Cardiovascular Risk after Kidney Transplantation: Causes and Current Approaches to a Relevant Burden
Abstract
:1. Background
2. Post-Transplant Diabetes Mellitus
3. Arterial Hypertension
4. Dyslipidemia
5. Obesity
6. Graft Dysfunction and Proteinuria
7. Hyperuricemia
8. Hyperhomocysteinemia
9. Inflammation and Oxidative Stress
10. Klotho and Fibroblast Growth Factor 23
11. Vascular Calcifications
12. Smoking
13. Physical Inactivity
14. Anemia
15. Vitamin D Deficiency
16. Quality of Life
17. Sleep Apnea
18. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
25(OH)D | 25-hydroxyvitamin D |
ACE | Angiotensin converting enzyme |
ACEi | Angiotensin converting enzyme inhibitors |
apoCIII | Apolipoprotein CIII |
ARB | Angiotensin receptor blockers |
BMI | Body mass index |
CK | Creatin kinase |
CKD | Chronic kidney disease |
CNI | Calcineurin inhibitors |
CVD | Cardiovascular disease |
CYP | Cytochromes P |
CYP2C9 | Cytochrome P450 family 2 subfamily C member 9 |
CYP450 | P450 cytochrome |
DPP-4i | Dipeptidyl peptidase-4 inhibitors |
ECM | Extracellular matrix |
eGFR | Estimated glomerular filtration rate |
FGF | Fibroblast growing factors |
FGF23 | Fibroblast growth factor23 |
GI | Gastrointestinal |
GFR | Glomerular filtration rate |
GLP-1 RA | Glucagon-like peptide-1 receptor agonists |
HFrEF | Heart failure with reduced ejection fraction |
HDL | High-density lipoprotein |
HMG-CoA | 3-hydroxy-3-methyl-glutaryl-coenzyme A |
HTN | Hypertension |
IST | Immunosuppressive therapy |
KT | Kidney transplantation |
LDL | Low-density lipoprotein |
mTOR | Mammalian target of rapamycin |
NRT | Nicotine replacement therapy |
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
PTDM | Post-transplant diabetes mellitus |
QoL | Quality of Life |
RAAS | Renin-Angiotensin-Aldosterone System |
RDN | Renal denervation |
SA | Sleep apnea |
SGLT2i | Sodium glucose cotransporter-2 inhibitors |
SPAK | SPS1-related proline/alanine-rich kinase |
TRAS | Transplant renal artery stenosis |
VLDL | Very low-density lipoprotein |
WNK | With-no-lysine [K] kinase |
References
- Hart, A.; Weir, M.R.; Kasiske, B.L. Cardiovascular risk assessment in kidney transplantation. Kidney Int. 2015, 87, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awan, A.A.; Niu, J.; Pan, J.S.; Erickson, K.F.; Mandayam, S.; Winkelmayer, W.C.; Navaneethan, S.D.; Ramanathan, V. Trends in the Causes of Death among Kidney Transplant Recipients in the United States (1996–2014). Am. J. Nephrol. 2018, 48, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Wyld, M.L.R.; Nicole, L.; Masson, P.; O’Lone, E.; Kelly, P.J.; Webster, A.C. Cardiac mortality in kidney transplant patients: A population-based cohort study 1988–2013 in Australia and New Zealand. Transplantation 2021, 105, 413–422. [Google Scholar] [CrossRef]
- Stoumpos, S.; Jardine, A.G.; Mark, P.B. Cardiovascular morbidity and mortality after kidney transplantation. Transpl. Int. 2015, 28, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.J.; Bae, H.J.; Ham, Y.R.; Choi, D.E.; Na, K.R.; Ahn, M.-S.; Lee, K.W. Outcomes of end-stage renal disease patients on the waiting list for deceased donor kidney transplantation: A single-center study. Kidney Res. Clin. Pract. 2019, 38, 116. [Google Scholar] [CrossRef] [Green Version]
- Rangaswami, J.; Mathew, R.O.; Parasuraman, R.; Tantisattamo, E.; Lubetzky, M.; Rao, S.; Yaqub, M.; Birdwell, K.A.; Bennett, W.; Dalal, P.; et al. Cardiovascular disease in the kidney transplant recipient: Epidemiology, diagnosis and management strategies. Nephrol. Dial. Transplant. 2019, 34, 760–773. [Google Scholar] [CrossRef]
- Jenssen, T.; Hartmann, A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat. Rev. Endocrinol. 2019, 15, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, A.E.; Porrini, E.; Hornum, M.; Donate-Correa, J.; Morales-Febles, R.; Ramchand, S.K.; Lima, M.X.M.; Torres, A. Post-transplant diabetes mellitus and prediabetes in renal transplant recipients: An update. Nephron 2021, 145, 317–329. [Google Scholar] [CrossRef]
- Sharif, A.; Hecking, M.; de Vries, A.P.J.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings From an International Consensus Meeting on Posttransplantation Diabetes Mellitus: Recommendations and Future Directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association, A.D. Introduction: Standards of Medical Care in Diabetes—2022. Diabetes Care 2021, 45 (Suppl. 1), S1–S2. [Google Scholar] [CrossRef]
- Shivaswamy, V.; Boerner, B.; Larsen, J. Post-Transplant Diabetes Mellitus: Causes, Treatment, and Impact on Outcomes. Endocr. Rev. 2016, 37, 37–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaupere, C.; Liboz, A.; Fève, B.; Blondeau, B.; Guillemain, G. Molecular mechanisms of glucocorticoid-induced insulin resistance. Int. J. Mol. Sci. 2021, 22, 623. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Cummins, C.L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Øzbay, L.A.; Smidt, K.; Mortensen, D.M.; Carstens, J.; Jørgensen, K.A.; Rungby, J. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E beta-cells. Br. J. Pharmacol. 2011, 162, 136–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakkera, H.A.; Kudva, Y.; Kaplan, B. Calcineurin Inhibitors: Pharmacologic Mechanisms Impacting Both Insulin Resistance and Insulin Secretion Leading to Glucose Dysregulation and Diabetes Mellitus. Clin. Pharmacol. Ther. 2017, 101, 114–120. [Google Scholar] [CrossRef]
