Molecular Mechanisms, Genotype–Phenotype Correlations and Patient-Specific Treatments in Inherited Metabolic Diseases
Funding
Conflicts of Interest
References
- McInnes, G.; Sharo, A.G.; Koleske, M.L.; Brown, J.E.H.; Norstad, M.; Adhikari, A.N.; Wang, S.; Brenner, S.E.; Halpern, J.; Koenig, B.A.; et al. Opportunities and Challenges for the Computational Interpretation of Rare Variation in Clinically Important Genes. Am. J. Hum. Genet. 2021, 108, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of Protein-Coding Genetic Variation in 60,706 Humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolio, T.A.; Fowler, D.M.; Starita, L.M.; Haendel, M.A.; MacArthur, D.G.; Biesecker, L.G.; Worthey, E.; Chisholm, R.L.; Green, E.D.; Jacob, H.J.; et al. Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell 2017, 169, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco-Garcia, J.L.; Cagiada, M.; Tienne-Matos, K.; Salido, E.; Lindorff-Larsen, K.; Pey, L.A. Effect of Naturally-Occurring Mutations on the Stability and Function of Cancer-Associated NQO1: Comparison of Experiments and Computation. Front. Mol. Biosci. 2022, 9, 1063620. [Google Scholar] [CrossRef]
- Flydal, M.I.; Martinez, A. Phenylalanine Hydroxylase: Function, Structure, and Regulation. IUBMB Life 2013, 65, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Hnízda, A.; Majtan, T.; Liu, L.; Pey, A.L.; Carpenter, J.F.; Kodíček, M.; Kožich, V.; Kraus, J.P. Conformational Properties of Nine Purified Cystathionine β-Synthase Mutants. Biochemistry 2012, 51, 4755–4763. [Google Scholar] [CrossRef] [Green Version]
- Blouin, J.-M.; Bernardo-Seisdedos, G.; Sasso, E.; Esteve, J.; Ged, C.; Lalanne, M.; Sanz-Parra, A.; Urquiza, P.; de Verneuil, H.; Millet, O.; et al. Missense UROS Mutations Causing Congenital Erythropoietic Porphyria Reduce UROS Homeostasis That Can Be Rescued by Proteasome Inhibition. Hum. Mol. Genet. 2017, 26, 1565–1576. [Google Scholar] [CrossRef]
- Rivera-Barahona, A.; Navarrete, R.; García-Rodríguez, R.; Richard, E.; Ugarte, M.; Pérez-Cerda, C.; Pérez, B.; Gámez, A.; Desviat, L.R. Identification of 34 Novel Mutations in Propionic Acidemia: Functional Characterization of Missense Variants and Phenotype Associations. Mol. Genet. Metab. 2018, 125, 266–275. [Google Scholar] [CrossRef]
- Salido, E.; Pey, A.L.; Rodriguez, R.; Lorenzo, V. Primary Hyperoxalurias: Disorders of Glyoxylate Detoxification. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 1453–1464. [Google Scholar] [CrossRef] [Green Version]
- Pey, A.L.; Padín-Gonzalez, E.; Mesa-Torres, N.; Timson, D.J. The Metastability of Human UDP-Galactose 4′-Epimerase (GALE) Is Increased by Variants Associated with Type III Galactosemia but Decreased by Substrate and Cofactor Binding. Arch. Biochem. Biophys. 2014, 562, 103–114. [Google Scholar] [CrossRef]
- Medina-Carmona, E.; Betancor-Fernández, I.; Santos, J.; Mesa-Torres, N.; Grottelli, S.; Batlle, C.; Naganathan, A.N.; Oppici, E.; Cellini, B.; Ventura, S.; et al. Insight into the Specificity and Severity of Pathogenic Mechanisms Associated with Missense Mutations through Experimental and Structural Perturbation Analyses. Hum. Mol. Genet. 2019, 28, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Garcia, J.L.; Anoz-Carbonell, E.; Vankova, P.; Kannan, A.; Palomino-Morales, R.; Mesa-Torres, N.; Salido, E.; Man, P.; Medina, M.; Naganathan, A.N.; et al. Structural Basis of the Pleiotropic and Specific Phenotypic Consequences of Missense Mutations in the Multifunctional NAD(P)H:Quinone Oxidoreductase 1 and Their Pharmacological Rescue. Redox Biol. 2021, 46, 102112. [Google Scholar] [CrossRef]
