Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Cultures, and Growth Conditions
2.2. OMV Sample Preparation
2.3. Transmission Electron Microscopy (TEM)
2.4. Nanoparticle Tracking Analysis (NTA) of OMVs
2.5. Protein Extraction
2.6. iTRAQ Labeling and SCX Fractionation
2.7. LC–MS/MS Analysis
2.8. Proteomic and Bioinformatic Analysis
2.9. Statistical Analysis
3. Results
3.1. TEM Analysis of OMVs Released from E. Coli BW25113 and Mutants
3.2. NTA Analysis of OMVs from WT and Mutant E. Coli
3.3. Proteomic Analysis of the OMV Fraction from E. Coli
3.4. Heat Map Analysis of Mutant Strains Compared to E. Coli BW25113 Strain
3.5. GO Bar Chart of Mutants Versus E. Coli BW25113 strains
3.6. Pathways Predicted by KEGG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Socorro, R.M.D.; Avila-Calderón, E.D.; Aguilera-Arreola, M.G.; López-Merino, A.; Ruiz, E.A.; Morales-García, M.D.R.; López-Villegas, E.O.; Gomez-Lunar, Z.; Arellano-Reynoso, B.; Contreras-Rodríguez, A. Comparative proteomic analysis of outer membrane vesicles from Brucella suis, Brucella ovis, Brucella canis and Brucella neotomae. Arch. Microbiol. 2021, 203, 1611–1626. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Bang, J.Y.; Park, G.W.; Choi, D.S.; Kang, J.S.; Kim, H.J.; Park, K.S.; Lee, J.O.; Kim, Y.K.; Kwon, K.H.; et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 2007, 7, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, M.J.; Kesty, N.C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005, 19, 2645–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horstman, A.L.; Kuehn, M.J. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem. 2000, 275, 12489–12496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wai, S.N.; Lindmark, B.; Söderblom, T.; Takade, A.; Westermark, M.; Oscarsson, J.; Jass, J.; Richter-Dahlfors, A.; Mizunoe, Y.; Uhlin, B.E. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 2003, 115, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Nevot, M.; Deroncelé, V.; Messner, P.; Guinea, J.; Mercadé, E. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3. Environ. Microbiol. 2006, 8, 1523–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, S.J.; Kuehn, M.J. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 2006, 8, 2400–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, T.N.; Kuehn, M.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 2010, 74, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Veith, P.D.; Chen, Y.Y.; Gorasia, D.G.; Chen, D.; Glew, M.D.; O’Brien-Simpson, N.M.; Cecil, J.D.; Holden, J.A.; Reynolds, E.C. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors. J. Proteome Res. 2014, 13, 2420–2432. [Google Scholar] [CrossRef]
- Bitto, N.J.; Chapman, R.; Pidot, S.; Costin, A.; Lo, C.; Choi, J.; D’Cruze, T.; Reynolds, E.C.; Dashper, S.G.; Turnbull, L.; et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci. Rep. 2017, 7, 7072. [Google Scholar] [CrossRef]
- Augustyniak, D.; Seredyński, R.; McClean, S.; Roszkowiak, J.; Roszniowski, B.; Smith, D.L.; Drulis-Kaw, Z.; Mackiewicz, P. Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution. Sci. Rep. 2018, 8, 4955. [Google Scholar] [CrossRef] [Green Version]
- Backert, S.; Bernegger, S.; Skórko-Glonek, J.; Wessler, S. Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis. Cell Microbiol. 2018, 20, 12845. [Google Scholar] [CrossRef] [Green Version]
- Maerz, J.K.; Steimle, A.; Lange, A.; Bender, A.; Fehrenbacher, B.; Frick, J.S. Outer membrane vesicles blebbing contributes to B. vulgatus mpk-mediated immune response silencing. Gut Microbes 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Robles, T.; Dillard, R.S.; Cairns, L.S.; Silva-Valenzuela, C.A.; Housman, M.; Ali, A.; Wright, E.R.; Camilli, A. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol. 2018, 200, e00792-17. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.R.; Stewart, N.A.; Veenstra, T.D. Chapter 8—Proteomics: The Deciphering of the Functional Genome. In Essentials of Genomic and Personalized Medicine; Ginsburg, G.S., Willard, H.F., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 89–96. ISBN 9780123749345. [Google Scholar]