- Torres, A.; Hernández, D.; Moreso, F.; Serón, D.; Burgos, M.D.; Pallardó, L.M.; Kanter, J.; Corte, C.D.; Rodríguez, M.; Diaz, J.M.; et al. Randomized controlled trial assessing the impact of tacrolimus versus cyclosporine on the incidence of posttransplant diabetes mellitus. Kidney Int. Rep. 2018, 3, 1304–1315. [Google Scholar] [CrossRef] [Green Version]
- Triñanes, J.; Rodriguez-Rodriguez, A.E.; Brito-Casillas, Y.; Wagner, A.; De Vries, A.P.J.; Cuesto, G.; Acebes, A.; Salido, E.; Torres, A.; Porrini, E. Deciphering Tacrolimus-Induced Toxicity in Pancreatic β Cells. Am. J. Transplant. 2017, 17, 2829–2840. [Google Scholar] [CrossRef]
- Li, Z.; Sun, F.; Zhang, Y.; Chen, H.; He, N.; Chen, H.; Song, P.; Wang, Y.; Yan, S.; Zheng, S. Tacrolimus Induces Insulin Resistance and Increases the Glucose Absorption in the Jejunum: A Potential Mechanism of the Diabetogenic Effects. PLoS ONE 2015, 10, e0143405. [Google Scholar] [CrossRef]
- Blagosklonny, M.V. Fasting and rapamycin: Diabetes versus benevolent glucose intolerance. Cell Death Dis. 2019, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Wang, H.; Jing, Z.; Wang, Y.; Cheng, Y.; Wang, W.; Sun, W. Role of magnesium in type 2 diabetes mellitus. Biol. Trace Elem. Res. 2020, 196, 74–85. [Google Scholar] [CrossRef]
- Sinangil, A.; Celik, V.; Barlas, S.; Sakaci, T.; Koc, Y.; Basturk, T.; Akin, E.B.; Ecder, T. New-onset diabetes after kidney transplantation and pretransplant hypomagnesemia. Prog. Transplant. 2016, 26, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Hecking, M.; Sharif, A.; Eller, K.; Jenssen, T. Management of post-transplant diabetes: Immunosuppression, early prevention, and novel antidiabetics. Transpl. Int. 2021, 34, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Corremans, R.; Vervaet, B.A.; D’Haese, P.C.; Neven, E.; Verhulst, A. Metformin: A candidate drug for renal diseases. Int. J. Mol. Sci. 2019, 20, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, T.-S.; Wang, C.-Y.; Pan, S.-C.; Huang, T.-M.; Lin, M.-C.; Lai, C.-F.; Wu, C.-H.; Wu, V.-C.; Chien, K.-L. Risk of developing severe sepsis after acute kidney injury: A population-based cohort study. Crit. Care 2013, 17, R231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunaratne, K.; Austin, E.; Wu, P.E. Unintentional sulfonylurea toxicity due to a drug–drug interaction: A case report. BMC Res. Notes 2018, 11, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Mosenzon, O.; Wiviott, S.D.; Cahn, A.; Rozenberg, A.; Yanuv, I.; Goodrich, E.L.; Murphy, S.A.; Heerspink, H.J.L.; Zelniker, T.A.; Dwyer, J.P.; et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 606–617. [Google Scholar] [CrossRef]
- Shuster, S.; Al-Hadhrami, Z.; Moore, S.; Awad, S.; Shamseddin, M.K. Use of Sodium-Glucose Cotransporter-2 Inhibitors in Renal Transplant Patients With Diabetes: A Brief Review of the Current Literature. Can. J. Diabetes 2021, 46, 207–212. [Google Scholar] [CrossRef]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and safety of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef]
- Schwaiger, E.; Burghart, L.; Signorini, L.; Ristl, R.; Kopecky, C.; Tura, A.; Pacini, G.; Wrba, T.; Antlanger, M.; Schmaldienst, S.; et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am. J. Transplant. 2019, 19, 907–919. [Google Scholar] [CrossRef] [Green Version]
- Chewcharat, A.; Prasitlumkum, N.; Thongprayoon, C.; Bathini, T.; Medaura, J.; Vallabhajosyula, S.; Cheungpasitporn, W. Efficacy and safety of SGLT-2 inhibitors for treatment of diabetes mellitus among kidney transplant patients: A systematic review and meta-analysis. Med. Sci. 2020, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Montero, N.; Oliveras, L.; Soler, M.J.; Cruzado, J.M. Management of post-transplant diabetes mellitus: An opportunity for novel therapeutics. Clin. Kidney J. 2022, 15, 5–13. [Google Scholar] [CrossRef]
- Halden, T.A.S.; Egeland, E.J.; Åsberg, A.; Hartmann, A.; Midtvedt, K.; Khiabani, H.Z.; Holst, J.J.; Knop, F.K.; Hornum, M.; Feldt-Rasmussen, B.; et al. GLP-1 restores altered insulin and glucagon secretion in posttransplantation diabetes. Diabetes Care 2016, 39, 617–624. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, P.E.; El-Kholy, W.; Riedel, M.J.; Salapatek, A.M.F.; Light, P.E.; Wheeler, M.B. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002, 51 (Suppl. 3), S434–S442. [Google Scholar] [CrossRef] [Green Version]
- Boerner, B.P.; Miles, C.D.; Shivaswamy, V. Efficacy and safety of sitagliptin for the treatment of new-onset diabetes after renal transplantation. Int. J. Endocrinol. 2014, 2014, 617638. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.J. Long-acting glucagon-like peptide 1 receptor agonists: A review of their efficacy and tolerability. Diabetes Care 2011, 34 (Suppl. 2), S279–S284. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018, 129, 95–99. [Google Scholar] [CrossRef]
- Ari, E.; Fici, F.; Robles, N.R. Hypertension in Kidney Transplant Recipients: Where Are We Today? Curr. Hypertens. Rep. 2021, 23, 21. [Google Scholar] [CrossRef]
- Charnaya, O.; Moudgil, A. Hypertension in the pediatric kidney transplant recipient. Front. Pediatr. 2017, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, M.R.; Burgess, E.D.; Cooper, J.E.; Fenves, A.Z.; Goldsmith, D.; McKay, D.; Mehrotra, A.; Mitsnefes, M.M.; Sica, D.A.; Taler, S.J. Assessment and management of hypertension in transplant patients. J. Am. Soc. Nephrol. 2015, 26, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- Tantisattamo, E.; Molnar, M.Z.; Ho, B.T.; Reddy, U.G.; Dafoe, D.C.; Ichii, H.; Ferrey, A.J.; Hanna, R.M.; Kalantar-Zadeh, K.; Amin, A. Approach and Management of Hypertension After Kidney Transplantation. Front. Med. 2020, 7, 229. Available online: https://pubmed.ncbi.nlm.nih.gov/32613001 (accessed on 15 June 2022). [CrossRef] [PubMed]
