Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Demographic and Clinical Measures
2.3. Neurocognitive Measures
2.4. Social Cognitive Measures
2.5. Cytokines Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asevedo, E.; Gadelha, A.; Noto, C.; Mansur, R.B.; Zugman, A.; Belangero, S.I.N.; Berberian, A.A.; Scarpato, B.S.; Leclerc, E.; Teixeira, A.L.; et al. Impact of peripheral levels of chemokines, BDNF and oxidative markers on cognition in individuals with schizophrenia. J. Psychiatr. Res. 2013, 47, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Pantelis, C. Meta-analysis of cognitive impairment in first-episode bipolar disorder: Comparison with first-episode schizophrenia and healthy controls. Schizophr. Bull. 2015, 41, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Bora, E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: A meta-analysis. Psychol. Med. 2019, 49, 1971–1979. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry 2015, 2, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Fourrier, C.; Singhal, G.; Baune, B.T. Neuroinflammation and cognition across psychiatric conditions. CNS Spectr. 2019, 24, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, K. Janeway’s Immunobiology, 8th ed.; Garland Science: New York, NY, USA, 2012. [Google Scholar]
- Yirmiya, R.; Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011, 25, 181–213. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [Green Version]
- MacGillivray, D.M.; Kollmann, T.R. The role of environmental factors in modulating immune responses in early life. Front. Immunol. 2014, 5, 434. [Google Scholar] [CrossRef] [Green Version]
- Ogunmokun, G.; Dewanjee, S.; Chakraborty, P.; Valupadas, C.; Chaudhary, A.; Kolli, V.; Anand, U.; Vallamkondu, J.; Goel, P.; Paluru, H.P.R.; et al. The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer’s Disease. Cells 2021, 10, 2790. [Google Scholar] [CrossRef]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5166 patients and 5083 controls. Brain. Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef]
- Ali, N.S.; Hashem, A.H.H.; Hassan, A.M.; Saleh, A.A.; El-Baz, H.N. Serum interleukin-6 is related to lower cognitive functioning in elderly patients with major depression. Aging Ment. Health 2018, 22, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Sharma, M.S.; Osimo, E.F.; Fornaro, M.; Bortolato, B.; Croatto, G.; Miola, A.; Vieta, E.; Pariante, C.M.; Smith, L.; et al. Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability. Brain. Behav. Immun. 2021, 97, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.; Solmi, M.; Sanches, M.; Machado, M.O.; Stubbs, B.; Ajnakina, O.; Sherman, C.; Sun, Y.R.; Liu, C.S.; Brunoni, A.R.; et al. Evidence-based umbrella review of 162 peripheral biomarkers for major mental disorders. Transl. Psychiatry 2020, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Brietzke, E.; Kauer-Sant’Anna, M.; Teixeira, A.L.; Kapczinski, F. Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain. Behav. Immun. 2009, 23, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Grassi-Oliveira, R.; Brieztke, E.; Teixeira, A.; Pezzi, J.C.; Zanini, M.; Lopes, R.P.; Bauer, M.E. Peripheral chemokine levels in women with recurrent major depression with suicidal ideation. Braz. J. Psychiatry 2012, 34, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, A.; Kim, H.; Lee, J.Y.; Kim, J.M.; Jeong, M.H.; Chung, Y.C.; Sohn, S.J.; Kim, S.W. The effects of patient personality traits and family cohesion on the treatment delay for patients with first-episode schizophrenia spectrum disorder. Early Interv. Psychiatry 2021, 15, 889–895. [Google Scholar] [CrossRef]
