Choriocapillaris Flow Deficits Quantification in Hydroxychloroquine Retinopathy Using Swept-Source Optical Coherence Tomography Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Imaging Analysis
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics and Main Clinical Features
3.2. Choriocapillaris Analysis
3.2.1. Choriocapillaris Analysis Using the Phansalkar Local Thresholding Method with a Window Radius 4 of Pixel
3.2.2. Choriocapillaris Analysis Using the Phansalkar Local Thresholding Method with a Window Radius of 8 Pixels
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Costedoat-Chalumeau, N.; Galicier, L.; Aumaître, O.; Francès, C.; Le Guern, V.; Lioté, F.; Smail, A.; Limal, N.; Perard, L.; Desmurs-Clavel, H.; et al. Hydroxychloroquine in systemic lupus erythematosus: Results of a French multicentre controlled trial (PLUS Study). Ann. Rheum. Dis. 2013, 72, 1786–1792. [Google Scholar] [CrossRef]
- Willis, R.; Seif, A.M.; McGwin, J.G.; A Martinez-Martinez, L.; González, E.B.; Dang, N.; Papalardo, E.; Liu, J.; Vilá, L.M.; Reveille, J.D.; et al. Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: Data from LUMINA (LXXV), a multiethnic US cohort. Lupus 2012, 21, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Cook, K.L.; Wärri, A.; Soto-Pantoja, D.R.; Clarke, P.A.; Cruz, M.I.; Zwart, A.; Clarke, R. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res. 2014, 20, 3222–3232. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.S.; Neal, J.W.; Wakelee, H.A.; Sequist, L.V.; Marmor, M.F. Rapid Onset of Retinal Toxicity from High-Dose Hydroxychloroquine Given for Cancer Therapy. Am. J. Ophthalmol. 2015, 160, 799–805.e1. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, M.; Ferro Desideri, L.; Bassetti, M.; Traverso, C.E. Hydroxychloroquine and chloroquine retinal safety concerns during COVID-19 outbreak. Int. Ophthalmol. 2021, 41, 719–725. [Google Scholar] [CrossRef]
- Melles, R.B.; Marmor, M.F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine. JAMA Ophthalmol. 2014, 132, 1453–1460. [Google Scholar] [CrossRef]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.; Melles, R.B.; Mieler, W.F. American Academy of Ophthalmology Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology 2016, 123, 1386–1394. [Google Scholar]
- Yusuf, I.H.; Foot, B.; Galloway, J.; Ardern-Jones, M.R.; Watson, S.L.; Yelf, C.; Lotery, A.J. The Royal College of Ophthalmologists recommendations on screening for hydroxychloroquine and chloroquine users in the United Kingdom: Executive summary. Eye 2018, 32, 1168–1173. [Google Scholar] [CrossRef]
- Rosenbaum, J.T.; Costenbader, K.H.; Desmarais, J.; Ginzler, E.M.; Fett, N.; Goodman, S.M.; Marmor, M.F. American College of Rheumatology, American Academy of Dermatology, Rheumatologic Dermatology Society, and American Academy of Ophthalmology 2020 Joint Statement on Hydroxychloroquine Use with Respect to Retinal Toxicity. Arthritis Rheumatol. 2021, 73, 908–911. [Google Scholar] [CrossRef]
- Ugwuegbu, O.; Uchida, A.; Singh, R.P. Quantitative assessment of outer retinal layers and ellipsoid zone mapping in hydroxychloroquine retinopathy. Br. J. Ophthalmol. 2019, 103, 3–7. [Google Scholar] [CrossRef]