- Karp, P.D.; Riley, M.; Saier, M.; Paulsen, I.T.; Collado-Vides, J.; Paley, S.M.; Pellegrini-Toole, A.; Bonavides, C.; Gama-Castro, S. The EcoCyc database. Nucleic Acids Res. 2002, 30, 56–58. [Google Scholar] [CrossRef] [Green Version]
- Pagnout, C.; Sohm, B.; Razafitianamaharavo, A.; Caillet, C.; Offroy, M.; Leduc, M.; Gendre, H.; Jomini, S.; Beaussart, A.; Bauda, P.; et al. Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 2019, 9, 9696. [Google Scholar] [CrossRef] [Green Version]
- Schnaitman, C.A.; Klena, J.D. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 1993, 57, 655–682. [Google Scholar] [CrossRef]
- Wang, X.; Quinn, P.J. Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog. Lipid Res. 2010, 49, 97–107. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Ren, G.; Li, Y.; Wang, X. Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar. Drugs 2015, 13, 3325–3339. [Google Scholar] [CrossRef] [Green Version]
- Nakao, R.; Ramstedt, M.; Wai, S.N.; Uhli, B.E. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS ONE 2012, 7, e51241. [Google Scholar] [CrossRef] [Green Version]
- Das, T.; Sharma, P.K.; Busscher, H.J.; van der Mei, H.C.; Krom, B.P. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl. Environ. Microbiol. 2010, 76, 3405–3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metcalf, D.G.; Bowler, P.G. Biofilm delays wound healing: A review of the evidence. Burn. Trauma 2013, 1, 5–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleck, P.; Olerud, J.E. Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model. Wound Repair Regen. 2012, 20, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, A.M.; Cerqueira, M.A.; Bañobre-Lópes, M.; Pastrana, L.M.; Sillankorva, S. Bacteriophages for chronic wound treatment: From traditional to novel delivery systems. Viruses 2020, 12, 235. [Google Scholar] [CrossRef] [Green Version]
- Bessa, L.J.; Fazii, P.; Di-Giulio, M.; Cellini, L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: Some remarks about wound infection. Int. Wound J. 2015, 12, 47–52. [Google Scholar] [CrossRef]
- Lachiewicz, A.M.; Hauck, C.G.; Weber, D.J.; Cairns, B.A.; van Duin, D. Bacterial infections after burn injuries: Impact of multidrug resistance. Clin. Infect. Dis. 2017, 65, 2130–2136. [Google Scholar] [CrossRef]
- Feldman, M.F.; Wacker, M.; Hernandez, M.; Hitchen, P.G.; Marolda, C.L.; Kowarik, M.; Morris, H.R.; Dell, A.; Valvano, M.A.; Aebi, M. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 2005, 102, 3016–3021. [Google Scholar] [CrossRef] [Green Version]
- Ritcher, R.; Kamal, M.A.M.; Koch, M.; Niebuur, B.J.; Huber, A.L.; Goes, A.; Volz, C.; Vergalli, J.; Kraus, T.; Müller, R.; et al. An outer membrane vesicle-based permeation assay (OMPA) for assessing bacterial bioavaibility. Adv. Health Mat. 2021, 11, 2101180. [Google Scholar]
- Turner, L.; Bitto, N.J.; Steer, D.L.; Lo, C.; D’Costa, K.; Ramm, G.; Shambrook, M.; Hill, A.F.; Ferrero, R.L.; Kaparakis-Liaskos, M. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content. Front. Immunol. 2018, 9, 1456. [Google Scholar] [CrossRef] [Green Version]
- Reimer, S.L.; Beniac, D.R.; Hiebert, S.L.; Booth, T.F.; Chong, P.M.; Westmacott, G.R.; Zhanel, G.G.; Bay, D.C. Comparative analysis of outer membrane vesicle isolation methods with an Escherichia coli tolA mutant reveals a hypervesiculating phenotype with outer-inner membrane vesicle content. Front. Microbiol. 2021, 12, 628801. [Google Scholar] [CrossRef]
- Miao, J.; Chen, F.; Duan, S.; Gao, X.; Liu, G.; Chen, Y.; Dixon, W.; Xiao, H.; Cao, Y. iTRAQ-based quantitative proteomic analysis of the antimicrobial mechanism of peptide F1 against Escherichia coli. J. Agric. Food Chem. 2015, 63, 7190–7197. [Google Scholar] [CrossRef]
- Wang, Y.; Arthur, E.W.; Liu, N.; Li, X.; Xiang, W.; Maxwell, A.; Li, Z.; Zhou, Z. iTRAQ-based quantitative proteomics analysis of hela cells infected with Chlamydia muridarum TC0668 mutant and wild-type strains. Front. Microbiol. 2019, 10, 2553. [Google Scholar] [CrossRef] [Green Version]
- UniProt. Available online: http://www.uniprot.org/ (accessed on 8 March 2022).
- Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Bomberger, J.M.; MacEachran, D.P.; Coutermarsh, B.A.; Ye, S.; O’Toole, G.A.; Stanton, B.A. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 2009, 5, e1000382. [Google Scholar] [CrossRef] [Green Version]
- Hillman, T. Antisense Inhibition of accA in E. coli Suppressed luxS Expression and Increased Antibiotic Susceptibility. Available online: https://www.biorxiv.org/content/10.1101/747980v7.full.pdf+html (accessed on 8 March 2022).
- Kassab, E.; Fuchs, M.; Haack, M.; Mehlmer, N.; Brueck, T.B. Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids. Microb. Cell Fact. 2019, 18, 163. [Google Scholar] [CrossRef] [Green Version]
- Marolda, C.L.; Valvano, M.A. The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with the GalU protein possibly to regulate cellular levels of UDP-glucose. Mol. Microbiol. 1996, 22, 827–840. [Google Scholar] [CrossRef]
- Bracher, A.; Verghese, J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front. Mol. Biosci. 2015, 2, 10. [Google Scholar] [CrossRef]
- Jovanovic, G.; Lloyd, L.J.; Stumpf, M.P.H.; Mayhew, A.J.; Buck, M. Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli. J. Biol. Chem. 2006, 281, 21147–21161. [Google Scholar] [CrossRef] [Green Version]
- Yung, P.Y.; Grasso, L.L.; Mohidin, A.F.; Acerbi, E.; Hinks, J.; Seviour, T.; Marsili, E.; Lauro, F.M. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci. Rep. 2016, 6, 19899. [Google Scholar] [CrossRef] [Green Version]
- Knöppel, A.; Andersson, D.I.; Näsvall, J. Synonymous mutations in rpsT lead to ribosomal assembly defects that can be compensated by mutations in fis and rpoA. Front. Microbiol. 2020, 11, 340. [Google Scholar] [CrossRef]
- Aseev, L.V.; Koledinskaya, L.S.; Boni, I.V. Regulation of ribosomal protein operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the transcriptional and translational levels. J. Bacteriol. 2016, 198, 2494–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, C.T.; Kloser, A.W.; Schnaitman, C.A.; Stein, M.A.; Gottesman, S.; Gibson, B.W. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J. Bacteriol. 1992, 174, 2525–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klena, J.D.; Ashford, R.S.; Schnaitman, C.A. Role of Escherichia coli K-12 rfa genes and the rfp gene of Shigella dysenteriae 1 in generation of lipopolysaccharide core heterogeneity and attachment of O antigen. J. Bacteriol. 1992, 174, 7297–7307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DebRoy, C.; Roberts, E.; Fratamico, P.M. Detection of O antigens in Escherichia coli. Anim. Health Res. Rev. 2011, 12, 169–185. [Google Scholar] [CrossRef]
- McAllister, K.A.; Peery, R.B.; Zhao, G. Acyl carrier protein synthases from gram-negative, gram-positive, and atypical bacterial species: Biochemical and structural properties and physiological implications. J. Bacteriol. 2006, 188, 4737–4748. [Google Scholar] [CrossRef] [Green Version]