- Carpenter, M.A.; John, A.; Weir, M.R.; Smith, S.R.; Hunsicker, L.; Kasiske, B.L.; Kusek, J.W.; Bostom, A.; Ivanova, A.; Levey, A.S.; et al. BP, cardiovascular disease, and death in the folic acid for vascular outcome reduction in transplantation trial. J. Am. Soc. Nephrol. 2014, 25, 1554–1562. [Google Scholar] [CrossRef] [Green Version]
- Krüger, B.; Döhler, B.; Opelz, G.; Krämer, B.K.; Süsal, C. Pulse Pressure and Outcome in Kidney Transplantation: Results From the Collaborative Transplant Study. Transplantation 2019, 103, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Krämer, B.K.; Del Castillo, D.; Margreiter, R.; Sperschneider, H.; Olbricht, C.J.; Ortuño, J.; Sester, U.; Kunzendorf, U.; Dietl, K.-H.; Bonomini, V.; et al. Efficacy and safety of tacrolimus compared with ciclosporin A in renal transplantation: Three-year observational results. Nephrol. Dial. Transplant. 2008, 23, 2386–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincenti, F.; Jensik, S.C.; Filo, R.S.; Miller, J.; Pirsch, J. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: Evidence for improved allograft survival at five years1. Transplantation 2002, 73, 775–782. [Google Scholar] [CrossRef]
- Margreiter, R.; Group ET vs CMRTS. Efficacy and safety of tacrolimus compared with ciclosporin microemulsion in renal transplantation: A randomised multicentre study. Lancet 2002, 359, 741–746. [Google Scholar] [CrossRef]
- Hošková, L.; Málek, I.; Kopkan, L.; Kautzner, J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physiol. Res. 2017, 66, 167. [Google Scholar] [CrossRef]
- Klein, I.H.H.T.; Abrahams, A.C.; van Ede, T.; Oey, P.L.; Ligtenberg, G.; Blankestijn, P.J. Differential effects of acute and sustained cyclosporine and tacrolimus on sympathetic nerve activity. J. Hypertens. 2010, 28, 1928–1934. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Walsh, S.B.; McCormick, J.A.; Zietse, R.; Unwin, R.J.; Ellison, D.H. Pathogenesis of calcineurin inhibitor-induced hypertension. J. Nephrol. 2012, 25, 269–275. [Google Scholar] [CrossRef]
- Mebrahtu, T.F.; Morgan, A.W.; West, R.M.; Stewart, P.M.; Pujades-Rodriguez, M. Oral glucocorticoids and incidence of hypertension in people with chronic inflammatory diseases: A population-based cohort study. CMAJ 2020, 192, E295–E301. [Google Scholar] [CrossRef] [Green Version]
- Knight, S.R.; Morris, P.J. Steroid avoidance or withdrawal after renal transplantation increases the risk of acute rejection but decreases cardiovascular risk. A meta-analysis. Transplantation 2010, 89, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fervenza, F.C.; Lafayette, R.A.; Alfrey, E.J.; Petersen, J. Renal artery stenosis in kidney transplants. Am. J. Kidney Dis. 1998, 31, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Tantasattamo, E.; Ratanasrimetha, P.; Spanuchart, I. Overlooked Cause of Resistant Hypertension in a New Kidney. Ann. Clin. Exp. Hypertens. 2015, 3, 1030. [Google Scholar]
- Chen, W.; Kayler, L.K.; Zand, M.S.; Muttana, R.; Chernyak, V.; DeBoccardo, G.O. Transplant renal artery stenosis: Clinical manifestations, diagnosis and therapy. Clin. Kidney J. 2015, 8, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskow, D.A.; Curtis, J.J. Post-transplant hypertension. Am. J. Hypertens. 1990, 3, 721–725. [Google Scholar] [CrossRef]
- Costa, B.; Moratelli, L.; Silva, L.B.; Paiva, A.C.M.; Silva, A.N.; Carminatti, M.; Bastos, M.; Sanders-Pinheiro, H. Body mass index in the first year after kidney transplantation. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1750–1752. [Google Scholar]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Aziz, F.; Clark, D.; Garg, N.; Mandelbrot, D.; Djamali, A. Hypertension guidelines: How do they apply to kidney transplant recipients. Transplant. Rev. 2018, 32, 225–233. [Google Scholar] [CrossRef]
- Taber, D.J.; Srinivas, T.M.; Pilch, N.A.; Meadows, H.B.; Fleming, J.N.; McGillicuddy, J.W.; Bratton, C.F.; Thomas, B.; Chavin, K.D.; Baliga, P.K.; et al. Are Thiazide Diuretics Safe and Effective Antihypertensive Therapy in Kidney Transplant Recipients? Am. J. Nephrol. 2013, 38, 285–291. Available online: https://www.karger.com/DOI/10.1159/000355135 (accessed on 15 June 2022). [CrossRef]
- Rizk, J.; Quan, D.; Gabardi, S.; Rizk, Y.; Kalantar-Zadeh, K. Novel approaches to management of hyperkalaemia in kidney transplantation. Curr. Opin. Nephrol. Hypertens. 2021, 30, 27–37. [Google Scholar] [CrossRef]
- Baroletti, S.A.; Gabardi, S.; Magee, C.C.; Milford, E.L. Calcium channel blockers as the treatment of choice for hypertension in renal transplant recipients: Fact or fiction. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2003, 23, 788–801. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.M.; Song, T.R.; Qiu, Y.; Liu, J.P.; Wang, X.D.; Huang, Z.L.; Lin, T. Effect of renin-angiotensin system inhibitors on survival in kidney transplant recipients: A systematic review and meta-analysis. Kaohsiung J. Med. Sci. 2018, 34, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Girerd, S.; Jaisser, F. Mineralocorticoid receptor antagonists in kidney transplantation: Time to consider? Nephrol. Dial. Transplant. 2018, 33, 2080–2091. [Google Scholar] [CrossRef] [PubMed]
