Xue, F.; Zhang, D.; Jiang, B. Superiority of brain and spinal injury center score for assessing injury severity and predicting prognosis in patients with acute traumatic spinal cord injury. Clin. Neuroradiol. 2022, 1–9. [Google Scholar] [CrossRef]
- Farhadi, H.F.; Kukreja, S.; Minnema, A.; Vatti, L.; Gopinath, M.; Prevedello, L.; Chen, C.; Xiang, H.; Schwab, J.M. Impact of admission imaging findings on neurological outcomes in acute cervical traumatic spinal cord injury. J. Neurotrauma 2018, 35, 1398–1406. [Google Scholar] [CrossRef]
- Vedantam, A.; Jirjis, M.B.; Schmit, B.D.; Wang, M.C.; Ulmer, J.L.; Kurpad, S.N. Diffusion Tensor imaging of the spinal cord: Insights from animal and human studies. Neurosurgery 2014, 74, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, K.; Zhuo, J.C.; Chen, H.H.; Aarabi, B.; Adams, J.; Miller, C.; Menakar, J.; Gullapalli, R.P.; Mirvis, S.E. Diffusion tensor imaging parameter obtained during acute blunt cervical spinal cord injury in predicting long-term outcome. J. Neurotrauma 2017, 34, 2964–2971. [Google Scholar] [CrossRef]
- O’Dell, D.R.; Weber, K.A.; Berliner, J.C.; Elliott, J.M.; Connor, J.R.; Cummins, D.P.; Heller, K.A.; Hubert, J.S.; Kates, M.J.; Mendoza, K.R.; et al. Midsagittal tissue bridges are associated with walking ability in incomplete spinal cord injury: A magnetic resonance imaging case series. J. Spinal Cord Med. 2020, 43, 268–271. [Google Scholar] [CrossRef]
- Seif, M.; Ziegler, G.; Freund, P. Progressive ventricles enlargement and cerebrospinal fluid volume increases as a marker of neurodegeneration in patients with spinal cord injury: A longitudinal magnetic resonance imaging study. J. Neurotrauma 2018, 35, 2941–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seif, M.; Curt, A.; Thompson, A.J.; Grabher, P.; Weiskopf, N.; Freund, P. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. Neuroimage Clin. 2018, 20, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.D.; Hiester, E.D.; Bunge, R.P. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol. 2005, 192, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Gaiottino, J.; Leppert, D.; Petzold, A.; Bestwick, J.P.; Malaspina, A.; Lu, C.H.; Dobson, R.; Disanto, G.; Norgren, N.; et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J. Neurol. Neurosurg. Psychiatry 2015, 86, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Caprelli, M.T.; Mothe, A.J.; Tator, C.H. CNS injury: Posttranslational modification of the tau protein as a biomarker. Neuroscientist 2019, 25, 8–21. [Google Scholar] [CrossRef]
- Leister, I.; Altendorfer, B.; Maier, D.; Mach, O.; Wutte, C.; Grillhosl, A.; Arevalo-Martin, A.; Garcia-Ovejero, D.; Aigner, L.; Grassner, L. Serum levels of glial fibrillary acidic protein and neurofilament light protein are related to the neurological impairment and spinal edema after traumatic spinal cord injury. J. Neurotrauma 2021, 38, 3431–3439. [Google Scholar] [CrossRef]
- Dalkilic, T.; Fallah, N.; Noonan, V.K.; Elizei, S.S.; Dong, K.; Belanger, L.; Ritchie, L.; Tsang, A.; Bourassa-Moreau, E.; Heran, M.K.S.; et al. Predicting injury severity and neurological recovery after acute cervical spinal cord injury: A comparison of cerebrospinal fluid and magnetic resonance imaging biomarkers. J. Neurotrauma 2018, 35, 435–445. [Google Scholar] [CrossRef]
- Wu, Y.M.; Streijger, F.; Wang, Y.N.; Lin, G.H.; Christie, S.; Mac-Thiong, J.M.; Parent, S.; Bailey, C.S.; Paquette, S.; Boyd, M.C.; et al. Parallel metabolomic profiling of cerebrospinal fluid and serum for identifying biomarkers of injury severity after acute human spinal cord injury. Sci. Rep. 2016, 6, 38718. [Google Scholar] [CrossRef] [Green Version]
