CNVs Associated with Different Clinical Phenotypes of Psoriasis and Anti-TNF-Induced Palmoplantar Pustulosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
- -
- Group 1. Moderate–severe psoriasis Vulgaris: with PASI > 10 and/or BSA > 10%.
- -
- Group 2. Predominant scalp psoriasis. The patients with a scalp involvement greater than 50%. The presence of psoriasis plaques outside the scalp is restricted up to a maximum of 5% of the body surface.
- -
- Group 3. Hyperkeratotic palmoplantar psoriasis. The patients with plaque psoriasis and predominant hyperkeratotic palmar and/or plantar lesions. The presence of psoriasis plaques outside the palms and soles is restricted up to a maximum of 5% of the body surface.
- -
- Group 4. PPP. The patients with persistent (>3 months) sterile macroscopically visible pustular palmar and/or plantar lesions, with or without psoriasis Vulgaris.
2.2. Genotyping
2.3. CNV Analysis
2.4. Statistical Analysis
3. Results
3.1. Study Subjects
3.2. CNVs Associated with the Different Clinical Phenotypes of Psoriasis
3.3. CNV Differences between Paradoxical Anti-TNF-Induced PPP and Different Clinical Phenotypes of Psoriasis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurd, S.K.; Gelfand, J.M. The Prevalence of Previously Diagnosed and Undiagnosed Psoriasis in US Adults: Results from NHANES 2003–2004. J. Am. Acad. Dermatol. 2009, 60, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Boehncke, W.-H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Raposo, I.; Torres, T. Palmoplantar Psoriasis and Palmoplantar Pustulosis: Current Treatment and Future Prospects. Am. J. Clin. Dermatol. 2016, 17, 349–358. [Google Scholar] [CrossRef]
- Wang, T.-S.; Tsai, T.-F. Managing Scalp Psoriasis: An Evidence-Based Review. Am. J. Clin. Dermatol. 2017, 18, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Brunasso, A.M.G.; Puntoni, M.; Aberer, W.; Delfino, C.; Fancelli, L.; Massone, C. Clinical and Epidemiological Comparison of Patients Affected by Palmoplantar Plaque Psoriasis and Palmoplantar Pustulosis: A Case Series Study. Br. J. Dermatol. 2013, 168, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Nestle, F.O.; Kaplan, D.H.; Barker, J. Psoriasis. N. Engl. J. Med. 2009, 361, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Dand, N.; Mahil, S.K.; Capon, F.; Smith, C.H.; Simpson, M.A.; Barker, J.N. Psoriasis and Genetics. Acta Derm. Venereol. 2020, 100, adv00030. [Google Scholar] [CrossRef] [PubMed]
- Puig, L.; Julià, A.; Marsal, S. Psoriasis: Bases genéticas y patogenéticas. Actas Dermo-Sifiliográficas 2014, 105, 535–545. [Google Scholar] [CrossRef]
- Mössner, R.; Wilsmann-Theis, D.; Oji, V.; Gkogkolou, P.; Löhr, S.; Schulz, P.; Körber, A.; Prinz, J.C.; Renner, R.; Schäkel, K.; et al. The Genetic Basis for Most Patients with Pustular Skin Disease Remains Elusive. Br. J. Dermatol. 2018, 178, 740–748. [Google Scholar] [CrossRef]
- Sanchez, I.M.; Sorenson, E.; Levin, E.; Liao, W. The Efficacy of Biologic Therapy for the Management of Palmoplantar Psoriasis and Palmoplantar Pustulosis: A Systematic Review. Dermatol. Ther. 2017, 7, 425–446. [Google Scholar] [CrossRef] [Green Version]