- Kim, S.W.; Stewart, R.; Park, W.Y.; Jhon, M.; Lee, J.Y.; Kim, S.Y.; Kim, J.M.; Amminger, P.; Chung, Y.C.; Yoon, J.S. Latent Iron Deficiency as a Marker of Negative Symptoms in Patients with First-Episode Schizophrenia Spectrum Disorder. Nutrients 2018, 10, 1707. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Andreasen, N.C.; Pressler, M.; Nopoulos, P.; Miller, D.; Ho, B.C. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol. Psychiatry 2010, 67, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Yi, J.S.; Ahn, Y.M.; Shin, H.K.; An, S.K.; Joo, Y.H.; Kim, S.H.; Yoon, D.J.; Jho, K.H.; Koo, Y.J.; Lee, J.Y.; et al. Reliability and validity of the Korean version of the Positive and Negative Syndrome Scale. J. Korean Neuropsychiatr. Assoc. 2001, 40, 1090–1105. [Google Scholar]
- Goldman, H.H.; Skodol, A.E.; Lave, T.R. Revising axis V for DSM-IV: A review of measures of social functioning. Am. J. Psychiatry 1992, 149, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Addington, D.; Addington, J.; Schissel, B. A depression rating scale for schizophrenics. Schizophr. Res. 1990, 3, 247–251. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, S.J.; Yoon, B.H.; Kim, J.M.; Shin, I.S.; Hwang, M.Y.; Yoon, J.S. Diagnostic validity of assessment scales for depression in patients with schizophrenia. Psychiatry Res. 2006, 144, 57–63. [Google Scholar] [CrossRef]
- Ha, K.S.; Kwon, J.S.; Lyoo, I.K.; Kong, S.W.; Lee, D.W.; Youn, T. Development and standardization process, and factor analysis of the computerized cognitive function test system for Korea adults. J. Korean Neuropsychiatr. Assoc. 2002, 41, 551–562. [Google Scholar]
- Rey, A. Clinical Tests in Psychology; Presses Universitaires de France: Paris, France, 1964. [Google Scholar]
- Tien, A.Y.; Spevack, T.V.; Jones, D.W.; Pearlson, G.D.; Schlaepfer, T.E.; Strauss, M.E. Computerized Wisconsin Card Sorting Test: Comparison with manual administration. Kaohsiung J. Med. Sci. 1996, 12, 479–485. [Google Scholar] [PubMed]
- Nuechterlein, K.H.; Dawson, M.E.; Green, M.F. Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiatr. Scand. Suppl. 1994, 384, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A.; Babcock, R.L.; Shaw, R.J. Effects of adult age on structural and operational capacities in working memory. Psychol. Aging 1991, 6, 118–127. [Google Scholar] [CrossRef]
- Lezak, M.D. Neuropsychological Assessment, 3rd ed.; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Kim, S.W.; Shin, I.S.; Kim, J.M.; Lee, J.H.; Lee, Y.H.; Yang, S.J.; Yoon, J.S. Effectiveness of switching to aripiprazole from atypical antipsychotics in patients with schizophrenia. Clin. Neuropharmacol. 2009, 32, 243–249. [Google Scholar] [CrossRef]
- Brüne, M. “Theory of mind” in schizophrenia: A review of the literature. Schizophr. Bull. 2005, 31, 21–42. [Google Scholar] [CrossRef] [Green Version]