- Tigchelaar, S.; Gupta, R.; Shannon, C.P.; Streijger, F.; Sinha, S.; Flibotte, S.; Rizzuto, M.A.; Street, J.; Paquette, S.; Ailon, T.; et al. MicroRNA Biomarkers in cerebrospinal fluid and serum reflect injury severity in human acute traumatic spinal cord injury. J. Neurotrauma 2019, 36, 2358–2371. [Google Scholar] [CrossRef]
- Leister, I.; Linde, L.D.; Vo, A.K.; Haider, T.; Mattiassich, G.; Grassner, L.; Schaden, W.; Resch, H.; Jutzeler, C.R.; Geisler, F.H.; et al. Routine blood chemistry predicts functional recovery after traumatic spinal cord injury: A post hoc analysis. Neurorehabil. Neural Repair 2021, 35, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, A.J.; Benavides, F.D.; Saraiva, P.M.; Anderson, K.D.; Khan, A.; Levi, A.D.; Dietrich, W.D.; Guest, J.D. Neurophysiological changes in the first year after cell transplantation in sub-acute complete paraplegia. Front. Neurol. 2020, 11, 514181. [Google Scholar] [CrossRef] [PubMed]
- Velstra, I.M.; Bolliger, M.; Krebs, J.; Rietman, J.S.; Curt, A. Predictive value of upper limb muscles and grasp patterns on functional outcome in cervical spinal cord injury. Neurorehabil. Neural Repair 2016, 30, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Jaja, B.N.R.; Badhiwala, J.; Guest, J.; Harrop, J.; Shaffrey, C.; Boakye, M.; Kurpad, S.; Grossman, R.; Toups, E.; Geisler, F.; et al. Trajectory-based classification of recovery in sensorimotor complete traumatic cervical spinal cord injury. Neurology 2021, 96, e2736–e2748. [Google Scholar] [CrossRef] [PubMed]
- Buri, M.; Tanadini, L.G.; Hothorn, T.; Curt, A. Unbiased recursive partitioning enables robust and reliable outcome prediction in acute spinal cord injury. J. Neurotrauma 2022, 39, 266–276. [Google Scholar] [CrossRef]
- Jogia, T.; Lubstorf, T.; Jacobson, E.; Scriven, E.; Atresh, S.; Nguyen, Q.H.; Liebscher, T.; Schwab, J.M.; Kopp, M.A.; Walsham, J.; et al. Prognostic value of early leukocyte fluctuations for recovery from traumatic spinal cord injury. Clin. Transl. Med. 2021, 11, e272. [Google Scholar] [CrossRef] [PubMed]
- Squair, J.W.; Tigchelaar, S.; Moon, K.M.; Liu, J.; Tetzlaff, W.; Kwon, B.K.; Krassioukov, A.V.; West, C.R.; Foster, L.J.; Skinnider, M.A. Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury. Elife 2018, 7, e39188. [Google Scholar] [CrossRef]
- Almeida, C.A.; Torres-Espin, A.; Huie, J.R.; Sun, D.; Noble-Haeusslein, L.J.; Young, W.; Beattie, M.S.; Bresnahan, J.C.; Nielson, J.L.; Ferguson, A.R. Excavating FAIR data: The case of the multicenter animal spinal cord injury study (MASCIS), blood pressure, and neuro-recovery. Neuroinformatics 2021, 1–14. [Google Scholar] [CrossRef]
- Huie, J.R.; Ferguson, A.R.; Kyritsis, N.; Pan, J.Z.; Irvine, K.A.; Nielson, J.L.; Schupp, P.G.; Oldham, M.C.; Gensel, J.C.; Lin, A.; et al. Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury. Sci. Rep. 2021, 11, 3442. [Google Scholar] [CrossRef]
- Outcomes following traumatic spinal cord injury: Clinical practice guidelines for health-care professionals. J. Spinal Cord Med. 2000, 23, 289–316. [CrossRef]
- Wadsworth, B.M.; Haines, T.P.; Cornwell, P.L.; Rodwell, L.T.; Paratz, J.D. Abdominal binder improves lung volumes and voice in people with tetraplegic spinal cord injury. Arch. Phys. Med. Rehabil. 2012, 93, 2189–2197. [Google Scholar] [CrossRef] [PubMed]