- de Sisternes, L.; Hu, J.; Rubin, D.L.; Marmor, M.F. Localization of damage in progressive hydroxychloroquine retinopathy on and off the drug: Inner versus outer retina, parafovea versus peripheral fovea. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3415–3426. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Hu, J. Effect of disease stage on progression of hydroxychloroquine retinopathy. JAMA Ophthalmol. 2014, 132, 1105–1112. [Google Scholar] [CrossRef]
- Pasadhika, S.; Fishman, G.A.; Choi, D.; Shahidi, M. Selective thinning of the perifoveal inner retina as an early sign of hydroxychloroquine retinal toxicity. Eye 2010, 24, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Ryu, S.J.; Joung, J.Y.; Lee, B.R. Choroidal Thinning Associated with Hydroxychloroquine Retinopathy. Am. J. Ophthalmol. 2017, 183, 56–64. [Google Scholar] [CrossRef]
- Bulut, M.; Akıdan, M.; Gözkaya, O.; Erol, M.K.; Cengiz, A.; Çay, H.F. Optical coherence tomography angiography for screening of hydroxychloroquine-induced retinal alterations. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 2075–2081. [Google Scholar] [CrossRef]
- Goker, Y.S.; Atılgan, C.U.; Tekin, K.; Kızıltoprak, H.; Yetkin, E.; Karahan, N.Y.; Koc, M.; Kosekahya, P. The Validity of Optical Coherence Tomography Angiography as a Screening Test for the Early Detection of Retinal Changes in Patients with Hydroxychloroquine Therapy. Curr. Eye Res. 2019, 44, 311–315. [Google Scholar] [CrossRef]
- Forte, R.; Haulani, H.; Dyrda, A.; Jürgens, I. Swept source optical coherence tomography angiography in patients treated with hydroxychloroquine: Correlation with morphological and functional tests. Br. J. Ophthalmol. 2021, 105, 1297–1301. [Google Scholar] [CrossRef]
- Marmor, M.F. Comparison of screening procedures in hydroxychloroquine toxicity. Arch. Ophthalmol. Chic. Ill 2012, 130, 461–469. [Google Scholar] [CrossRef]
- Borrelli, E.; Shi, Y.; Uji, A. Topographic Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration. Am. J. Ophthalmol. 2018, 196, 34–43. [Google Scholar] [CrossRef]
- Chu, Z.; Cheng, Y.; Zhang, Q.; Zhou, H.; Dai, Y.; Shi, Y.; Gregori, G.; Rosenfeld, P.J.; Wang, R.K. Quantification of Choriocapillaris with Phansalkar Local Thresholding: Pitfalls to Avoid. Am. J. Ophthalmol. 2020, 213, 161–176. [Google Scholar] [CrossRef]
- Le, H.M.; Souied, E.H.; Querques, G. CHORIOCAPILLARIS FLOW IMPAIRMENT IN TYPE 3 MACULAR NEOVASCULARIZATION: A Quantitative Analysis Using Swept-Source Optical Coherence Tomography Angiography. Retina 2021, 41, 1819–1827. [Google Scholar] [CrossRef]
- Nassisi, M.; Baghdasaryan, E.; Tepelus, T.; Asanad, S.; Borrelli, E.; Sadda, S.R. Topographic distribution of choriocapillaris flow deficits in healthy eyes. PLoS ONE 2018, 13, e0207638. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, F.; Motulsky, E.H.; Gregori, G.; Chu, Z.; Chen, C.-L.; Li, C.; De Sisternes, L.; Durbin, M.; Rosenfeld, P.J.; et al. A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. Investig. Ophthalmol. Vis. Sci. 2018, 59, 203–211. [Google Scholar] [CrossRef]
- Alagorie, A.R.; Verma, A.; Nassisi, M.; Sadda, S.R. Quantitative Assessment of Choriocapillaris Flow Deficits in Eyes with Advanced Age-Related Macular Degeneration Versus Healthy Eyes. Am. J. Ophthalmol. 2019, 205, 132–139. [Google Scholar] [CrossRef]