- Naganathan, A.N. Modulation of Allosteric Coupling by Mutations: From Protein Dynamics and Packing to Altered Native Ensembles and Function. Curr. Opin. Struct. Biol. 2019, 54, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, N.; Naganathan, A.N. A Self-Consistent Structural Perturbation Approach for Determining the Magnitude and Extent of Allosteric Coupling in Proteins. Biochem. J. 2017, 474, 2379–2388. [Google Scholar] [CrossRef]
- Rajasekaran, N.; Sekhar, A.; Naganathan, A.N. A Universal Pattern in the Percolation and Dissipation of Protein Structural Perturbations. J. Phys. Chem. Lett. 2017, 8, 4779–4784. [Google Scholar] [CrossRef]
- Rajasekaran, N.; Suresh, S.; Gopi, S.; Raman, K.; Naganathan, A.N. A General Mechanism for the Propagation of Mutational Effects in Proteins. Biochemistry 2017, 56, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-García, J.L.; Loginov, D.S.; Naganathan, A.N.; Vankova, P.; Cano-Muñoz, M.; Man, P.; Pey, A.L. Loss of Stability and Unfolding Cooperativity in HPGK1 upon Gradual Structural Perturbation of Its N-Terminal Domain Hydrophobic Core. Sci. Rep. 2022, 12, 17200. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Garcia, J.L.; Loginov, D.S.; Anoz-Carbonell, E.; Vankova, P.; Palomino-Morales, R.; Salido, E.; Man, P.; Medina, M.; Naganathan, A.N.; Pey, A.L. Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations. Antioxidants 2022, 11, 1110. [Google Scholar] [CrossRef]
- Stein, A.; Fowler, D.M.; Hartmann-Petersen, R.; Lindorff-Larsen, K. Biophysical and Mechanistic Models for Disease-Causing Protein Variants. Trends Biochem. Sci. 2019, 44, 575–588. [Google Scholar] [CrossRef]
- Martinez, A.; Calvo, A.C.; Teigen, K.; Pey, A.L. Chapter 3 Rescuing Proteins of Low Kinetic Stability by Chaperones and Natural Ligands. Phenylketonuria, a Case Study, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; Volume 83, ISBN 9780123745941. [Google Scholar]
- Pey, A.L.; Ying, M.; Cremades, N.; Velazquez-Campoy, A.; Scherer, T.; Th??ny, B.; Sancho, J.; Martinez, A. Identification of Pharmacological Chaperones as Potential Therapeutic Agents to Treat Phenylketonuria. J. Clin. Investig. 2008, 118, 2858–2867. [Google Scholar] [CrossRef]
- Moya-Garzon, M.D.; Rodriguez-Rodriguez, B.; Martin-Higueras, C.; Franco-Montalban, F.; Fernandes, M.X.; Gomez-Vidal, J.A.; Pey, A.L.; Salido, E.; Diaz-Gavilan, M. New Salicylic Acid Derivatives, Double Inhibitors of Glycolate Oxidase and Lactate Dehydrogenase, as Effective Agents Decreasing Oxalate Production. Eur. J. Med. Chem. 2022, 237, 114396. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Higuero, J.Á.; Betancor-Fernández, I.; Mesa-Torres, N.; Muga, A.; Salido, E.; Pey, A.L. Structural and Functional Insights on the Roles of Molecular Chaperones in the Mistargeting and Aggregation Phenotypes Associated with Primary Hyperoxaluria Type I. In Advances in Protein Chemistry and Structural Biology; 2019; Volume 114, pp. 119–152. ISBN 9780128155578. [Google Scholar] [PubMed]
- Dindo, M.; Ambrosini, G.; Oppici, E.; Pey, A.L.; O’Toole, P.J.; Marrison, J.L.; Morrison, I.E.G.; Butturini, E.; Grottelli, S.; Costantini, C.; et al. Dimerization Drives Proper Folding of Human Alanine:Glyoxylate Aminotransferase But Is Dispensable for Peroxisomal Targeting. J. Pers. Med. 2021, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Grottelli, S.; Annunziato, G.; Pampalone, G.; Pieroni, M.; Dindo, M.; Ferlenghi, F.; Costantino, G.; Cellini, B. Identification of Human Alanine-Glyoxylate Aminotransferase Ligands as Pharmacological Chaperones for Variants Associated with Primary Hyperoxaluria Type 1. J. Med. Chem. 2022, 65, 9718–9734. [Google Scholar] [CrossRef]
