Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Primary Analysis of the Dataset
2.4. Clinical Feature Selection and Classification Method Using Machine Learning
2.5. Algorithms of Each Machine Learning Model
3. Results
3.1. Basic Demographics and Selected Important Clinical Features
3.2. Diagnostic Performance of Each Machine Learning Model
3.3. Pairwise Comparison of AUC among Machine Learning Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strudwick, X.L.; Cowin, A.J. The role of the inflammatory response in burn injury. In Hot Topics in Burn Injuries; InTech: London, UK, 2018. [Google Scholar]
- Kramer, G.C.; Lund, T.; Herndon, D. Pathophysiology of burn shock and burn edema. In Total Burn Care, 4th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2012; pp. 103–113. [Google Scholar]
- Chae, D. Data science and machine learning in anesthesiology. Korean J. Anesthesiol. 2020, 73, 285–295. [Google Scholar] [CrossRef]
- Lee, C.K.; Hofer, I.; Gabel, E.; Baldi, P.; Cannesson, M. Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality. Anesthesiology 2018, 129, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What do we need to build explainable AI systems for the medical domain? arXiv 2017, arXiv:1712.09923. [Google Scholar]
- González-Nóvoa, J.A.; Busto, L.; Rodríguez-Andina, J.J.; Fariña, J.; Segura, M.; Gómez, V.; Vila, D.; Veiga, C. Using Explainable Machine Learning to Improve Intensive Care Unit Alarm Systems. Sensors 2021, 21, 7125. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Choukairi, F.; Dunn, K. Predicting survival in thermal injury: A systematic review of methodology of composite prediction models. Burns 2013, 39, 835–850. [Google Scholar] [CrossRef]
- Robb, L. Potential for Machine Learning in Burn Care. J. Burn Care Res. 2022, 43, 632–639. [Google Scholar] [CrossRef]
- Cobb, A.N.; Daungjaiboon, W.; Brownlee, S.A.; Baldea, A.J.; Sanford, A.P.; Mosier, M.M.; Kuo, P.C. Seeing the forest beyond the trees: Predicting survival in burn patients with machine learning. Am. J. Surg. 2018, 215, 411–416. [Google Scholar] [CrossRef]
- Stylianou, N.; Akbarov, A.; Kontopantelis, E.; Buchan, I.; Dunn, K.W. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches. Burns 2015, 41, 925–934. [Google Scholar] [CrossRef]
- Liu, N.T.; Salinas, J. Machine learning in burn care and research: A systematic review of the literature. Burns 2015, 41, 1636–1641. [Google Scholar] [CrossRef]
- Tran, N.K.; Albahra, S.; Pham, T.N.; Holmes, J.H.; Greenhalgh, D.; Palmieri, T.L.; Wajda, J.; Rashidi, H.H. Novel application of an automated-machine learning development tool for predicting burn sepsis: Proof of concept. Sci. Rep. 2020, 10, 12354. [Google Scholar] [CrossRef]
- Ray, D.E.; Karlekar, M.B.; Crouse, D.L.; Campbell, M.; Curtis, J.R.; Edwards, J.; Frontera, J.; Lustbader, D.R.; Mosenthal, A.C.; Mulkerin, C.; et al. Care of the Critically Ill Burn Patient. An Overview from the Perspective of Optimizing Palliative Care. Ann. Am. Thorac. Soc. 2017, 14, 1094–1102. [Google Scholar] [CrossRef]
- Kniep, H.C.; Madesta, F.; Schneider, T.; Hanning, U.; Schonfeld, M.H.; Schon, G.; Fiehler, J.; Gauer, T.; Werner, R.; Gellissen, S. Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology 2019, 290, 479–487. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. A Desicion-Theoretic Generalization of On-Line Learn and an Application to Boosting; Springer: Berlin/Heidelberg, Germany, 1995; pp. 23–37. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009; Volume 33. [Google Scholar]