- Borrelli, E.; Souied, E.H.; Freund, K.B. Reduced Choriocapillaris Flow in Eyes with Type 3 Neovascularization and Age-Related Macular Degeneration. Retina 2018, 38, 1968–1976. [Google Scholar] [CrossRef]
- Choi, W.; Mohler, K.J.; Potsaid, B.; Lu, C.D.; Liu, J.J.; Jayaraman, V.; Cable, A.E.; Duker, J.S.; Huber, R.; Fujimoto, J.G. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS ONE 2013, 8, e81499. [Google Scholar] [CrossRef]
- Miller, A.R.; Roisman, L.; Zhang, Q. Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1499–1505. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, C.-L.; Chu, Z.; Zheng, F.; Miller, A.; Roisman, L.; Dias, J.R.D.O.; Yehoshua, Z.; Schaal, K.B.; Feuer, W.; et al. Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1506–1513. [Google Scholar] [CrossRef]
- Ledesma-Gil, G.; Fernandez-Avellaneda, P.; Spaide, R.F. Swept-source optical coherence tomography angiography image compensation of the choriocapillaris induces artifacts. Retina 2020, 40, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chu, Z.; Wang, L.; Zhang, Q.; Feuer, W.; de Sisternes, L.; Durbin, M.K.; Gregori, G.; Wang, R.K.; Rosenfeld, P.J. Validation of a Compensation Strategy Used to Detect Choriocapillaris Flow Deficits Under Drusen With Swept Source OCT Angiography. Am. J. Ophthalmol. 2020, 220, 115–127. [Google Scholar] [CrossRef]
- Mihailovic, N.; Leclaire, M.D.; Eter, N.; Brücher, V.C. Altered microvascular density in patients with systemic lupus erythematosus treated with hydroxychloroquine-an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Ryu, S.J.; Lim, H.W.; Lee, B.R. Toxic effects of hydroxychloroquine on the choroid: Evidence from Multimodal Imaging. Retina 2019, 39, 1016–1026. [Google Scholar] [CrossRef]
- Allahdina, A.M.; Stetson, P.F.; Vitale, S.; Wong, W.T.; Chew, E.Y.; Iii, F.L.F.; Sieving, P.A.; Cukras, C. Optical Coherence Tomography Minimum Intensity as an Objective Measure for the Detection of Hydroxychloroquine Toxicity. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1953–1963. [Google Scholar] [CrossRef]
- Lally, D.R.; Heier, J.S.; Baumal, C.; Witkin, A.J.; Maler, S.; Shah, C.P.; Reichel, E.; Waheed, N.K.; Bussel, I.; Rogers, A.; et al. Expanded spectral domain-OCT findings in the early detection of hydroxychloroquine retinopathy and changes following drug cessation. Int. J. Retina Vitr. 2016, 2, 18. [Google Scholar] [CrossRef]
- Marneros, A.G.; Fan, J.; Yokoyama, Y.; Gerber, H.P.; Ferrara, N.; Crouch, R.K.; Olsen, B.R. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am. J. Pathol. 2005, 167, 1451–1459. [Google Scholar] [CrossRef]
- Bhutto, I.; Lutty, G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Asp. Med. 2012, 33, 295–317. [Google Scholar] [CrossRef]
- Borrelli, E.; Sarraf, D.; Freund, K.B.; Sadda, S.R. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog. Retin. Eye Res. 2018, 67, 30–55. [Google Scholar] [CrossRef]
Group 2 (Mean ± SD) or n (%) | Group 1a (Mean ± SD) or n (%) | Group 1b (Mean ± SD) or n (%) | p-Value | |
---|---|---|---|---|
Age | 54.30 ± 14.84 | 48.483 ± 12.18 | 57.71 ± 3.49 | 0.2566 * |
Gender (males) | 23.5 | 19.35 | 42.85 | 0.993 ** |
BCVA (LogMAR) | 0.0194 ± 0.0398 | 0.0096 ± 0.029 | 0.128 ± 0.1326 | 2.29 * |
Treatment duration (years) | NA | 9.90 ± 5.38 | 15.85 ± 9.04 | 0.137 *** |