- Schilero, G.J.; Bauman, W.A.; Radulovic, M. Traumatic spinal cord injury: Pulmonary physiologic principles and management. Clin. Chest Med. 2018, 39, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Kryger, M.A.; Chehata, V.J. Relationship between sleep-disordered breathing and neurogenic obesity in adults with spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Eschlböck, S.; Wenning, G.; Fanciulli, A. Evidence-based treatment of neurogenic orthostatic hypotension and related symptoms. J. Neural Transm. 2017, 124, 1567–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevention of venous thromboembolism in individuals with spinal cord injury: Clinical practice guidelines for health care providers, 3rd ed.: Consortium for spinal cord medicine. Top. Spinal Cord Inj. Rehabil. 2016, 22, 209–240. [CrossRef]
- Faghri, P.D.; Yount, J.P.; Pesce, W.J.; Seetharama, S.; Votto, J.J. Circulatory hypokinesis and functional electric stimulation during standing in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2001, 82, 1587–1595. [Google Scholar] [CrossRef]
- Furlan, J.C.; Fehlings, M.G. Cardiovascular complications after acute spinal cord injury: Pathophysiology, diagnosis, and management. Neurosurg. Focus 2008, 25, E13. [Google Scholar] [CrossRef] [Green Version]
- Wecht, J.M.; Harel, N.Y.; Guest, J.; Kirshblum, S.C.; Forrest, G.F.; Bloom, O.; Ovechkin, A.V.; Harkema, S. Cardiovascular autonomic dysfunction in spinal cord injury: Epidemiology, diagnosis, and management. Semin. Neurol. 2020, 40, 550–559. [Google Scholar] [CrossRef]
- Krassioukov, A.; Linsenmeyer, T.A.; Beck, L.A.; Elliott, S.; Gorman, P.; Kirshblum, S.; Vogel, L.; Wecht, J.; Clay, S. Evaluation and management of autonomic dysreflexia and other autonomic dysfunctions: Preventing the highs and lows: Management of blood pressure, sweating, and temperature dysfunction. Top. Spinal Cord Inj. Rehabil. 2021, 27, 225–290. [Google Scholar] [CrossRef]
- Gater, D.R., Jr.; Farkas, G.J.; Tiozzo, E. Pathophysiology of neurogenic obesity after spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 1–10. [Google Scholar] [CrossRef]
- Gater, D.R., Jr.; Farkas, G.J.; Dolbow, D.R.; Berg, A.; Gorgey, A.S. Body composition and metabolic assessment after motor complete spinal cord injury: Development of a clinically relevant equation to estimate body fat. Top. Spinal Cord Inj. Rehabil. 2021, 27, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.S.; Groah, S.L.; Gater, D.R.; Dyson-Hudson, T.A.; Lieberman, J.A.; Myers, J.; Sabharwal, S.; Taylor, A.J. Identification and management of cardiometabolic risk after spinal cord injury. J. Spinal Cord Med. 2019, 42, 643–677. [Google Scholar] [CrossRef] [PubMed]
- Felix, E.R.; Gater, D.R., Jr. Interrelationship of neurogenic obesity and chronic neuropathic pain in persons with spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 75–83. [Google Scholar] [CrossRef]
- Bryce, T.N.; Biering-Sørensen, F.; Finnerup, N.B.; Cardenas, D.D.; Defrin, R.; Ivan, E.; Lundeberg, T.; Norrbrink, C.; Richards, J.S.; Siddall, P.; et al. International spinal cord injury pain (ISCIP) classification: Part 2. Initial validation using vignettes. Spinal Cord 2012, 50, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Bryce, T.N.; Biering-Sørensen, F.; Finnerup, N.B.; Cardenas, D.D.; Defrin, R.; Lundeberg, T.; Norrbrink, C.; Richards, J.S.; Siddall, P.; Stripling, T.; et al. International spinal cord injury pain classification: Part I. Background and description. Spinal Cord 2012, 50, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Felix, E.R.; Cruz-Almeida, Y.; Widerström-Noga, E.G. Chronic pain after spinal cord injury: What characteristics make some pains more disturbing than others? J. Rehabil. Res. Dev. 2007, 44, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Lance, J.W. The control of muscle tone, reflexes, and movement. Robert Wartenbeg Lect. 1980, 30, 1303. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef]
- Billington, Z.J.; Henke, A.M.; Gater, D.R. Spasticity management after spinal cord injury: The here and now. J. Pers. Med. 2022, 12, 808. [Google Scholar] [CrossRef]