- Wu, T.-F.; Lin, C.-J.; Weng, R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5, 975–1005. [Google Scholar]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Defazio, A.; Bach, F.; Lacoste-Julien, S. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Adv. Neural Inf. Process. Syst. 2014, 27, 1646–1654. [Google Scholar]
- Yu, H.-F.; Huang, F.-L.; Lin, C.-J. Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 2011, 85, 41–75. [Google Scholar] [CrossRef] [Green Version]
- Brusselaers, N.; Monstrey, S.; Vogelaers, D.; Hoste, E.; Blot, S. Severe burn injury in Europe: A systematic review of the incidence, etiology, morbidity, and mortality. Crit. Care 2010, 14, R188. [Google Scholar] [CrossRef] [Green Version]
- Angulo, M.; Moreno, L.; Aramendi, I.; Dos Santos, G.; Cabrera, J.; Burghi, G. Complete Blood Count and Derived Indices: Evolution Pattern and Prognostic Value in Adult Burned Patients. J. Burn Care Res. 2020, 41, 1260–1266. [Google Scholar] [CrossRef]
- Yoon, J.; Kym, D.; Won, J.H.; Hur, J.; Yim, H.; Cho, Y.S.; Chun, W. Trajectories of longitudinal biomarkers for mortality in severely burned patients. Sci. Rep. 2020, 10, 16193. [Google Scholar] [CrossRef]
- Ryan, C.M.; Schoenfeld, D.A.; Thorpe, W.P.; Sheridan, R.L.; Cassem, E.H.; Tompkins, R.G. Objective estimates of the probability of death from burn injuries. N. Engl. J. Med. 1998, 338, 362–366. [Google Scholar] [CrossRef]
- Lionelli, G.T.; Pickus, E.J.; Beckum, O.K.; Decoursey, R.L.; Korentager, R.A. A three decade analysis of factors affecting burn mortality in the elderly. Burns 2005, 31, 958–963. [Google Scholar] [CrossRef]
- Covington, D.S.; Wainwright, D.J.; Parks, D.H. Prognostic indicators in the elderly patient with burns. J. Burn Care Rehabil. 1996, 17, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.C.; Jehle, D. The red blood cell distribution width. J. Emerg. Med. 1991, 9 (Suppl. S1), 71–74. [Google Scholar] [CrossRef]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, S.W.; Adamson, J.W. The anemia of chronic disorders: Studies of marrow regulation and iron metabolism. Blood 1975, 45, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 2015, 52, 86–105. [Google Scholar] [CrossRef]
- Guo, J.; Qin, Q.; Hu, H.; Zhou, D.; Sun, Y.; Deng, A. Red Cell Distribution Width (RDW) as a Prognostic Tool in Burn Patients. Clin. Lab. 2016, 62, 1973–1978. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, C.; Li, S.J.; Wang, C.; Guo, F.; Peszel, A.; Liu, S.; Wang, F.; Sun, Y.X.; Wang, Y.J.; et al. Prognostic values of red blood cell distribution width, platelet count, and red cell distribution width-to-platelet ratio for severe burn injury. Sci. Rep. 2017, 7, 13720. [Google Scholar] [CrossRef] [Green Version]
- Scott, H.; Colborn, K. Machine Learning for Predicting Sepsis In-hospital Mortality: An Important Start. Acad. Emerg. Med. 2016, 23, 1307. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lam, K.M.; Deng, Z.; Choi, K.S. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput. Biol. Med. 2015, 63, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Frye, K.E.; Izenberg, S.D.; Williams, M.D.; Luterman, A. Simulated biologic intelligence used to predict length of stay and survival of burns. J. Burn Care Rehabil. 1996, 17, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Estahbanati, H.K.; Bouduhi, N. Role of artificial neural networks in prediction of survival of burn patients-a new approach. Burns 2002, 28, 579–586. [Google Scholar] [CrossRef]
Variable | Survivor Group (n = 533) | Non-Survivor Group (n = 198) | p-Value |
---|---|---|---|
Age, years | 52.0 ± 14.4 | 58.0 ± 15.9 | <0.001 |
Sex, male/female | 441 (82.7)/92 (17.3) | 166 (83.8)/32 (16.2) | 0.825 |
Body mass index, kg/m2 | 23.6 ± 3.4 | 23.5 ± 3.1 | 0.765 |
Diabetes | 22 (4.1) | 26 (13.1) | <0.001 |