- Guest, J.R.; Stephens, P.E. Molecular cloning of the pyruvate dehydrogenase complex genes of Escherichia coli. J. Gen. Microbiol. 1980, 121, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Membrillo-Hernandez, J.; Echave, P.; Cabiscol, E.; Tamarit, J.; Ros, J.; Lin, E.C. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase: Genetic and biochemical studies of the mutant proteins. J. Biol Chem. 2000, 275, 33869–33875. [Google Scholar] [CrossRef] [Green Version]
- Araki, K.; Nagata, K. Protein Folding and Quality Control in theER. Cold Spring Harb. Perspect. Biol. 2012, 4, a015438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, J.; Li, X.; Meng, X.; Fang, X. Identification of the Endoplasmic Reticulum Localization Sequence and N-Glycosylation of Matrix Metalloproteinase 26. RSC Adv. 2019, 9, 23053–23060. [Google Scholar] [CrossRef] [Green Version]
- Sundara, B.S.; Seol, E.; Raj, S.M.; Park, S. Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: Reduction of pyruvate accumulation. Biotechnol. Biofuels 2016, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Siddiquee, K.A.; Arauzo-Bravo, M.J.; Shimizu, K. Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol. Lett. 2004, 235, 25–33. [Google Scholar] [CrossRef]
- Charpentier, B.; Branlant, C. The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme E sigma 70 and by the heat shock RNA polymerase E sigma 32. J. Bacteriol. 1994, 176, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Busch, N.A.; Zanzot, E.M.; Loiselle, P.M.; Carter, E.A.; Allaire, J.E.; Yarmush, M.L.; Warren, H.S. A model of infected burn wounds using Escerichia coli 018:K1:H7 for study gram negative bacteremia and sepsis. Infect. Immun. 2000, 68, 3349–3351. [Google Scholar] [CrossRef] [Green Version]
- Crompton, R.; Williams, H.; Campbell, L.; Holden, K.; Crickshank, S.; Haedman, M.J. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. Lab. Investig. 2016, 96, 439–449. [Google Scholar] [CrossRef]
- Fleetwood, A.J.; Lee, M.K.S.; Singleton, W.; Achuthan, A.; Lee, M.C.; O’Brie-Simpson, N.M.; Cook, A.D.; Murphy Aj Dashper, S.G.; Reynolds, E.C.; Hamilton, J.A. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by porphyromonas gingivalis and its outer membrane vesicles. Front. Cell Infect. Microbiol. 2017, 7, 351. [Google Scholar] [CrossRef]
- Masters, S.L.; Dunne, A.; Subramanian, S.L.; Hull, R.L.; Tannahill, G.M.; Sharp, F.A.; Becker, C.; Franchi, L.; Yoshihara, E.; Chen, Z.; et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat. Immunol. 2010, 11, 897–904. [Google Scholar] [CrossRef]
- Everts, B.; Amiel, E.; Huang, S.C.; Smith, A.M.; Chang, C.H.; Lam, W.Y.; Redmann, V.; Freitas, T.C.; Blagih, J.; van der Windt, G.J.; et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 2014, 15, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Tomic-Canic, M.; Agren, M.A.; Alvarez OMRovie, D.T.; Maibach, H. Epidermal repair and chronic wounds. In The Epidermis in Wound Healing; Rovee, D.T., Maibach, H.I., Eds.; CRS Press: New York, NY, USA, 2008; pp. 26–57. [Google Scholar]
- Fonder, M.A.; Lazarus, G.S.; Cowan, D.A.; Aronson-Cook, B.; Kohli, A.R.; Mamelak, A.J. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressing. J. Am. Acad. Dermatol. 2008, 58, 185–206. [Google Scholar] [CrossRef]