- Twelves, S.; Mostafa, A.; Dand, N.; Burri, E.; Farkas, K.; Wilson, R.; Cooper, H.L.; Irvine, A.D.; Oon, H.H.; Kingo, K.; et al. Clinical and Genetic Differences between Pustular Psoriasis Subtypes. J. Allergy Clin. Immunol. 2019, 143, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Navarini, A.A.; Burden, A.D.; Capon, F.; Mrowietz, U.; Puig, L.; Köks, S.; Kingo, K.; Smith, C.; Barker, J.N.; ERASPEN Network. European Consensus Statement on Phenotypes of Pustular Psoriasis. J. Eur. Acad. Dermatol. Venereol. JEADV 2017, 31, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Mössner, R.; Frambach, Y.; Wilsmann-Theis, D.; Löhr, S.; Jacobi, A.; Weyergraf, A.; Müller, M.; Philipp, S.; Renner, R.; Traupe, H.; et al. Palmoplantar Pustular Psoriasis Is Associated with Missense Variants in CARD14, but Not with Loss-of-Function Mutations in IL36RN in European Patients. J. Investig. Dermatol. 2015, 135, 2538–2541. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.; Walker, S.; Prescott, N.; Schalkwijk, J.; Armour, J.A.L. Accuracy and Differential Bias in Copy Number Measurement of CCL3L1 in Association Studies with Three Auto-Immune Disorders. BMC Genom. 2011, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Valsesia, A.; Macé, A.; Jacquemont, S.; Beckmann, J.S.; Kutalik, Z. The Growing Importance of CNVs: New Insights for Detection and Clinical Interpretation. Front. Genet. 2013, 4, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Gu, W.; Hurles, M.E.; Lupski, J.R. Copy Number Variation in Human Health, Disease, and Evolution. Annu. Rev. Genomics Hum. Genet. 2009, 10, 451–481. [Google Scholar] [CrossRef] [PubMed]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global Variation in Copy Number in the Human Genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed]
- de Cid, R.; Riveira-Munoz, E.; Zeeuwen, P.L.J.M.; Robarge, J.; Liao, W.; Dannhauser, E.N.; Giardina, E.; Stuart, P.E.; Nair, R.; Helms, C.; et al. Deletion of the Late Cornified Envelope (LCE) 3B and 3C Genes as a Susceptibility Factor for Psoriasis. Nat. Genet. 2009, 41, 211–215. [Google Scholar] [CrossRef]
- Hollox, E.J.; Huffmeier, U.; Zeeuwen, P.L.J.M.; Palla, R.; Lascorz, J.; Rodijk-Olthuis, D.; van de Kerkhof, P.C.M.; Traupe, H.; de Jongh, G.; den Heijer, M.; et al. Psoriasis Is Associated with Increased Beta-Defensin Genomic Copy Number. Nat. Genet. 2008, 40, 23–25. [Google Scholar] [CrossRef]
- Hüffmeier, U.; Bergboer, J.G.M.; Becker, T.; Armour, J.A.; Traupe, H.; Estivill, X.; Riveira-Munoz, E.; Mössner, R.; Reich, K.; Kurrat, W.; et al. Replication of LCE3C–LCE3B CNV as a Risk Factor for Psoriasis and Analysis of Interaction with Other Genetic Risk Factors. J. Investig. Dermatol. 2010, 130, 979–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, L.R.; Ottolini, B. An Evolutionary History of Defensins: A Role for Copy Number Variation in Maximizing Host Innate and Adaptive Immune Responses. Front. Immunol. 2015, 6, 115. [Google Scholar] [CrossRef]
- Pedrosa, E.; Carretero-Iglesia, L.; Boada, A.; Colobran, R.; Faner, R.; Pujol-Autonell, I.; Palou, E.; Esteve, A.; Pujol-Borrell, R.; Ferrándiz, C.; et al. CCL4L Polymorphisms and CCL4/CCL4L Serum Levels Are Associated with Psoriasis Severity. J. Investig. Dermatol. 2011, 131, 1830–1837. [Google Scholar] [CrossRef] [PubMed]
- Coin, L.J.M.; Cao, D.; Ren, J.; Zuo, X.; Sun, L.; Yang, S.; Zhang, X.; Cui, Y.; Li, Y.; Jin, X.; et al. An Exome Sequencing Pipeline for Identifying and Genotyping Common CNVs Associated with Disease with Application to Psoriasis. Bioinforma. Oxf. Engl. 2012, 28, i370–i374. [Google Scholar] [CrossRef] [PubMed]
