Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. CT Image and 3D Reconstruction
2.3. Tumor Segmentation and Radiomics Feature Extraction
2.4. Genomic Mutation Data Processing
3. Statistical Analysis
4. Results
4.1. Patient Cohorts
4.2. Prediction Model Construction for EGFR Mutations
4.3. Prediction Model Construction for TMB Status
4.4. Decision Curve Analysis
4.5. Nomograms for Predicting EGFR Mutation and TMB Status
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMY | Amylase |
AUC | Area under curve |
BMI | Body mass index |
CA | Carbohydrate antigen |
CT | Computed tomography |
DCA | Decision curve analysis |
DNA | Deoxyribonucleic acid |
EGFR | Epidermal growth factor receptor |
FPR | False positive rate |
GA | Glycated albumin |
GGO | Ground-glass opacity |
HBsAb | Hepatitis B surface antibody |
ICI | Immune checkpoint inhibitors |
LASSO | Least absolute shrinkage and selection operator |
LDL-C | Low-density lipoprotein cholesterol |
LUAD | Lung adenocarcinoma |
MAP | Mean arterial pressure |
MCV | Mean corpusular volume |
Mg | Magnesium |
NGS | Next-generation sequencing |
NSCLC | Non-small cell lung cancer |
NSE | Neuron specific enolase |
OS | Overall survival |
PCT | Plateletocrit |
PD-1 | Programed death-1 |
PLT | Platelet count |
PN | Pulmonary nodule |
RBC | Red blood cell |
RDW | Red cell volume distribution width |
ROC | Receiver operating characteristic curve |
ROI | Region of interest |
sMPLC | Synchronous multiple primary lung cancer |
SABR | Stereotactic ablative radiotherapy |
TBiL | Total bilirubin |
TKI | Tyrosine kinase inhibitors |
TMB | Tumor mutation burden |
TPR | True positive rate |
TT | Thrombin time |
UGA | Urine glucaric acid |
UALB | Urinary albumin |
References
- Yankelevitz, D.F.; Yip, R.; Smith, J.P.; Liang, M.; Liu, Y.; Xu, D.M.; Salvatore, M.M.; Wolf, A.S.; Flores, R.M.; Henschke, C.I.; et al. CT Screening for Lung Cancer: Nonsolid Nodules in Baseline and Annual Repeat Rounds. Radiology 2015, 277, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, H.L.; Heuvelmans, M.A.; Oudkerk, M. Low-Dose CT lung cancer screening; clinical evidence and implementation research. J. Intern. Med. 2022, 292, 68–80. [Google Scholar] [CrossRef]
- Shin, K.E.; Lee, K.S.; Yi, C.A.; Chung, M.J.; Shin, M.H.; Choi, Y.H. Subcentimeter lung nodules stable for 2 years at LDCT: Long-term follow-up using volumetry. Respirology 2014, 19, 921–928. [Google Scholar] [CrossRef]
- Gendarme, S.; Chouaid, C. Monitoring Subsolid Pulmonary Nodules in High-Risk Patients Is Even More Cost-Effective When Combined With a Stop-Smoking Program. J. Thorac. Oncol. 2020, 15, 1268–1270. [Google Scholar] [CrossRef]
- Kammer, M.N.; Lakhani, D.A.; Balar, A.B.; Antic, S.L.; Kussrow, A.K.; Webster, R.L.; Mahapatra, S.; Barad, U.; Shah, C.; Atwater, T.; et al. Integrated Biomarkers for the Management of Indeterminate Pulmonary Nodules. Am. J. Respir. Crit. Care Med. 2021, 204, 1306–1316. [Google Scholar] [CrossRef]
- Huo, J.W.; Luo, T.Y.; He, X.Q.; Gong, J.W.; Lv, F.J.; Li, Q. Radiological classification, gene-mutation status, and surgical prognosis of synchronous multiple primary lung cancer. Eur. Radiol. 2022, 32, 4264–4274. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, X.; Yang, F.; Zhou, Z.; Wang, J.; Chen, K. Surgical Prognosis of Synchronous Multiple Primary Lung Cancer: Systematic Review and Meta-Analysis. Clin. Lung Cancer 2021, 22, 341–350.e343. [Google Scholar] [CrossRef]