- Aftab, W.; Varadarajan, P.; Rasool, S.; Kore, A.; Pai, R.G. Beta and Angiotensin Blockades Are Associated With Improved 10-Year Survival in Renal Transplant Recipients. J. Am. Heart Assoc. 2013, 2, e000091. [Google Scholar] [CrossRef] [Green Version]
- Gavras, I.; Gavras, H. Role of α2-adrenergic receptors in hypertension. Am. J. Hypertens. 2001, 14, 171S–177S. [Google Scholar] [CrossRef] [Green Version]
- Coffman, T.M.; Himmelstein, S.; Best, C.; Klotman, P.E. Post-transplant hypertension in the rat: Effects of captopril and native nephrectomy. Kidney Int. 1989, 36, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Lerman, M.J.; Hinton, S.; Aronoff, R. Bilateral native nephrectomy for refractory hypertension in kidney transplant and kidney pancreas transplant patients. Int. J. Surg. Case Rep. 2015, 15, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, A.L.; Stoltz, D.J.; Chaudhuri, A.; Maestretti, L.; Grimm, P.C.; Concepcion, W.; Gallo, A.E. Superior hypertension management in pediatric kidney transplant patients after native nephrectomy. Transplantation 2018, 102, 1172. [Google Scholar] [CrossRef]
- Vanrenterghem, Y.F.C.; Claes, K.; Montagnino, G.; Fieuws, S.; Maes, B.; Villa, M.; Ponticelli, C. Risk Factors for Cardiovascular Events After Successful Renal Transplantation. Transplantation 2008, 85, 209–216. [Google Scholar] [CrossRef]
- Obremska, M.; Boratyńska, M.; Zyśko, D.; Szymczak, M.; Kurcz, J.; Goździk, A.; Rachwalik, M.; Klinger, M. Beneficial effect of bilateral native nephrectomy as complete denervation on left ventricular mass and function in renal transplant recipients. Pol. Arch. Med. Wewn. 2016, 126, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Chatzikyrkou, C.; Menne, J.; Gwinner, W.; Schmidt, B.M.; Lehner, F.; Blume, C.; Schwarz, A.; Haller, H.; Schiffer, M. Pathogenesis and management of hypertension after kidney transplantation. J. Hypertens. 2011, 29, 2283–2294. [Google Scholar] [CrossRef]
- Dobrowolski, L.C.; Bemelman, F.J.; Ten Berge, I.J.M.; van den Born, B.J.H.; Reekers, J.A.; Krediet, C.T.P. Renal denervation of the native kidneys for drug-resistant hypertension after kidney transplantation. Clin. Kidney J. 2015, 8, 79–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protasiewicz, M.; Początek, K.; Banasik, M.; Poręba, R.; Podgórski, M.; Kurcz, J.; Mysiak, A.; Klinger, M.; Boratyńska, M. Successful renal artery denervation in a renal transplant recipient with refractory hypertension. Am. J. Hypertens. 2014, 27, 982–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.; Promny, D.; Sinnecker, D.; Byrne, R.A.; Müller, A.; Dommasch, M.; Wildenauer, A.; Schmidt, G.; Heemann, U.; Laugwitz, K.L.; et al. Impact of sympathetic renal denervation: A randomized study in patients after renal transplantation (ISAR-denerve). Nephrol. Dial. Transplant. 2015, 30, 1928–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.; Korah, M.; Callender, G.; de Aguiar, R.B.; Haakinson, D. Metabolic disorders with kidney transplant. Clin. J. Am. Soc. Nephrol. 2020, 15, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Devine, P.A.; Courtney, A.E.; Maxwell, A.P. Cardiovascular risk in renal transplant recipients. J. Nephrol. 2019, 32, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Prasad, G.V.R. Post-transplant dyslipidemia: Mechanisms, diagnosis and management. World J. Transplant. 2016, 6, 125. [Google Scholar] [CrossRef]
- Kobashigawa, J.A.; Kasiske, B.L. Hyperlipidemia in solid organ transplantation. Transplantation 1997, 63, 331–338. [Google Scholar] [CrossRef]
- Thölking, G.; Schulte, C.; Jehn, U.; Schütte-Nütgen, K.; Pavenstädt, H.; Suwelack, B.; Reuter, S. The tacrolimus metabolism rate and dyslipidemia after kidney transplantation. J. Clin. Med. 2021, 10, 3066. [Google Scholar] [CrossRef]
- Kockx, M.; Glaros, E.; Leung, B.; Ng, T.W.; Berbée, J.F.P.; Deswaerte, V.; Nawara, D.; Quinn, C.; Rye, K.-A.; Jessup, W.; et al. Low-Density Lipoprotein Receptor–Dependent and Low-Density Lipoprotein Receptor–Independent Mechanisms of Cyclosporin A–Induced Dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1338–1349. [Google Scholar] [CrossRef] [Green Version]
- Tavori, H.; Rashid, S.; Fazio, S. On the function and homeostasis of PCSK9: Reciprocal interaction with LDLR and additional lipid effects. Atherosclerosis 2015, 238, 264–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badiou, S.; Garrigue, V.; Dupuy, A.M.; Chong, G.; Cristol, J.P.; Mourad, G. Small dense low-density lipoprotein in renal transplant recipients: A potential target for prevention of cardiovascular complications. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2006; pp. 2314–3216. [Google Scholar]
- Tory, R.; Sachs-Barrable, K.; Goshko, C.B.; Hill, J.S.; Wasan, K.M. Tacrolimus-induced elevation in plasma triglyceride concentrations after administration to renal transplant patients is partially due to a decrease in lipoprotein lipase activity and plasma concentrations. Transplantation 2009, 88, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Simha, V.; Qin, S.; Shah, P.; Smith, B.H.; Kremers, W.K.; Kushwaha, S.; Wang, L.; Pereira, N.L. Sirolimus therapy is associated with elevation in circulating PCSK9 levels in cardiac transplant patients. J. Cardiovasc. Transl. Res. 2017, 10, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponticelli, C.; Cucchiari, D. Renin-angiotensin system inhibitors in kidney transplantation: A benefit-risk assessment. J. Nephrol. 2017, 30, 155–157. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.A.; Leucker, T.; Martin, S.S.; Banach, M.; Jones, S.R.; Toth, P.P. Contemporary Management of Dyslipidemia. Drugs 2022, 82, 559–576. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; Backer, G.G.D.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Anderson, J.L.C.; van Der Giet, M.; Gomes Neto, A.W.; Bakker, S.J.L.; Tietge, U.J.F. Statin use and incident cardiovascular events in renal transplant recipients. Eur. J. Clin. Investig. 2021, 51, e13594. [Google Scholar] [CrossRef]