- Julià, A.; Ferrándiz, C.; Dauden, E.; Fonseca, E.; Fernández-López, E.; Sanchez-Carazo, J.L.; Vanaclocha, F.; Puig, L.; Moreno-Ramírez, D.; Lopez-Estebaranz, J.L.; et al. Association of the PDE3A-SLCO1C1 Locus with the Response to Anti-TNF Agents in Psoriasis. Pharmacogenom. J. 2015, 15, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Garcia, A.; Reolid, A.; Fisas, L.H.; Muñoz-Aceituno, E.; Llamas-Velasco, M.; Sahuquillo-Torralba, A.; Botella-Estrada, R.; García-Martínez, J.; Navarro, R.; Daudén, E.; et al. DNA Copy Number Variation Associated with Anti-Tumour Necrosis Factor Drug Response and Paradoxical Psoriasiform Reactions in Patients with Moderate-to-Severe Psoriasis. Acta Derm. Venereol. 2021, 101, adv00448. [Google Scholar] [CrossRef] [PubMed]
- Goiriz, R.; Daudén, E.; Pérez-Gala, S.; Guhl, G.; García-Díez, A. Flare and Change of Psoriasis Morphology during the Course of Treatment with Tumour Necrosis Factor Blockers. Clin. Exp. Dermatol. 2007, 32, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R.; Daudén, E. Reacciones psoriasiformes paradójicas durante el tratamiento con terapia anti-factor de necrosis tumoral. Manejo clínico. Actas Dermo-Sifiliográficas 2014, 105, 752–761. [Google Scholar] [CrossRef]
- Cullen, G.; Kroshinsky, D.; Cheifetz, A.S.; Korzenik, J.R. Psoriasis Associated with Anti-Tumour Necrosis Factor Therapy in Inflammatory Bowel Disease: A New Series and a Review of 120 Cases from the Literature. Aliment. Pharmacol. Ther. 2011, 34, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Guerra, I.; Pérez-Jeldres, T.; Iborra, M.; Algaba, A.; Monfort, D.; Calvet, X.; Chaparro, M.; Mañosa, M.; Hinojosa, E.; Minguez, M.; et al. Incidence, Clinical Characteristics, and Management of Psoriasis Induced by Anti-TNF Therapy in Patients with Inflammatory Bowel Disease: A Nationwide Cohort Study. Inflamm. Bowel Dis. 2016, 22, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, D.; Guidi, L.; Ferraro, P.M.; Marzo, M.; Felice, C.; Celleno, L.; Landi, R.; Andrisani, G.; Pizzolante, F.; De Vitis, I.; et al. Paradoxical Psoriasis in a Large Cohort of Patients with Inflammatory Bowel Disease Receiving Treatment with Anti-TNF Alpha: 5-Year Follow-up Study. Aliment. Pharmacol. Ther. 2015, 42, 880–888. [Google Scholar] [CrossRef]
- Puig, L.; Morales-Múnera, C.E.; López-Ferrer, A.; Geli, C. Ustekinumab Treatment of TNF Antagonist-Induced Paradoxical Psoriasis Flare in a Patient with Psoriatic Arthritis: Case Report and Review. Dermatol. Basel Switz. 2012, 225, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.; Di Domizio, J.; Mylonas, A.; Belkhodja, C.; Demaria, O.; Navarini, A.A.; Lapointe, A.-K.; French, L.E.; Vernez, M.; Gilliet, M. TNF Blockade Induces a Dysregulated Type I Interferon Response without Autoimmunity in Paradoxical Psoriasis. Nat. Commun. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A Flexible and Comprehensive Bioconductor Package for the Analysis of Infinium DNA Methylation Microarrays. Bioinformatics 2014, 30, 1363. [Google Scholar] [CrossRef] [PubMed]
- Hovestadt, V.; Zapatka, M. Conumee: Enhanced Copy-Number Variation Analysis Using Illumina DNA Methylation Arrays 2019. Available online: http://bioconductor.org/packages/release/bioc/html/conumee.html (accessed on 1 April 2022).