- Brüne, M. The Social Brain: Evolution and Pathology; Wiley: New York, NY, USA, 2003; Chapter 13; pp. 277–313. [Google Scholar]
- Lee, K.M.; Kim, S.W.; Yoon, J.S.; Hong, C.H.; Yeum, S.H.; Sea, Y.H.; Bae, A. The relationship between theory of mind and suicide attempts in patients with schizophrenia. Korean J. Schizophr. Res. 2011, 14, 105–111. [Google Scholar]
- Hope, S.; Hoseth, E.; Dieset, I.; Morch, R.H.; Aas, M.; Aukrust, P.; Djurovic, S.; Melle, I.; Ueland, T.; Agartz, I.; et al. Inflammatory markers are associated with general cognitive abilities in schizophrenia and bipolar disorder patients and healthy controls. Schizophr. Res. 2015, 165, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Müller, N. Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr. Bull. 2018, 44, 973–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.C.; Vilalta, A. How microglia kill neurons. Brain Res. 2015, 1628, 288–297. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Miller, B.J. Inflammation and schizophrenia. Schizophr. Bull. 2013, 39, 1174–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monji, A.; Kato, T.; Kanba, S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin. Neurosci. 2009, 63, 257–265. [Google Scholar] [CrossRef]
- Kogan, S.; Ospina, L.H.; Kimhy, D. Inflammation in individuals with schizophrenia—Implications for neurocognition and daily function. Brain. Behav. Immun. 2018, 74, 296–299. [Google Scholar] [CrossRef]
- Lv, M.H.; Tan, Y.L.; Yan, S.X.; Tian, L.; Chen, D.C.; Tan, S.P.; Wang, Z.R.; Yang, F.D.; Yoon, J.H.; Zunta-Soares, G.B.; et al. Decreased serum TNF-alpha levels in chronic schizophrenia patients on long-term antipsychotics: Correlation with psychopathology and cognition. Psychopharmacology 2015, 232, 165–172. [Google Scholar] [CrossRef]
- Stellwagen, D.; Malenka, R.C. Synaptic scaling mediated by glial TNF-alpha. Nature 2006, 440, 1054–1059. [Google Scholar] [CrossRef]
- Kogan, S.; Ospina, L.H.; Mittal, V.A.; Kimhy, D. The impact of inflammation on neurocognition and risk for psychosis: A critical review. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 793–802. [Google Scholar] [CrossRef]
- Tancredi, V.; D’Arcangelo, G.; Grassi, F.; Tarroni, P.; Palmieri, G.; Santoni, A.; Eusebi, F. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci. Lett. 1992, 146, 176–178. [Google Scholar] [CrossRef]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry 2013, 70, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Lechan, R.M.; Toni, R.; Clark, B.D.; Cannon, J.G.; Shaw, A.R.; Dinarello, C.A.; Reichlin, S. Immunoreactive interleukin-1 beta localization in the rat forebrain. Brain Res. 1990, 514, 135–140. [Google Scholar] [CrossRef]
- Schneider, H.; Pitossi, F.; Balschun, D.; Wagner, A.; del Rey, A.; Besedovsky, H.O. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc. Natl. Acad. Sci. USA 1998, 95, 7778–7783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015, 85, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Buchanan, J.B.; Sparkman, N.L.; Godbout, J.P.; Freund, G.G.; Johnson, R.W. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain. Behav. Immun. 2008, 22, 301–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fett, A.-K.J.; Viechtbauer, W.; Dominguez, M.-d.-G.; Penn, D.L.; van Os, J.; Krabbendam, L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 573–588. [Google Scholar] [CrossRef] [Green Version]