- Jun, M.; Zhu, B.; Tonelli, M.; Jardine, M.J.; Patel, A.; Neal, B.; Liyanage, T.; Keech, A.; Cass, A.; Perkovic, V. Effects of fibrates in kidney disease: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2012, 60, 2061–2071. [Google Scholar] [CrossRef] [Green Version]
- Ponticelli, C.; Arnaboldi, L.; Moroni, G.; Corsini, A. Treatment of dyslipidemia in kidney transplantation. Expert Opin. Drug Saf. 2020, 19, 257–267. [Google Scholar] [CrossRef]
- Langone, A.J.; Chuang, P. Ezetimibe in renal transplant patients with hyperlipidemia resistant to HMG-CoA reductase inhibitors. Transplantation 2006, 81, 804–807. [Google Scholar] [CrossRef]
- Gaudet, D.; López-Sendón, J.L.; Averna, M.; Bigot, G.; Banach, M.; Letierce, A.; Loy, M.; Samuel, R.; Manvelian, G.; Batsu, I.; et al. Safety and efficacy of alirocumab in a real-life setting: The ODYSSEY APPRISE study. Eur. J. Prev. Cardiol. 2021, 28, 1864–1872. [Google Scholar] [CrossRef] [PubMed]
- Akoumianakis, I.; Zvintzou, E.; Kypreos, K.; Filippatos, T.D. ANGPTL3 and apolipoprotein C-III as novel lipid-lowering targets. Curr. Atheroscler. Rep. 2021, 23, 20. [Google Scholar] [CrossRef]
- Scheuermann, U.; Babel, J.; Pietsch, U.-C.; Weimann, A.; Lyros, O.; Semmling, K.; Hau, H.-M.; Seehofer, D. Recipient obesity as a risk factor in kidney transplantation. BMC Nephrol. 2022, 23, 37. [Google Scholar] [CrossRef] [PubMed]
- Ri, M.; Aikou, S.; Seto, Y. Obesity as a surgical risk factor. Ann. Gastroenterol. Surg. 2018, 2, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Lafranca, J.A.; IJermans, J.N.M.; Betjes, M.G.H.; Dor, F.J.M.F. Body mass index and outcome in renal transplant recipients: A systematic review and meta-analysis. BMC Med. 2015, 13, 111. [Google Scholar]
- Lentine, K.L.; Rey, L.A.R.; Bacchi, G.; Wasi, N.; Schmitz, L.; Salvalaggio, P.R.; Abbott, K.C.; Schnitzler, M.A.; Neri, L.; Brennan, D.C. Obesity and cardiac risk after kidney transplantation: Experience at one center and comprehensive literature review. Transplantation 2008, 86, 303. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, K.A.; Campbell, S.B.; Hawley, C.M.; Nicol, D.L.; Johnson, D.W.; Isbel, N.M. Obesity is associated with worsening cardiovascular risk factor profiles and proteinuria progression in renal transplant recipients. Am. J. Transplant. 2005, 5, 2710–2718. [Google Scholar] [CrossRef]
- Ladhani, M.; Craig, J.C.; Irving, M.; Clayton, P.A.; Wong, G. Obesity and the risk of cardiovascular and all-cause mortality in chronic kidney disease: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2017, 32, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Foster, M.C.; Weiner, D.E.; Bostom, A.G.; Carpenter, M.A.; Inker, L.A.; Jarolim, P.; Joseph, A.A.; Kusek, J.W.; Pesavento, T.; Pfeffer, M.A.; et al. Filtration markers, cardiovascular disease, mortality, and kidney outcomes in stable kidney transplant recipients: The FAVORIT trial. Am. J. Transplant. 2017, 17, 2390–2399. [Google Scholar] [CrossRef] [Green Version]
- Weiner, D.E.; Park, M.; Tighiouart, H.; Joseph, A.A.; Carpenter, M.A.; Goyal, N.; House, A.A.; Hsu, C.-Y.; Ix, J.H.; Jacques, P.F.; et al. Albuminuria and allograft failure, cardiovascular disease events, and all-cause death in stable kidney transplant recipients: A cohort analysis of the FAVORIT trial. Am. J. Kidney Dis. 2019, 73, 51–61. [Google Scholar] [CrossRef]
- Lam, N.N.; Tonelli, M.; Lentine, K.L.; Hemmelgarn, B.; Ye, F.; Wen, K.; Klarenbach, S. Albuminuria and posttransplant chronic kidney disease stage predict transplant outcomes. Kidney Int. 2017, 92, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Kalil, R.S.; Carpenter, M.A.; Ivanova, A.; Gravens-Mueller, L.; John, A.A.; Weir, M.R.; Pesavento, T.; Bostom, A.G.; Pfeffer, M.A.; Hunsicker, L.G. Impact of hyperuricemia on long-term outcomes of kidney transplantation: Analysis of the FAVORIT study. Am. J. Kidney Dis. 2017, 70, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Podestà, M.A.; Moroni, G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020, 98, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Bardin, T.; Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef]
- Mackenzie, I.S.; Ford, I.; Nuki, G.; Hallas, J.; Hawkey, C.J.; Webster, J.; Ralston, S.H.; Walters, M.; Robertson, M.; De Caterina, R.; et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): A multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 2020, 396, 1745–1757. [Google Scholar] [CrossRef]
- Shen, X.; Li, J.; Fu, Q.; Liu, L.; Gao, X.; Chen, X.; Chen, P.; Wang, C. Comparison of efficacy and safety between febuxostat and allopurinol in early post-renal transplant recipients with new onset of hyperuricemia. J. Clin. Pharm. Ther. 2019, 44, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Love, B.L.; Barrons, R.; Veverka, A.; Snider, K.M. Urate-lowering therapy for gout: Focus on febuxostat. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 594–608. [Google Scholar] [CrossRef]