- Schultz, G.; Bjarnsholt, T.; James, G.A.; Leaper, D.J.; McBain, A.J.; Malone, M.; Stoodley, P.; Swanson, T.; Tachi, M.; Wolcott, R.D.; et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017, 25, 744–757. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Kirketerp-Moller, K.; Jensen, P.; Kit, M.; Krogfelt, K.; Phipps, R.; Krogfelt, K.; Høiby, N.; Givskov, M. Why chronic wounds won’t heal: A novel hypothesis. Wound Repair Regen. 2008, 1, 2–10. [Google Scholar] [CrossRef]
- Chang, V.; Chen, L.Y.; Wang, A.; Yuan, X. The effect of lipopolysaccharide core structure defects on transformation efficiency in isogenic Escherichia coli BW25113 rfaG, rfaP, and rfaC Mutants. J. Exp. Microbiol. Immunol. 2010, 14, 101–107. [Google Scholar]
- Yethon, J.A.; Vinogradov, E.; Perry, M.B.; Whitfield, C. Mutation of the lipopolysaccharide core glucosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J. Bacteriol. 2000, 182, 5620. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Fujimoto, H.; Nishimura, K.; Charoensuk, K.; Nagamitsu, H.; Raina, S.; Kosaka, T.; Oshima, T.; Ogasawara, N.; Yamada, M. Molecular strategy for survival at a critical high temperature in Escherichia coli. PLoS ONE 2011, 6, e20063. [Google Scholar] [CrossRef] [Green Version]
- Valvano, M.A. Export of O-specific lipopolysaccharide. Front. Biosci. 2003, 1, s452–s471. [Google Scholar] [CrossRef] [Green Version]
- Iwashkiw, J.A.; Seper, A.; Weber, B.S.; Scott, N.E.; Vinogradov, E.; Stratilo, C.; Reiz, B.; Cordwell, S.J.; Whittal, R.; Schild, S.; et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 2012, 8, e1002758. [Google Scholar] [CrossRef]
Strains | Characteristics |
---|---|
E. coli BW25113 | E. coli BW25113 wild-type (WT) isolated from human gut microflora |
E. coli BW25113-ΔrfaC | E. coli BW25113 lacking rfaC gene |
E. coli BW25113-ΔrfaG | E. coli BW25113 lacking rfaG gene |
E. coli BW25113-ΔrfaL | E. coli BW25113 lacking rfaL gene |
Shared Genes | Unique Genes | ||||
---|---|---|---|---|---|
Names | Total | Elements | Names | Total | Elements |
ΔrfaC/BW25113: ΔrfaG/BW25113: ΔrfaL/BW25113 | 3 | rpsT | ΔrfaC/BW25113 | 15 | yfaZ |
galF | rpsD | ||||
rpmB | ftnA | ||||
ΔrfaC/BW25113: ΔrfaG/BW25113 | 12 | groL | glnA | ||
rpsM | htpG | ||||
ygdI | ompF | ||||
rpmA | rplC | ||||
rpsH | fecA | ||||
adhE | tufa | ||||
cpoB | fepA | ||||
rpIT | rplB | ||||
aceF | lptD | ||||
tig | yedD | ||||
lepA | pflB | ||||
agp | RpoC | ||||
ΔrfaC/BW25113: ΔrfaL/BW25113 | 3 | rpmC | ΔrfaG/BW25113 | 10 | rpsF |
clpX | Lpp | ||||
ydiY | fimH | ||||
ΔrfaG/BW25113: ΔrfaL/BW25113 | 3 | grpE | lpdA | ||
pspA | yajG | ||||
tnaA | potD | ||||
rplI | |||||
mlaC | |||||
accA | |||||
rplK | |||||
ΔrfaL/BW25113 | 15 | gapA | |||
fliC | |||||
feoB | |||||
flgL | |||||
gatY | |||||
rplP | |||||
pykA | |||||
Crp | |||||
pfkA | |||||
aceA | |||||
fliD | |||||
fabB | |||||
rplM | |||||
Cra |
Gene | Log2 Ratio | ΔrfaC/BW25113 | ΔrfaG/BW25113 | ΔrfaL/BW25113 | |||||
---|---|---|---|---|---|---|---|---|---|