Hypertension | 72 (13.5) | 45 (22.7) | 0.003 |
ASA PS | <0.001 | ||
I/II/III and IV | 71 (13.3)/240 (45.0)/222 (41.7) | 6 (3.0)/26 (13.1)/166 (83.8) | |
TBSA burned, % | 38.5 ± 15.1 | 63.6 ± 20.7 | <0.001 |
Inhalation injury | 165 (31.0) | 110 (55.6) | <0.001 |
Hemoglobin, g/dL | 13.5 ± 3.0 | 13.9 ± 3.5 | 0.100 |
RDW | 13.0 ± 1.0 | 13.8 ± 1.4 | <0.001 |
Platelet count, ×109/L | 204.8 ± 111.3 | 180.5 ± 133.8 | 0.023 |
Prothrombin time, INR | 1.1 ± 0.2 | 1.2 ± 0.3 | <0.001 |
Albumin, g/dL | 2.9 ± 0.8 | 2.5 ± 0.9 | <0.001 |
Creatinine, mg/dL | 0.78 ± 0.42 | 1.02 ± 0.62 | <0.001 |
NLR | 10.6 ± 19.1 | 11.2 ± 15.7 | 0.695 |
PLR | 276 ± 464 | 304 ± 606 | 0.553 |
MLR | 0.85 ± 1.31 | 1.13 ± 2.39 | 0.121 |
SII | 2171 ± 4108 | 1909 ± 3783 | 0.435 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Variables | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value |
Age, years | 1.027 (1.016–1.039) | <0.001 | 1.067 (1.047–1.088) | <0.001 |
Diabetes mellitus | 3.511 (1.940–6.356) | <0.001 | 3.211 (1.288–8.000) | 0.012 |
Hypertension | 1.883 (1.244–2.852) | 0.003 | 1.348 (0.683–2.660) | 0.389 |
ASA PS | ||||
I | 1.000 (Reference) | 1.000 (Reference) | ||
II | 1.282 (0.508–3.237) | 0.599 | 1.101 (0.329–3.681) | 0.876 |
III and IV | 8.848 (3.755–20.852) | <0.001 | 4.918 (1.581–15.305) | 0.006 |
TBSA burned, % | 1.075 (1.063–1.087) | <0.001 | 1.095 (1.078–1.113) | <0.001 |
Inhalation injury | 2.788 (1.994–3.898) | <0.001 | 1.380 (0.844–2.257) | 0.199 |
Hemoglobin, g/dL | 1.048 (0.995–1.104) | 0.075 | ||
RDW | 1.711 (1.471–1.990) | <0.001 | 1.679 (1.378–2.046) | <0.001 |
Platelet count, ×109/L | 0.998 (0.997–1.000) | 0.014 | 0.999 (0.997–1.001) | 0.477 |
Prothrombin time, INR | 29.531 (10.480–83.213) | <0.001 | 4.649 (1.259–17.171) | 0.021 |
Albumin, g/dL | 0.596 (0.480–0.741) | <0.001 | 0.981 (0.686–1.404) | 0.916 |
Creatinine, mg/dL | 2.894 (1.908–4.391) | <0.001 | 1.818 (1.181–2.798) | 0.007 |
NLR | 1.002 (0.993–1.010) | 0.696 | ||
PLR | 1.000 (1.000–1.000) | 0.506 | ||
MLR | 1.090 (0.994–1.195) | 0.068 | ||
SII | 1.000 (1.000–1.000) | 0.440 |
Variables | Feature Importance |
---|---|
TBSA burned | 0.28447 ± 0.28447 |
RDW | 0.10053 ± 0.10053 |
Age | 0.08842 ± 0.08842 |
Creatinine | 0.08194 ± 0.08194 |
Platelet | 0.07586 ± 0.07586 |
PLR | 0.07459 ± 0.07459 |
Prothrombin time | 0.06747 ± 0.06747 |
ASA PS | 0.06676 ± 0.06676 |
Albumin | 0.05457 ± 0.05457 |
Hemoglobin | 0.05401 ± 0.05401 |
SII | 0.05139 ± 0.05139 |
Model | AUC (95% CI) | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|
RF | 0.922 (0.902–0.942) | 66.2% | 93.8% | 79.9% | 88.2% |
AB | 0.915 (0.883–0.947) | 69.2% | 91.2% | 74.5% | 88.8% |
DT | 0.769 (0.705–0.833) | 68.7% | 85.2% | 63.3% | 88.0% |
SVM | 0.706 (0.582–0.829) | 3.0% | 99.0% | 54.5% | 73.3% |
LGR | 0.917 (0.895–0.939) | 68.7% | 92.7% | 77.7% | 88.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.H.; Cho, Y.; Shin, D.; Choi, S.-S. Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models. J. Pers. Med. 2022, 12, 1293. https://doi.org/10.3390/jpm12081293
Park JH, Cho Y, Shin D, Choi S-S. Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models. Journal of Personalized Medicine. 2022; 12(8):1293. https://doi.org/10.3390/jpm12081293
Chicago/Turabian StylePark, Ji Hyun, Yongwon Cho, Donghyeok Shin, and Seong-Soo Choi. 2022. "Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models" Journal of Personalized Medicine 12, no. 8: 1293. https://doi.org/10.3390/jpm12081293
APA StylePark, J. H., Cho, Y., Shin, D., & Choi, S. -S. (2022). Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models. Journal of Personalized Medicine, 12(8), 1293. https://doi.org/10.3390/jpm12081293