- Moieni, M.; Irwin, M.R.; Jevtic, I.; Breen, E.C.; Eisenberger, N.I. Inflammation impairs social cognitive processing: A randomized controlled trial of endotoxin. Brain. Behav. Immun. 2015, 48, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Dunne, P.W.; Roberts, D.L.; Quinones, M.P.; Velligan, D.I.; Paredes, M.; Walss-Bass, C. Immune markers of social cognitive bias in schizophrenia. Psychiatry Res. 2017, 251, 319–324. [Google Scholar] [CrossRef]
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef]
- Dickerson, S.S.; Kemeny, M.E.; Aziz, N.; Kim, K.H.; Fahey, J.L. Immunological effects of induced shame and guilt. Psychosom. Med. 2004, 66, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Frydecka, D.; Misiak, B.; Pawlak-Adamska, E.; Karabon, L.; Tomkiewicz, A.; Sedlaczek, P.; Kiejna, A.; Beszlej, J.A. Interleukin-6: The missing element of the neurocognitive deterioration in schizophrenia? The focus on genetic underpinnings, cognitive impairment and clinical manifestation. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizano, P.; Lutz, O.; Ling, G.; Lee, A.M.; Eum, S.; Bishop, J.R.; Kelly, S.; Pasternak, O.; Clementz, B.; Pearlson, G.; et al. Association of choroid plexus enlargement with cognitive, inflammatory, and structural phenotypes across the psychosis spectrum. Am. J. Psychiatry 2019, 176, 564–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcinowicz, P.; Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021, 10, 2488. [Google Scholar] [CrossRef] [PubMed]
- Tourjman, V.; Kouassi, É.; Koué, M.È.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Xu, X.; Li, F.; Xie, G.; Zhang, T. Anti-inflammatory treatment with β-asarone improves impairments in social interaction and cognition in MK-801 treated mice. Brain Res. Bull. 2019, 150, 150–159. [Google Scholar] [CrossRef]
- Fulp, T.; Stanton, R.P.; Mason, D.E. A 13-month-old boy with progressive genu valgum. Am. J. Orthop. 1995, 24, 186–187. [Google Scholar]
- Lynch, A.M.; Walsh, C.; Delaney, A.; Nolan, Y.; Campbell, V.A.; Lynch, M.A. Lipopolysaccharide-induced increase in signalling in hippocampus is abrogated by IL-10--a role for IL-1 beta? J. Neurochem. 2004, 88, 635–646. [Google Scholar] [CrossRef]
- Xiu, M.H.; Tian, L.; Chen, S.; Tan, Y.L.; Chen, D.C.; Chen, J.; Chen, N.; De Yang, F.; Licinio, J.; Kosten, T.R.; et al. Contribution of IL-10 and its -592 A/C polymorphism to cognitive functions in first-episode drug-naive schizophrenia. Brain. Behav. Immun. 2016, 57, 116–124. [Google Scholar] [CrossRef]
- Cavaillon, J.M. Pro- versus anti-inflammatory cytokines: Myth or reality. Cell. Mol. Biol. 2001, 47, 695–702. [Google Scholar]
- Woodcock, T.; Morganti-Kossmann, M.C. The role of markers of inflammation in traumatic brain injury. Front. Neurol. 2013, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- deWitte, L.; Tomasik, J.; Schwartz, E.; Guest, P.C.; Rahmoune, H.; Kahn, R.S.; Bahn, S. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr. Bull. 2014, 154, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Xiu, M.H.; Yang, G.G.; Tan, Y.L.; Chen, D.C.; Tan, S.P.; Wang, Z.R.; Yang, F.D.; Okusaga, O.; Soares, J.C.; Zhang, X.Y. Decreased interleukin-10 serum levels in first-episode drug-naïve schizophrenia: Relationship to psychopathology. Schizophr. Res. 2014, 156, 9–14. [Google Scholar] [CrossRef]