- Moya-Garzon, M.D.; Gomez-Vidal, J.A.; Alejo-Armijo, A.; Altarejos, J.; Rodriguez-Madoz, J.R.; Fernandes, M.X.; Salido, E.; Salido, S.; Diaz-Gavilan, M. Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J. Pers. Med. 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- McCorvie, T.J.; Kopec, J.; Pey, A.L.; Fitzpatrick, F.; Patel, D.; Chalk, R.; Shrestha, L.; Yue, W.W. Molecular Basis of Classic Galactosemia from the Structure of Human Galactose 1-Phosphate Uridylyltransferase. Hum. Mol. Genet. 2016, 25, 2234–2244. [Google Scholar] [CrossRef]
- Banford, S.; McCorvie, T.J.; Pey, A.L.; Timson, D.J. Galactosemia: Towards Pharmacological Chaperones. J. Pers. Med. 2021, 11, 106. [Google Scholar] [CrossRef]
- Delnoy, B.; Coelho, A.I.; Rubio-Gozalbo, M.E. Current and Future Treatments for Classic Galactosemia. J. Pers. Med. 2021, 11, 75. [Google Scholar] [CrossRef]
- Bueno-Carrasco, M.T.; Cuéllar, J.; Flydal, M.I.; Santiago, C.; Kråkenes, T.-A.; Kleppe, R.; López-Blanco, J.R.; Marcilla, M.; Teigen, K.; Alvira, S.; et al. Structural Mechanism for Tyrosine Hydroxylase Inhibition by Dopamine and Reactivation by Ser40 Phosphorylation. Nat. Commun. 2022, 13, 74. [Google Scholar] [CrossRef]
- Nygaard, G.; Szigetvari, P.D.; Grindheim, A.K.; Ruoff, P.; Martinez, A.; Haavik, J.; Kleppe, R.; Flydal, M.I. Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency. J. Pers. Med. 2021, 11, 1186. [Google Scholar] [CrossRef]
- Segovia-Falquina, C.; Vilas, A.; Leal, F.; del Caño-Ochoa, F.; Kirk, E.P.; Ugarte, M.; Ramón-Maiques, S.; Gámez, A.; Pérez, B. A Functional Platform for the Selection of Pathogenic Variants of PMM2 Amenable to Rescue via the Use of Pharmacological Chaperones. Hum. Mutat. 2022, 43, 1430–1442. [Google Scholar] [CrossRef] [PubMed]
- Urquiza, P.; Laín, A.; Sanz-Parra, A.; Moreno, J.; Bernardo-Seisdedos, G.; Dubus, P.; González, E.; Gutiérrez-de-Juan, V.; García, S.; Eraña, H.; et al. Repurposing Ciclopirox as a Pharmacological Chaperone in a Model of Congenital Erythropoietic Porphyria. Sci. Transl. Med. 2018, 10, eaat7467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo-Seisdedos, G.; Charco, J.M.; SanJuan, I.; García-Martínez, S.; Urquiza, P.; Eraña, H.; Castilla, J.; Millet, O. Improving the Pharmacological Properties of Ciclopirox for Its Use in Congenital Erythropoietic Porphyria. J. Pers. Med. 2021, 11, 485. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pey, A.L. Molecular Mechanisms, Genotype–Phenotype Correlations and Patient-Specific Treatments in Inherited Metabolic Diseases. J. Pers. Med. 2023, 13, 117. https://doi.org/10.3390/jpm13010117
Pey AL. Molecular Mechanisms, Genotype–Phenotype Correlations and Patient-Specific Treatments in Inherited Metabolic Diseases. Journal of Personalized Medicine. 2023; 13(1):117. https://doi.org/10.3390/jpm13010117
Chicago/Turabian StylePey, Angel L. 2023. "Molecular Mechanisms, Genotype–Phenotype Correlations and Patient-Specific Treatments in Inherited Metabolic Diseases" Journal of Personalized Medicine 13, no. 1: 117. https://doi.org/10.3390/jpm13010117
APA StylePey, A. L. (2023). Molecular Mechanisms, Genotype–Phenotype Correlations and Patient-Specific Treatments in Inherited Metabolic Diseases. Journal of Personalized Medicine, 13(1), 117. https://doi.org/10.3390/jpm13010117