ΔrfaC/BW25113 | ΔrfaG/BW25113 | ΔrfaL/BW25113 | Normalized Ratio | Trend | Normalized Ratio | Trend | Normalized Ratio | Trend | |
ygdI | 2.634 | 2.419 | −0.748 | 6.205 | upregulated | 5.347 | upregulated | 0.595 | - |
htpG | 2.330 | 0.647 | −0.231 | 5.028 | upregulated | 1.566 | - | 0.852 | - |
fepA | 2.203 | 1.322 | 0.651 | 4.604 | upregulated | 2.501 | - | 1.571 | - |
galF | 1.792 | 1.588 | 1.317 | 3.463 | upregulated | 3.006 | upregulated | 2.492 | upregulated |
clpX | 1.788 | 1.270 | 1.543 | 3.453 | upregulated | 2.412 | - | 2.914 | upregulated |
tufA | 1.761 | 1.305 | 0.702 | 3.388 | upregulated | 2.472 | - | 1.627 | - |
tig | 1.690 | 2.258 | 0.461 | 3.226 | upregulated | 4.785 | upregulated | 1.376 | - |
rplC | 1.676 | 1.312 | −0.172 | 3.196 | upregulated | 2.484 | - | 0.887 | - |
pflB | 1.672 | 0.310 | 0.040 | 3.187 | upregulated | 1.240 | - | 1.028 | - |
yedD | 1.582 | 1.015 | −0.271 | 2.995 | upregulated | 2.021 | - | 0.829 | - |
rpsH | 1.539 | 1.921 | 0.136 | 2.905 | upregulated | 3.787 | upregulated | 1.099 | - |
rpmA | 1.534 | 2.610 | 0.165 | 2.897 | upregulated | 6.104 | upregulated | 1.121 | - |
lepA | 1.534 | 2.212 | 0.645 | 2.896 | upregulated | 4.634 | upregulated | 1.563 | - |
accA | 1.413 | 1.829 | 0.910 | 2.663 | - | 3.552 | upregulated | 1.878 | - |
rplK | 1.399 | 1.600 | 0.279 | 2.638 | - | 3.031 | upregulated | 1.213 | - |
fabB | 1.146 | 1.377 | 1.164 | 2.214 | - | 2.597 | - | 2.241 | upregulated |
grpE | 1.049 | 1.572 | 1.461 | 2.069 | - | 2.973 | upregulated | 2.754 | upregulated |
mlaC | 0.950 | −2.114 | −0.324 | 1.932 | - | 0.231 | downregulated | 0.799 | - |
fimH | 0.944 | −1.798 | −0.016 | 1.924 | - | 0.288 | downregulated | 0.989 | - |
tnaA | 0.879 | 1.925 | 1.418 | 1.839 | - | 3.798 | upregulated | 2.672 | upregulated |
rplI | 0.737 | 1.633 | −0.251 | 1.666 | - | 3.101 | upregulated | 0.840 | - |
cra | 0.544 | 1.199 | 1.457 | 1.458 | - | 2.296 | - | 2.745 | upregulated |
gapA | 0.454 | −0.106 | 1.372 | 1.370 | - | 0.929 | - | 2.589 | upregulated |
potD | 0.390 | −3.029 | −0.621 | 1.311 | - | 0.123 | downregulated | 0.650 | - |
rpsF | 0.386 | 1.523 | −0.258 | 1.307 | - | 2.874 | upregulated | 0.836 | - |
pfkA | 0.258 | 0.773 | 1.444 | 1.196 | - | 1.709 | - | 2.721 | upregulated |
gatY | −0.020 | −1.517 | 1.487 | 0.986 | - | 0.349 | - | 2.803 | upregulated |
crp | −0.090 | −0.112 | 1.310 | 0.940 | - | 0.925 | - | 2.479 | upregulated |
yajG | −0.140 | −2.288 | −0.815 | 0.907 | - | 0.205 | downregulated | 0.569 | - |
aceA | −0.146 | 0.561 | 1.231 | 0.904 | - | 1.476 | - | 2.347 | upregulated |
fliD | −0.148 | 0.238 | 2.531 | 0.902 | - | 1.180 | - | 5.778 | upregulated |
lpp | −0.150 | 1.700 | −0.410 | 0.901 | - | 3.249 | upregulated | 0.753 | - |
fliC | −0.239 | 0.138 | 2.108 | 0.848 | - | 1.100 | - | 4.311 | upregulated |
feoB | −0.347 | 0.505 | 1.262 | 0.786 | - | 1.419 | - | 2.398 | upregulated |
rplP | −0.421 | −1.032 | −1.515 | 0.747 | - | 0.489 | - | 0.350 | downregulated |
rplV | −0.452 | 0.958 | −1.197 | 0.731 | - | 1.942 | - | 0.436 | downregulated |
flgL | −0.502 | 0.170 | 1.231 | 0.706 | - | 1.125 | - | 2.346 | upregulated |