Daily dose (mg/Kg) | NA | 5.56 ± 1.09 | 5.75 ± 0.77 | 0.59 *** |
Cumulative dose (grams) | NA | 1862.67 ± 592.72 | 2294.28 ± 1274.63 | 0.11 *** |
Group 1a | Group 1b | Group 2 | Significance (p-Value) * | ||
---|---|---|---|---|---|
Radius 4 | Percentage of FD% | 36.76 ± 1.42 | 48.96 ± 7.63 | 45.61 ± 3.98 | 0.0013 |
Average size of FD (µm2) | 975.13 ± 117.83 | 9415.08 ± 14,453.98 | 3321.92 ± 1942.51 | 0.0018 | |
Total area of FD (mm2) | 14.70 ± 1.29 | 17.62 ± 2.74 | 16.42 ± 1.43 | 0.0013 | |
Number of FD | 13,639.5 ± 1120.76 | 5221.14 ± 4123.72 | 7085.5 ± 2965.60 | 0.0019 | |
Radius 8 | Percentage of FD% | 41.47 ± 1.40 | 49.41 ± 7.42 | 46.07 ± 1.40 | 0.0018 |
Average size of FD (µm2) | 1157.83 ± 140.24 | 8279.53 ± 10,091.57 | 3551.65 ± 1895.34 | 0.0015 | |
Total area of FD (mm2) | 13.50 ± 0.50 | 17.78 ± 2.67 | 16.58 ± 1.39 | 0.0016 | |
Number of FD | 11721 ± 982.87 | 4719.85 ± 3405.69 | 5324 ± 2449.41 | 0.0018 |
Group 1b | Group 1a | Group 2 | Significance Group 1b vs. 2 | Significance Group 1b vs. 1a | |
---|---|---|---|---|---|
Percentage of flow deficits (FD%) R4 | 48.96 ± 7.63 | 36.76 ± 1.42 | 45.61 ± 3.98 | 0.0092 * | 0.00064 ** |
Total Area of flow deficits R4 (mm2) | 17.62 ± 2.74 | 14.70 ± 1.29 | 16.42 ± 1.43 | 0.0092 * | 0.00064 ** |
Average size of flow deficits R4 (μm2) | 9415.08 ± 14,453.98 | 975.13 ± 117.83 | 3321.92 ± 1942.51 | 0.10 * | 0.00078 ** |
Number of flow deficits R4 | 5221.14 ± 4123.72 | 13,639.5 ± 1120.76 | 7085.5 ± 2965.60 | 0.0053 * | 0.00078 ** |
Percentage of flow deficits (FD%) R8 | 49.41 ± 7.42 | 41.47 ± 1.40 | 46.07 ± 1.40 | 0.0094 * | 0.00061 ** |
Total Area of flow deficits R8 (mm2) | 17.78 ± 2.67 | 13.50 ± 0.50 | 16.58 ± 1.39 | 0.0052 * | 0.00061 ** |
Average size of flow deficits R8 (μm2) | 8279.53 ± 10,091.57 | 1157.83 ± 140.24 | 3551.65 ± 1895.34 | 0.077 * | 0.00064 ** |
Number of flow deficits R8 | 4719.85 ± 3405.69 | 11721 ± 982.87 | 5324 ± 2449.41 | 0.0050 * | 0.00068 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halouani, S.; Le, H.M.; Cohen, S.Y.; Terkmane, N.; Herda, N.; Souied, E.H.; Miere, A. Choriocapillaris Flow Deficits Quantification in Hydroxychloroquine Retinopathy Using Swept-Source Optical Coherence Tomography Angiography. J. Pers. Med. 2022, 12, 1445. https://doi.org/10.3390/jpm12091445
Halouani S, Le HM, Cohen SY, Terkmane N, Herda N, Souied EH, Miere A. Choriocapillaris Flow Deficits Quantification in Hydroxychloroquine Retinopathy Using Swept-Source Optical Coherence Tomography Angiography. Journal of Personalized Medicine. 2022; 12(9):1445. https://doi.org/10.3390/jpm12091445
Chicago/Turabian StyleHalouani, Safa, Hoang Mai Le, Salomon Yves Cohen, Narimane Terkmane, Nabil Herda, Eric H. Souied, and Alexandra Miere. 2022. "Choriocapillaris Flow Deficits Quantification in Hydroxychloroquine Retinopathy Using Swept-Source Optical Coherence Tomography Angiography" Journal of Personalized Medicine 12, no. 9: 1445. https://doi.org/10.3390/jpm12091445
APA StyleHalouani, S., Le, H. M., Cohen, S. Y., Terkmane, N., Herda, N., Souied, E. H., & Miere, A. (2022). Choriocapillaris Flow Deficits Quantification in Hydroxychloroquine Retinopathy Using Swept-Source Optical Coherence Tomography Angiography. Journal of Personalized Medicine, 12(9), 1445. https://doi.org/10.3390/jpm12091445