- van Guldener, C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol. Dial. Transplant. 2006, 21, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
- Winkelmayer, W.C.; Kramar, R.; Curhan, G.C.; Chandraker, A.; Endler, G.; Födinger, M.; Hörl, W.H.; Sunder-Plassmann, G. Fasting plasma total homocysteine levels and mortality and allograft loss in kidney transplant recipients: A prospective study. J. Am. Soc. Nephrol. 2005, 16, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Bostom, A.G.; Carpenter, M.A.; Kusek, J.W.; Levey, A.S.; Hunsicker, L.; Pfeffer, M.A.; Selhub, J.; Jacques, P.F.; Cole, E.; Gravens-Mueller, L.; et al. Homocysteine-lowering and cardiovascular disease outcomes in kidney transplant recipients: Primary results from the Folic Acid for Vascular Outcome Reduction in Transplantation trial. Circulation 2011, 123, 1763–1770. [Google Scholar] [CrossRef]
- Kang, A.; Nigwekar, S.U.; Perkovic, V.; Kulshrestha, S.; Zoungas, S.; Navaneethan, S.D.; Cass, A.; Gallagher, M.P.; Ninomiya, T.; Strippoli, G.F.; et al. Interventions for lowering plasma homocysteine levels in kidney transplant recipients. Cochrane Database Syst. Rev 2015, 4, CD007910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtaszek, E.; Oldakowska-Jedynak, U.; Kwiatkowska, M.; Glogowski, T.; Malyszko, J. Uremic Toxins, Oxidative Stress, Atherosclerosis in Chronic Kidney Disease, and Kidney Transplantation. Oxidative Med. Cell. Longev. 2021, 2021, 6651367. [Google Scholar] [CrossRef] [PubMed]
- Heeschen, C.; Dimmeler, S.; Hamm, C.W.; van den Brand, M.J.; Boersma, E.; Zeiher, A.M.; Simoons, M.L. Soluble CD40 ligand in acute coronary syndromes. N. Engl. J. Med. 2003, 348, 1104–1111. [Google Scholar] [CrossRef] [Green Version]
- Hancock, W.W.; Buelow, R.; Sayegh, M.H.; Turka, L.A. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nat. Med. 1998, 4, 1392–1396. [Google Scholar] [CrossRef] [PubMed]
- Stallone, G.; Pontrelli, P.; Rascio, F.; Castellano, G.; Gesualdo, L.; Grandaliano, G. Coagulation and fibrinolysis in kidney graft rejection. Front. Immunol. 2020, 11, 1807. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hu, M.C. Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Dis. 2017, 3, 15–23. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Neyra, J.A.; Hansrivijit, P.; Medaura, J.; Leeaphorn, N.; Davis, P.W.; Kaewput, W.; Bathini, T.; Salim, S.A.; Chewcharat, A.; et al. Serum klotho in living kidney donors and kidney transplant recipients: A meta-analysis. J. Clin. Med. 2020, 9, 1834. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Tanaka, T.; Eto, N.; Nangaku, M. Inflammation and hypoxia linked to renal injury by CCAAT/enhancer-binding protein δ. Kidney Int. 2015, 88, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Higgins, D.F.; Kimura, K.; Bernhardt, W.M.; Shrimanker, N.; Akai, Y.; Hohenstein, B.; Saito, Y.; Johnson, R.; Kretzler, M.; Cohen, C.D.; et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Investig. 2007, 117, 3810–3820. [Google Scholar] [CrossRef]
- Liu, M.; Ning, X.; Li, R.; Yang, Z.; Yang, X.; Sun, S.; Qian, Q. Signalling pathways involved in hypoxia-induced renal fibrosis. J. Cell. Mol. Med. 2017, 21, 1248–1259. [Google Scholar] [CrossRef]
- Ponticelli, C.; Campise, M.R. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int. 2021, 100, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Vostálová, J.; Galandáková, A.; Svobodová, A.R.; Orolinová, E.; Kajabová, M.; Schneiderka, P.; Zapletalová, J.; Štrebl, P.; Zadražil, J. Time-Course Evaluation of Oxidative Stress-Related Biomarkers after Renal Transplantation. Ren. Fail. 2012, 34, 413–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianciolo, G.; Galassi, A.; Capelli, I.; Schillaci, R.; La Manna, G.; Cozzolino, M. Klotho-FGF23, cardiovascular disease, and vascular calcification: Black or white? Curr. Vasc. Pharmacol. 2018, 16, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Bleskestad, I.H.; Thorsen, I.S.; Jonsson, G.; Skadberg, Ø.; Bergrem, H.; Gøransson, L.G. Soluble Klotho and intact fibroblast growth factor 23 in long-term kidney transplant patients. Eur. J. Endocrinol. 2015, 172, 343–350. [Google Scholar] [CrossRef]
- Shikida, Y.; Mizobuchi, M.; Yoshitake, O.; Kato, T.; Ogata, H.; Koiwa, F.; Honda, H. Lower soluble Klotho levels in the pretransplant period are associated with an increased risk of renal function decline in renal transplant patients. Ther. Apher. Dial. 2021, 25, 331–340. [Google Scholar] [CrossRef]
- Deng, G.; Liu, D. Klotho: A Promising Biomarker Closely Related to Kidney Transplant. Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant. 2018, 16, 253–258. [Google Scholar]
- Leone, F.; Lofaro, D.; Gigliotti, P.; Perri, A.; Vizza, D.; Toteda, G.; Lupinacci, S.; Armentano, F.; Papalia, T.; Bonofiglio, R. Soluble Klotho levels in adult renal transplant recipients are modulated by recombinant human erythropoietin. J. Nephrol. 2014, 27, 577–585. [Google Scholar] [CrossRef]
- Podestà, M.A.; Cucchiari, D.; Ciceri, P.; Messa, P.; Torregrosa, J.V.; Cozzolino, M. Cardiovascular calcifications in kidney transplant recipients. Nephrol. Dial. Transplant. 2021, gfab053. [Google Scholar] [CrossRef]
- Morena, M.; Jaussent, I.; Dupuy, A.M.; Bargnoux, A.S.; Kuster, N.; Chenine, L.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; et al. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: Potential partners in vascular calcifications. Nephrol. Dial. Transplant. 2015, 30, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Sotomayor, C.G.; te Velde-Keyzer, C.A.; de Borst, M.H.; Navis, G.J.; Bakker, S.J.L. Lifestyle, inflammation, and vascular calcification in kidney transplant recipients: Perspectives on long-term outcomes. J. Clin. Med. 2020, 9, 1911. [Google Scholar] [CrossRef]