pykA | −0.538 | 0.937 | 1.210 | 0.689 | - | 1.914 | - | 2.313 | upregulated |
rplM | −0.711 | −0.484 | −1.197 | 0.611 | - | 0.715 | - | 0.436 | downregulated |
lpdA | −1.115 | −1.944 | −0.019 | 0.462 | - | 0.260 | downregulated | 0.987 | - |
pspA | −1.453 | −1.747 | −1.043 | 0.365 | - | 0.298 | downregulated | 0.485 | downregulated |
cpoB | −1.649 | −1.615 | −0.779 | 0.319 | downregulated | 0.326 | downregulated | 0.583 | - |
agp | −1.651 | −1.890 | −0.814 | 0.319 | downregulated | 0.270 | downregulated | 0.569 | - |
rplB | −1.695 | −1.150 | −0.257 | 0.309 | downregulated | 0.451 | - | 0.837 | - |
rpsD | −1.711 | −1.532 | −0.254 | 0.305 | downregulated | 0.346 | - | 0.838 | - |
lptD | −1.805 | −1.331 | −0.213 | 0.286 | downregulated | 0.398 | - | 0.863 | - |
ydiY | −1.835 | −1.552 | −1.103 | 0.280 | downregulated | 0.341 | - | 0.466 | downregulated |
yfaZ | −1.859 | −0.389 | −0.687 | 0.276 | downregulated | 0.764 | - | 0.621 | - |
rpoC | −1.863 | −0.736 | 0.656 | 0.275 | downregulated | 0.601 | - | 1.576 | - |
rpmC | −1.905 | −0.869 | −1.082 | 0.267 | downregulated | 0.548 | - | 0.472 | downregulated |
rplT | −1.922 | −1.968 | 0.377 | 0.264 | downregulated | 0.256 | downregulated | 1.299 | - |
glnA | −1.976 | −0.772 | 0.150 | 0.254 | downregulated | 0.586 | - | 1.110 | - |
rpsM | −1.999 | −2.230 | −0.284 | 0.250 | downregulated | 0.213 | downregulated | 0.822 | - |
fecA | −2.064 | −1.346 | 0.818 | 0.239 | downregulated | 0.393 | - | 1.763 | - |
rpsT | −2.124 | −1.986 | −1.968 | 0.229 | downregulated | 0.253 | downregulated | 0.256 | downregulated |
rpmB | −2.181 | −3.315 | −2.844 | 0.220 | downregulated | 0.100 | downregulated | 0.139 | downregulated |
aceF | −2.289 | −2.137 | −0.014 | 0.205 | downregulated | 0.227 | downregulated | 0.991 | - |
ompF | −2.563 | −1.045 | −0.419 | 0.169 | downregulated | 0.485 | - | 0.748 | - |
adhE | −2.721 | −2.274 | −0.703 | 0.152 | downregulated | 0.207 | downregulated | 0.614 | - |
ftnA | −2.772 | −1.436 | −0.106 | 0.146 | downregulated | 0.370 | - | 0.929 | - |
groL | −3.092 | −2.541 | −0.119 | 0.117 | downregulated | 0.172 | downregulated | 0.921 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, Y.-K.; Yin, T.; Lee, Y.-T.; Chen, S.-J.; Wang, Y.-C.; Ma, K.-H. Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. J. Pers. Med. 2022, 12, 1301. https://doi.org/10.3390/jpm12081301
Chiu Y-K, Yin T, Lee Y-T, Chen S-J, Wang Y-C, Ma K-H. Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. Journal of Personalized Medicine. 2022; 12(8):1301. https://doi.org/10.3390/jpm12081301
Chicago/Turabian StyleChiu, Yaw-Kwan, Ti Yin, Yi-Tzu Lee, Shyi-Jou Chen, Yung-Chih Wang, and Kuo-Hsing Ma. 2022. "Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis" Journal of Personalized Medicine 12, no. 8: 1301. https://doi.org/10.3390/jpm12081301
APA StyleChiu, Y. -K., Yin, T., Lee, Y. -T., Chen, S. -J., Wang, Y. -C., & Ma, K. -H. (2022). Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. Journal of Personalized Medicine, 12(8), 1301. https://doi.org/10.3390/jpm12081301