- Ginsberg, D.A.; Boone, T.B.; Cameron, A.P.; Gousse, A.; Kaufman, M.R.; Keays, E.; Kennelly, M.J.; Lemack, G.E.; Rovner, E.S.; Souter, L.H.; et al. The AUA/SUFU guideline on adult neurogenic lower urinary tract dysfunction: Diagnosis and evaluation. J. Urol. 2021, 206, 1097–1105. [Google Scholar] [CrossRef]
- Ginsberg, D.A.; Boone, T.B.; Cameron, A.P.; Gousse, A.; Kaufman, M.R.; Keays, E.; Kennelly, M.J.; Lemack, G.E.; Rovner, E.S.; Souter, L.H.; et al. The AUA/SUFU guideline on adult neurogenic lower urinary tract dysfunction: Treatment and follow-up. J. Urol. 2021, 206, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Johns, J.; Krogh, K.; Rodriguez, G.M.; Eng, J.; Haller, E.; Heinen, M.; Laredo, R.; Longo, W.; Montero-Colon, W.; Korsten, M. Management of neurogenic bowel dysfunction in adults after spinal cord injury: Clinical practice guideline for healthcare providers. J. Spinal Cord Med. 2021, 44, 442–510. [Google Scholar] [CrossRef]
- European Pressure Ulcer Advisory Panel (EPUAP); National Pressure Injury Advisory Panel (NPIAP); Pan Pacific Pressure Injury Alliance (PPPIA). Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. The International Guideline, 3rd ed.; 2019; Available online: https://pppia.org/ (accessed on 22 May 2022).
- Zakel, J.C.; Harrington, A.L. Heterotopic ossification after spinal cord injury: Current clinical approaches. Curr. Phys. Med. Rehabil. Rep. 2020, 8, 172–178. [Google Scholar] [CrossRef]
- Clasey, J.L.; Janowiak, A.L.; Gater, D.R. Relationship between regional bone density measurements and the time since injury in adults with spinal cord. Arch. Phys. Med. Rehabil. 2004, 85, 59–64. [Google Scholar] [CrossRef]
- Ibrahim, E.; Lynne, C.M.; Brackett, N.L. Male fertility following spinal cord injury: An update. Andrology 2016, 4, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Sinha, V.; Elliott, S.; Ibrahim, E.; Lynne, C.M.; Brackett, N.L. Reproductive Health of Men with Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2017, 23, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Crane, D.A.; Doody, D.R.; Schiff, M.A.; Mueller, B.A. Pregnancy outcomes in women with spinal cord injuries: A population-based study. PM R 2019, 11, 795–806. [Google Scholar] [CrossRef]
- Robertson, K.; Dawood, R.; Ashworth, F. Vaginal delivery is safely achieved in pregnancies complicated by spinal cord injury: A retrospective 25-year observational study of pregnancy outcomes in a national spinal injuries centre. BMC Pregnancy Childbirth 2020, 20, 56. [Google Scholar] [CrossRef]
- Jenkins, H.T.; Cosco, T.D. Spinal cord injury and aging: An exploration of the interrelatedness between key psychosocial factors contributing to the process of resilience. Health Psychol. Behav. Med. 2021, 9, 315–321. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guest, J.; Datta, N.; Jimsheleishvili, G.; Gater, D.R., Jr. Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J. Pers. Med. 2022, 12, 1126. https://doi.org/10.3390/jpm12071126
Guest J, Datta N, Jimsheleishvili G, Gater DR Jr. Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. Journal of Personalized Medicine. 2022; 12(7):1126. https://doi.org/10.3390/jpm12071126
Chicago/Turabian StyleGuest, James, Nilanjana Datta, George Jimsheleishvili, and David R. Gater, Jr. 2022. "Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury" Journal of Personalized Medicine 12, no. 7: 1126. https://doi.org/10.3390/jpm12071126
APA StyleGuest, J., Datta, N., Jimsheleishvili, G., & Gater, D. R., Jr. (2022). Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. Journal of Personalized Medicine, 12(7), 1126. https://doi.org/10.3390/jpm12071126