- Sergi, M.J.; Rassovsky, Y.; Widmark, C.; Reist, C.; Erhart, S.; Braff, D.L.; Marder, S.R.; Green, M.F. Social cognition in schizophrenia: Relationships with neurocognition and negative symptoms. Schizophr. Res. 2007, 90, 316–324. [Google Scholar] [CrossRef]
- van Hooren, S.; Versmissen, D.; Janssen, I.; Myin-Germeys, I.; Campo, J.; Mengelers, R.; van Os, J.; Krabbendam, L. Social cognition and neurocognition as independent domains in psychosis. Schizophr. Res. 2008, 103, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Nitta, M.; Kishimoto, T.; Muller, N.; Weiser, M.; Davidson, M.; Kane, J.M.; Correll, C.U. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophr. Bull. 2013, 39, 1230–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levkovitz, Y.; Mendlovich, S.; Riwkes, S.; Braw, Y.; Levkovitch-Verbin, H.; Gal, G.; Fennig, S.; Treves, I.; Kron, S. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J. Clin. Psychiatry 2010, 71, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Lee, T.Y.; Kwak, Y.B.; Yoon, Y.B.; Kim, M.; Kwon, J.S. Adjunctive use of anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Aust. N. Z. J. Psychiatry 2019, 53, 742–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skvarc, D.R.; Dean, O.M.; Byrne, L.K.; Gray, L.; Lane, S.; Lewis, M.; Fernandes, B.M.; Berk, M.; Marriott, A. The effect of N-acetylcysteine (NAC) on human cognition—A systematic review. Neurosci. Biobehav. Rev. 2017, 78, 44–56. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 2011, 25, 859–885. [Google Scholar] [CrossRef]
- Rapado-Castro, M.; Dodd, S.; Bush, A.I.; Malhi, G.S.; Skvarc, D.R.; On, Z.X.; Berk, M.; Dean, O.M. Cognitive effects of adjunctive N-acetyl cysteine in psychosis. Psychol. Med. 2017, 47, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Conus, P.; Seidman, L.J.; Fournier, M.; Xin, L.; Cleusix, M.; Baumann, P.S.; Ferrari, C.; Cousins, A.; Alameda, L.; Gholam-Rezaee, M.; et al. N-acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis. Schizophr. Bull. 2018, 44, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, B.J.; Dias, J.K.; Lemos, H.P.; Buckley, P.F. An open-label, pilot trial of adjunctive tocilizumab in schizophrenia. J. Clin. Psychiatry 2016, 77, 275–276. [Google Scholar] [CrossRef] [PubMed]
- Deakin, B.; Suckling, J.; Barnes, T.R.E.; Byrne, K.; Chaudhry, I.B.; Dazzan, P.; Drake, R.J.; Giordano, A.; Husain, N.; Jones, P.B.; et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): A randomised, double-blind, placebo-controlled trial. Lancet. Psychiatry 2018, 5, 885–894. [Google Scholar] [CrossRef] [Green Version]
Age | Education | PANSS_P | PANSS_N | PANSS_G | PANSS_T | SOFAS | CDSS | |
---|---|---|---|---|---|---|---|---|
False Belief Test | 0.005 | 0.065 | −0.123 | −0.088 | −0.111 | −0.130 | 0.025 | −0.127 |
Theory of Mind | 0.027 | 0.177 * | −0.095 | −0.136 | −0.092 | −0.135 | 0.036 | 0.008 |
DS, forward | −0.032 | 0.080 | 0.071 | −0.095 | 0.016 | 0.001 | 0.046 | 0.014 |
DS, backward | 0.093 | 0.208 ** | 0.090 | −0.083 | 0.016 | 0.022 | −0.017 | −0.027 |
Verbal Learning Test | −0.059 | 0.160 * | −0.046 | −0.110 | −0.061 | −0.098 | 0.088 | −0.013 |