- Reedquist, K.A.; Tak, P.P. Signal Transduction Pathways in Chronic Inflammatory Autoimmune Disease: Small GTPases. Open Rheumatol. J. 2012, 6, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro, T.; Prieto-Pérez, R.; Navarro, R.; Solano, G.; Román, M.; Ochoa, D.; Abad-Santos, F.; Daudén, E. Paradoxical Psoriasiform Reactions to Anti-TNF? Drugs Are Associated with Genetic Polymorphisms in Patients with Psoriasis. Pharmacogenom. J. 2016, 16, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Feber, A.; Guilhamon, P.; Lechner, M.; Fenton, T.; Wilson, G.A.; Thirlwell, C.; Morris, T.J.; Flanagan, A.M.; Teschendorff, A.E.; Kelly, J.D.; et al. Using High-Density DNA Methylation Arrays to Profile Copy Number Alterations. Genome Biol. 2014, 15, R30. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Hobbs, J.; Lu, X.; Yu, Y.; Du, P.; Kibbe, W.A.; Chandler, J.; Hou, L.; Lin, S.M. A Statistical Method to Estimate DNA Copy Number from Illumina High-Density Methylation Arrays. Syst. Biomed. 2013, 1, 94–98. [Google Scholar] [CrossRef]
- Korshunov, A.; Schrimpf, D.; Ryzhova, M.; Sturm, D.; Chavez, L.; Hovestadt, V.; Sharma, T.; Habel, A.; Burford, A.; Jones, C.; et al. H3-/IDH-Wild Type Pediatric Glioblastoma Is Comprised of Molecularly and Prognostically Distinct Subtypes with Associated Oncogenic Drivers. Acta Neuropathol. 2017, 134, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated Methylation Analysis Pipeline for Illumina BeadChips. Bioinforma. Oxf. Engl. 2017, 33, 3982–3984. [Google Scholar] [CrossRef]
- Li, F.; Sun, L.; Zhang, S. Acquirement of DNA Copy Number Variations in Non-Small Cell Lung Cancer Metastasis to the Brain. Oncol. Rep. 2015, 34, 1701–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talseth-Palmer, B.A.; Holliday, E.G.; Evans, T.-J.; McEvoy, M.; Attia, J.; Grice, D.M.; Masson, A.L.; Meldrum, C.; Spigelman, A.; Scott, R.J. Continuing Difficulties in Interpreting CNV Data: Lessons from a Genome-Wide CNV Association Study of Australian HNPCC/Lynch Syndrome Patients. BMC Med. Genom. 2013, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Haraksingh, R.R.; Abyzov, A.; Urban, A.E. Comprehensive Performance Comparison of High-Resolution Array Platforms for Genome-Wide Copy Number Variation (CNV) Analysis in Humans. BMC Genom. 2017, 18, 321. [Google Scholar] [CrossRef] [PubMed]
- de Waal, A.C.; van de Kerkhof, P.C.M. Pustulosis Palmoplantaris Is a Disease Distinct from Psoriasis. J. Dermatol. Treat. 2011, 22, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Rucker, J.J.H.; Tansey, K.E.; Rivera, M.; Pinto, D.; Cohen-Woods, S.; Uher, R.; Aitchison, K.J.; Craddock, N.; Owen, M.J.; Jones, L.; et al. Phenotypic Association Analyses with Copy Number Variation in Recurrent Depressive Disorder. Biol. Psychiatry 2016, 79, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.I.; Kirov, G.; Kendall, K.M.; Bracher-Smith, M.; Wilkinson, L.S.; Hall, J.; Ulfarsson, M.O.; Walters, G.B.; Stefansson, H.; Stefansson, K.; et al. Analysis of Diffusion Tensor Imaging Data from the UK Biobank Confirms Dosage Effect of 15q11.2 Copy Number Variation on White Matter and Shows Association with Cognition. Biol. Psychiatry 2021, 90, 307–316. [Google Scholar] [CrossRef]
- Gu, X.; Nylander, E.; Coates, P.J.; Fahraeus, R.; Nylander, K. Correlation between Reversal of DNA Methylation and Clinical Symptoms in Psoriatic Epidermis Following Narrow-Band UVB Phototherapy. J. Investig. Dermatol. 2015, 135, 2077–2083. [Google Scholar] [CrossRef]
- Chandra, A.; Senapati, S.; Roy, S.; Chatterjee, G.; Chatterjee, R. Epigenome-Wide DNA Methylation Regulates Cardinal Pathological Features of Psoriasis. Clin. Epigenetics 2018, 10, 108. [Google Scholar] [CrossRef]
Psoriasis (N = 39) | Anti-TNF-Induced PPP (N = 6) | ||