- Pichler, G.; Haller, M.C.; Kainz, A.; Wolf, M.; Redon, J.; Oberbauer, R. Prognostic value of bone-and vascular-derived molecular biomarkers in hemodialysis and renal transplant patients: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2017, 32, 1566–1578. [Google Scholar] [CrossRef] [PubMed]
- Keyzer, C.A.; de Borst, M.H.; van den Berg, E.; Jahnen-Dechent, W.; Arampatzis, S.; Farese, S.; Bergmann, I.P.; Floege, J.; Navis, G.; Bakker, S.J.; et al. Calcification propensity and survival among renal transplant recipients. J. Am. Soc. Nephrol. 2016, 27, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Tandon, S.; Tandon, C. An update on vascular calcification and potential therapeutics. Mol. Biol. Rep. 2021, 48, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.S.; Grewal, R.; Le, T.H. Vitamin K deficiency: An emerging player in the pathogenesis of vascular calcification and an iatrogenic consequence of therapies in advanced renal disease. Am. J. Physiol. Ren. Physiol. 2020, 319, F618–F623. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; Rankin, A.J.; Gillis, K.A.; Zhu, L.Y.; Mangion, K.; Rutherford, E.; Roditi, G.H.; Witham, M.D.; Chantler, D.; Panarelli, M.; et al. The ViKTORIES trial: A randomized, double-blind, placebo-controlled trial of vitamin K supplementation to improve vascular health in kidney transplant recipients. Am. J. Transplant. 2021, 21, 3356–3368. [Google Scholar] [CrossRef] [PubMed]
- Anis, K.H.; Weinrauch, L.A.; D’Elia, J.A. Effects of smoking on solid organ transplantation outcomes. Am. J. Med. 2019, 132, 413–419. [Google Scholar] [CrossRef]
- Ponticelli, C.; Villa, M.; Cesana, B.; Montagnino, G.; Tarantino, A. Risk factors for late kidney allograft failure. Kidney Int. 2002, 62, 1848–1854. [Google Scholar] [CrossRef] [Green Version]
- Hurst, F.P.; Altieri, M.; Patel, P.P.; Jindal, T.R.; Guy, S.R.; Sidawy, A.N.; Agodoa, L.Y.; Abbott, K.C.; Jindal, R.M. Effect of smoking on kidney transplant outcomes: Analysis of the United States Renal Data System. Transplantation 2011, 92, 1101–1107. [Google Scholar] [CrossRef]
- Sözen, F.; Aydemir, S.; Erdal, R.; Haberal, M. Smoking Behaviors of Renal Transplant Recipients: An Analysis of 113 Patients. Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant. 2016, 14 (Suppl. 3), 95–99. [Google Scholar]
- Devresse, A.; Gohy, S.; Robert, A.; Kanaan, N. How to manage cigarette smoking in kidney transplant candidates and recipients? Clin. Kidney J. 2021, 14, 2295–2303. [Google Scholar] [CrossRef]
- Hartmann-Boyce, J.; Chepkin, S.C.; Ye, W.; Bullen, C.; Lancaster, T. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst. Rev. 2018, 5, CD000146. [Google Scholar] [CrossRef] [PubMed]
- Howes, S.; Hartmann-Boyce, J.; Livingstone-Banks, J.; Hong, B.; Lindson, N. Antidepressants for smoking cessation. Cochrane Database Syst. Rev. 2020, 4, CD000031. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.W.; Bostom, A.G.; Kim, H.; Eaton, C.B.; Gohh, R.; Kusek, J.W.; Pfeffer, M.A.; Risica, P.M.; Garber, C. Physical activity and risk of cardiovascular events and all-cause mortality among kidney transplant recipients. Nephrol. Dial. Transplant. 2020, 35, 1436–1443. [Google Scholar] [CrossRef]
- Zelle, D.M.; Corpeleijn, E.; Stolk, R.P.; de Greef, M.H.G.; Gans, R.O.B.; van der Heide, J.J.H.; Navis, G.; Bakker, S.J. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 2011, 6, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Lubrano, R.; Tancredi, G.; Bellelli, E.; Gentile, I.; Scateni, S.; Masciangelo, R.; Castro, G.D.; Versacci, P.; Elli, M. Influence of physical activity on cardiorespiratory fitness in children after renal transplantation. Nephrol. Dial. Transplant. 2012, 27, 1677–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAdams-DeMarco, M.A.; Ying, H.; Van Pilsum Rasmussen, S.; Schrack, J.; Haugen, C.E.; Chu, N.M.; Fernández, M.G.; Desai, N.; Walston, J.D.; Segev, D.L. Prehabilitation prior to kidney transplantation: Results from a pilot study. Clin. Transplant. 2019, 33, e13450. [Google Scholar] [CrossRef]
- Takahashi, A.; Hu, S.L.; Bostom, A. Physical activity in kidney transplant recipients: A review. Am. J. Kidney Dis. 2018, 72, 433–443. [Google Scholar] [CrossRef]
- Ponticelli, C.; Favi, E. Physical inactivity: A modifiable risk factor for morbidity and mortality in kidney transplantation. J. Pers. Med. 2021, 11, 927. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Gafter, U. Posttransplantation anemia in kidney transplant recipients. Acta Haematol. 2019, 142, 37–43. [Google Scholar] [CrossRef]
- Vinke, J.S.J.; Francke, M.I.; Eisenga, M.F.; Hesselink, D.A.; de Borst, M.H. Iron deficiency after kidney transplantation. Nephrol. Dial. Transplant. 2021, 36, 1976–1985. [Google Scholar] [CrossRef]
- Fishbane, S. Anemia and cardiovascular risk in the patient with kidney disease. Heart Fail. Clin. 2008, 4, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Rigatto, C.; Parfrey, P.; Foley, R.; Negrijn, C.; Tribula, C.; Jeffery, J. Congestive heart failure in renal transplant recipients: Risk factors, outcomes, and relationship with ischemic heart disease. J. Am. Soc. Nephrol. 2002, 13, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and cardiovascular health. Clin. Nutr. 2021, 40, 2946–2957. [Google Scholar] [CrossRef] [PubMed]