WCST_CC | −0.085 | 0.115 | 0.009 | −0.135 | −0.030 | −0.066 | 0.103 | −0.037 |
CPT-CR | −0.175 * | −0.082 | 0.081 | −0.043 | 0.019 | 0.026 | 0.064 | 0.079 |
CPT-RT | 0.343 *** | 0.133 | −0.081 | −0.099 | −0.104 | −0.123 | 0.018 | −0.027 |
Visual Learning Test | −0.083 | 0.182 * | 0.050 | −0.189 * | 0.016 | −0.036 | 0.126 | 0.038 |
TMT-A | −0.032 | −0.120 | −0.041 | 0.188 | 0.138 | 0.118 | −0.196 ** | 0.070 |
TMT-B | 0.073 | −0.103 | 0.034 | 0.218 ** | 0.121 | 0.147 | −0.202 ** | 0.063 |
TNF-α | IFN-γ | IL-1β | IL-6 | IL-8 | IL-10 | IL-12 | |
---|---|---|---|---|---|---|---|
PANSS_P | 0.018 | −0.122 | −0.098 | 0.096 | 0.041 | 0.081 | −0.156 * |
PANSS_N | 0.076 | −0.052 | 0.051 | 0.065 | 0.076 | −0.022 | 0.002 |
PANSS_G | 0.080 | −0.069 | −0.052 | 0.050 | 0.022 | −0.016 | −0.102 |
PANSS_T | 0.080 | −0.097 | −0.047 | 0.072 | 0.050 | 0.002 | −0.112 |
SOFAS | −0.106 | 0.032 | −0.001 | −0.065 | −0.096 | −0.013 | −0.003 |
CDSS | 0.009 | 0.061 | 0.016 | −0.034 | −0.068 | 0.000 | −0.040 |
Age | 0.003 | −0.037 | −0.039 | −0.204 ** | −0.076 | −0.082 | −0.076 |
Education | −0.031 | −0.030 | −0.011 | −0.028 | −0.026 | 0.083 | −0.001 |
Antipsychotic dosage | 0.126 | −0.002 | 0.072 | 0.077 | 0.089 | −0.019 | −0.009 |
Treatment duration | −0.090 | −0.108 | −0.091 | −0.113 | 0.039 | −0.121 | −0.089 |
TNF-α a | IFN-γ b | IL-1β b | IL-6 c | IL-8 a | IL-10 a | IL-12 d | |
---|---|---|---|---|---|---|---|
False Belief Test | −0.096 | −0.195 * | −0.184 * | −0.097 | −0.050 | −0.140 | −0.203 ** |
Theory of Mind | −0.075 | −0.109 | −0.163 * | −0.073 | −0.034 | −0.091 | −0.138 |
DS, forward | −0.161 * | −0.042 | −0.061 | 0.053 | 0.037 | 0.047 | 0.013 |
DS, backward | −0.072 | 0.062 | 0.000 | −0.013 | 0.074 | 0.149 | 0.088 |
Verbal Learning Test | −0.184 * | −0.074 | −0.127 | −0.084 | −0.136 | −0.003 | −0.033 |
WCST_CC | −0.182 * | −0.090 | −0.057 | 0.046 | −0.014 | −0.026 | −0.077 |
CPT-CR | −0.205 ** | −0.130 | −0.174 * | −0.107 | −0.057 | −0.035 | −0.166 * |
CPT-RT | 0.082 | 0.146 | 0.161 * | 0.065 | −0.051 | −0.008 | 0.065 |
Visual Learning Test | −0.090 | −0.168 * | −0.191 * | −0.012 | 0.004 | 0.033 | −0.117 |
TMT-A | 0.089 | 0.105 | 0.188 * | −0.022 | −0.125 | −0.028 | 0.081 |
TMT-B | 0.171 * | 0.016 | 0.103 | 0.059 | −0.099 | 0.019 | 0.090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-H.; Kim, H.; Kim, J.-W.; Ryu, S.; Lee, J.-Y.; Kim, J.-M.; Shin, I.-S.; Kim, S.-W. Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia. J. Pers. Med. 2022, 12, 1137. https://doi.org/10.3390/jpm12071137
Baek S-H, Kim H, Kim J-W, Ryu S, Lee J-Y, Kim J-M, Shin I-S, Kim S-W. Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia. Journal of Personalized Medicine. 2022; 12(7):1137. https://doi.org/10.3390/jpm12071137
Chicago/Turabian StyleBaek, Seon-Hwa, Honey Kim, Ju-Wan Kim, Seunghyong Ryu, Ju-Yeon Lee, Jae-Min Kim, Il-Seon Shin, and Sung-Wan Kim. 2022. "Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia" Journal of Personalized Medicine 12, no. 7: 1137. https://doi.org/10.3390/jpm12071137
APA StyleBaek, S. -H., Kim, H., Kim, J. -W., Ryu, S., Lee, J. -Y., Kim, J. -M., Shin, I. -S., & Kim, S. -W. (2022). Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia. Journal of Personalized Medicine, 12(7), 1137. https://doi.org/10.3390/jpm12071137