---|---|---|---|
Age (years) | 56.15 ± 13.76 | 49.17 ± 11.11 | |
Females | 24 (61.5%) | 3 (50%) | |
Height (m) | 1.65 ± 0.08 | 1.65 ± 0.07 | |
Weight (Kg) | 80.41 ± 14.70 | 71.83 ± 9.47 | |
Body mass index (Kg/m2) | 29.54 ± 5.02 | 26.67 ± 5.50 | |
Smoker | 31 (79.5) | 5 (83.3) | |
Time of evolution of psoriasis (years) | 12.54 ± 15.97 | ||
Diabetes (%) | 9 (23.1) | 0 (0.0) | |
Metabolic syndrome (%) | 21 (53.8) | 1 (16.7) | |
Arterial hypertension (%) | 21 (53.8) | 3 (50.0) | |
Dyslipidemia (%) | 27 (69.2) | 2 (33.3) | |
Psoriatic arthritis (%) | 11 (28.2) | 3 (50.0) | |
Hyperthyroidism | 7 (17.9) | 0 (0.0) | |
Hepatic steatosis | 16 (41.0) | 0 (0.0) | |
Ever smokers (%) | 31 (79.5) | 5 (83.3) | |
Subset of psoriasis | Non-scalp (%) | 8 (20.5%) | |
Scalp (%) | 8 (20.5%) | ||
Hyperkeratotic palmoplantar (%) | 12 (30.8%) | ||
PPP (%) | 11 (28.2%) | 6 (100%) | |
Induced psoriasiform reactions | Anti-TNF-induced PPP latency (months) (%) | 34.33 ± 36.30 | |
Inflammatory Bowel disease (%) | 3 (50.0) | ||
Rheumatoid arthritis (%) | 2 (33.3) | ||
Uveitis (%) | 1 (16.7) |
Comparison | Chromosome Location | Adj. p | Log2 Ratio # | Length (Base Pairs) | Genes |
---|---|---|---|---|---|
Idiopathic psoriasis (N = 39) vs. induced psoriasiform reactions (N = 6) | chr8:100000001-100750000 | 0.045 | −0.165 | 750,000 | VPS13B, MIR599, MIR875 |
chr15:79250001-79350000 | 0.044 | 0.177 | 100,000 | RASGRF1, LOC100129540 |
Comparison | Genes ID | Gene Name | Function |
---|---|---|---|
Idiopathic psoriasis (N = 39) vs. induced psoriasiform reactions (N = 6) | LOC100129540 | Uncharacterized LOC100129540 | Related to coronary heart disease and bipolar disorder |
MIR599 | MicroRNA 599 | Post-transcriptional regulation of gene expression | |
MIR875 | MicroRNA 875 | Post-transcriptional regulation of gene expression | |
RASGRF1 | Ras Protein Specific Guanine Nucleotide Releasing Factor 1 | Promotes the exchange of Ras-bound GDP by GTP | |
VPS13 | Vacuolar Protein Sorting 13 Homolog A | Allows the formation or stabilization of ER-mitochondria contact sites which facilitates lipids’ transfer between the ER and mitochondria |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reolid, A.; Sahuquillo-Torralba, A.; Sanz-García, A.; Botella-Estrada, R.; Muñoz-Aceituno, E.; Llamas-Velasco, M.; García-Martínez, J.; Daudén, E.; Abad-Santos, F.; Ovejero-Benito, M.C. CNVs Associated with Different Clinical Phenotypes of Psoriasis and Anti-TNF-Induced Palmoplantar Pustulosis. J. Pers. Med. 2022, 12, 1452. https://doi.org/10.3390/jpm12091452
Reolid A, Sahuquillo-Torralba A, Sanz-García A, Botella-Estrada R, Muñoz-Aceituno E, Llamas-Velasco M, García-Martínez J, Daudén E, Abad-Santos F, Ovejero-Benito MC. CNVs Associated with Different Clinical Phenotypes of Psoriasis and Anti-TNF-Induced Palmoplantar Pustulosis. Journal of Personalized Medicine. 2022; 12(9):1452. https://doi.org/10.3390/jpm12091452
Chicago/Turabian StyleReolid, Alejandra, Antonio Sahuquillo-Torralba, Ancor Sanz-García, Rafael Botella-Estrada, Ester Muñoz-Aceituno, Mar Llamas-Velasco, Jorge García-Martínez, Esteban Daudén, Francisco Abad-Santos, and María C. Ovejero-Benito. 2022. "CNVs Associated with Different Clinical Phenotypes of Psoriasis and Anti-TNF-Induced Palmoplantar Pustulosis" Journal of Personalized Medicine 12, no. 9: 1452. https://doi.org/10.3390/jpm12091452
APA StyleReolid, A., Sahuquillo-Torralba, A., Sanz-García, A., Botella-Estrada, R., Muñoz-Aceituno, E., Llamas-Velasco, M., García-Martínez, J., Daudén, E., Abad-Santos, F., & Ovejero-Benito, M. C. (2022). CNVs Associated with Different Clinical Phenotypes of Psoriasis and Anti-TNF-Induced Palmoplantar Pustulosis. Journal of Personalized Medicine, 12(9), 1452. https://doi.org/10.3390/jpm12091452