- Sarno, G.; Nappi, R.; Altieri, B.; Tirabassi, G.; Muscogiuri, E.; Salvio, G.; Paschou, S.A.; Ferrara, A.; Russo, E.; Vicedomini, D.; et al. Current evidence on vitamin D deficiency and kidney transplant: What’s new? Rev. Endocr. Metab. Disord. 2017, 18, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Skaaby, T.; Thuesen, B.H.; Linneberg, A. Vitamin D, cardiovascular disease and risk factors. Ultrav. Light Hum. Health Dis. Environ. 2017, 996, 221–230. [Google Scholar]
- Heravi, A.S.; Michos, E.D. Vitamin D and calcium supplements: Helpful, harmful, or neutral for cardiovascular risk? Methodist DeBakey Cardiovasc. J. 2019, 15, 207. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, A.L.; Jarareh, R.H.; Shraim, M. Quality of life for kidney transplant recipients and hemodialysis patients in Palestine: A cross-sectional study. BMC Nephrol. 2021, 22, 210. [Google Scholar] [CrossRef]
- Ronai, K.Z.; Szentkiralyi, A.; Lazar, A.S.; Ujszaszi, A.; Turanyi, C.; Gombos, F.; Mucsi, I.; Bodizs, R.; Molnar, M.Z.; Novak, M. Depressive symptoms are associated with objectively measured sleep parameters in kidney transplant recipients. J. Clin. Sleep Med. 2017, 13, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Burkhalter, H.; Denhaerynck, K.; Huynh-Do, U.; Binet, I.; Hadaya, K.; De Geest, S.; Psychosocial Interest Group, Swiss Transplant Cohort Study. Change of sleep quality from pre-to 3 years post-solid organ transplantation: The Swiss transplant cohort study. PLoS ONE 2017, 12, e0185036. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, A.; Kuper, H.; Hemingway, H. Depression as an aetiologic and prognostic factor in coronary heart disease: A meta-analysis of 6362 events among 146,538 participants in 54 observational studies. Eur. Heart J. 2006, 27, 2763–2774. [Google Scholar] [CrossRef] [Green Version]
- Dhar, A.K.; Barton, D.A. Depression and the link with cardiovascular disease. Front. Psychiatry 2016, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, G.; Lorenzon, E.; Montanaro, D. Effects of exercise in renal transplant recipients. World J. Transplant. 2012, 2, 46. [Google Scholar] [CrossRef] [PubMed]
- Jean-Louis, G.; Zizi, F.; Clark, L.T.; Brown, C.D.; McFarlane, S.I. Obstructive sleep apnea and cardiovascular disease: Role of the metabolic syndrome and its components. J. Clin. Sleep Med. 2008, 4, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholl, D.D.M.; Ahmed, S.B.; Loewen, A.H.S.; Hemmelgarn, B.R.; Sola, D.Y.; Beecroft, J.M.; Turin, T.C.; Hanly, P.J. Declining Kidney Function Increases the Prevalence of Sleep Apnea and Nocturnal Hypoxia. Chest 2012, 141, 1422–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoccali, C.; Roumeliotis, S.; Mallamaci, F. Sleep Apnea as a Cardiorenal Risk Factor in CKD and Renal Transplant Patients. Blood Purif. 2021, 50, 628–642. Available online: https://www.karger.com/doi/10.1159/000513424 (accessed on 15 June 2022). [CrossRef]
Antihypertensive Classes | References | Advantages | Side Effects |
---|---|---|---|
Thiazide Diuretics | Taber D. et al. [60] | Reduce extracellular expansion Reduce arteriolar resistance Consider in salt-sensitive HTN | Hypokalemia, hyponatremia Reversible increase in serum creatinine |
Loop Diuretics | Rizk J. et al. [61] | Reduce extracellular expansion Effective in heart failure | Hypokalemia, hyponatremia, hypomagnesemia Hypovolemia Ototoxicity |
Calcium Channel Blockers | Baroletti S. et al. [62] | Reduce arteriolar vasoconstriction Reverse ventricular hypertrophy | Peripheral oedema Gastroesophageal reflux Gum hypertrophy Non-dihydropyridine calcium channel blockers increase cyclosporine levels |
RAAS-inhibitors (ACEi and ARB) | Jiang Y. et al. [63] | Prevent heart failure Prevent intimal thickening Antiproteinuric effects | Small increase in serum creatinine Hyperkalemia Anemia Worsening renal function in the setting of TRAS or hypovolemia |
Mineralcorticoid Receptor Antagonists | Girerd S. et al. [64] | Improve outcomes in HFrEF | Hyperkalemia |
Beta-blockers | Aftab W. et al. [65] | Cardioprotective | Hyperlipidemia Interference with glucose metabolism Hypoglycemia in diabetic patients |
Alpha2 adrenergic agonists | Gavras I. et al. [66] | Peripheral vasodilation No change in renal plasma flow and GFR | Potential rebound HTN Orthostatic hypotension Dryness Confusion Constipation |
Alpha1 antagonists | Martinez-Castelao A. et al. [67] | Peripheral vasodilation | Headache, drowsiness, numbness Constipation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reggiani, F.; Moroni, G.; Ponticelli, C. Cardiovascular Risk after Kidney Transplantation: Causes and Current Approaches to a Relevant Burden. J. Pers. Med. 2022, 12, 1200. https://doi.org/10.3390/jpm12081200
Reggiani F, Moroni G, Ponticelli C. Cardiovascular Risk after Kidney Transplantation: Causes and Current Approaches to a Relevant Burden. Journal of Personalized Medicine. 2022; 12(8):1200. https://doi.org/10.3390/jpm12081200
Chicago/Turabian StyleReggiani, Francesco, Gabriella Moroni, and Claudio Ponticelli. 2022. "Cardiovascular Risk after Kidney Transplantation: Causes and Current Approaches to a Relevant Burden" Journal of Personalized Medicine 12, no. 8: 1200. https://doi.org/10.3390/jpm12081200
APA StyleReggiani, F., Moroni, G., & Ponticelli, C. (2022). Cardiovascular Risk after Kidney Transplantation: Causes and Current Approaches to a Relevant Burden. Journal of Personalized Medicine, 12(8), 1200. https://doi.org/10.3390/jpm12081200