- Bittner, N.; Ostoros, G.; Geczi, L. New treatment options for lung adenocarcinoma—In view of molecular background. Pathol. Oncol. Res. 2014, 20, 11–25. [Google Scholar] [CrossRef]
- Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [Green Version]
- Kumarakulasinghe, N.B.; van Zanwijk, N.; Soo, R.A. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC). Respirology 2015, 20, 370–378. [Google Scholar] [CrossRef]
- Allinson, J.P.; Brown, J.; Gibb, K.; Navani, N. Immunotherapy in Non-Small Cell Lung Cancer. Which Patients and at Which Stage? Am. J. Respir. Crit. Care Med. 2019, 199, 1277–1279. [Google Scholar] [CrossRef]
- Goodman, A.M.; Piccioni, D.; Kato, S.; Boichard, A.; Wang, H.Y.; Frampton, G.; Lippman, S.M.; Connelly, C.; Fabrizio, D.; Miller, V.; et al. Prevalence of PDL1 Amplification and Preliminary Response to Immune Checkpoint Blockade in Solid Tumors. JAMA Oncol. 2018, 4, 1237–1244. [Google Scholar] [CrossRef] [Green Version]
- Sequist, L.V.; Martins, R.G.; Spigel, D.; Grunberg, S.M.; Spira, A.; Janne, P.A.; Joshi, V.A.; McCollum, D.; Evans, T.L.; Muzikansky, A.; et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 2008, 26, 2442–2449. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, K.; Liu, S.Y.; Yan, L.X.; Su, J.; Wu, Y.L.; Zhang, X.C.; Zhong, W.Z.; Yang, X.N. Multiomics analysis reveals a distinct response mechanism in multiple primary lung adenocarcinoma after neoadjuvant immunotherapy. J. Immunother. Cancer 2021, 9, e002312. [Google Scholar] [CrossRef]
- Gutierrez-Sainz, L.; Cruz-Castellanos, P.; Higuera, O.; de Castro-Carpeno, J. Neoadjuvant Chemoimmunotherapy in Patients with Resectable Non-small Cell Lung Cancer. Curr. Treat. Options Oncol. 2021, 22, 91. [Google Scholar] [CrossRef]
- Cheng, B.; Li, C.; Zhao, Y.; Li, J.; Xiong, S.; Liang, H.; Liu, Z.; Zeng, W.; Liang, W.; He, J. The impact of postoperative EGFR-TKIs treatment on residual GGO lesions after resection for lung cancer. Signal Transduct. Target. Ther. 2021, 6, 73. [Google Scholar] [CrossRef]
- O’Byrne, K.J.; Lee, K.H.; Kim, S.W.; Park, K.; Nishio, M.; Sakai, H.; Ohe, Y.; Fukuhara, T.; Kang, J.H.; Daga, H.; et al. First-line nivolumab + ipilimumab in advanced NSCLC: CheckMate 227 subpopulation analyses in Asian patients. ESMO Open 2022, 7, 100394. [Google Scholar] [CrossRef]
- Yang, X.; Yin, R.; Xu, L. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. N. Engl. J. Med. 2018, 379, e14. [Google Scholar]
- Li, W.; Wang, X.; Zhang, Y.; Li, X.; Li, Q.; Ye, Z. Radiomic analysis of pulmonary ground-glass opacity nodules for distinction of preinvasive lesions, invasive pulmonary adenocarcinoma and minimally invasive adenocarcinoma based on quantitative texture analysis of CT. Chin. J. Cancer Res. 2018, 30, 415–424. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; He, L.; Chen, X.; Pan, D.; Ma, Z.; Liang, C.; Tian, J.; Liang, C. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology 2016, 281, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.; Yang, Z.; Dai, H.; Feng, A.; Li, Q. Radiomics Study for Predicting the Expression of PD-L1 and Tumor Mutation Burden in Non-Small Cell Lung Cancer Based on CT Images and Clinicopathological Features. Front. Oncol. 2021, 11, 620246. [Google Scholar] [CrossRef]
- Tu, W.; Sun, G.; Fan, L.; Wang, Y.; Xia, Y.; Guan, Y.; Li, Q.; Zhang, D.; Liu, S.; Li, Z. Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer 2019, 132, 28–35. [Google Scholar] [CrossRef]
- Coroller, T.P.; Agrawal, V.; Narayan, V.; Hou, Y.; Grossmann, P.; Lee, S.W.; Mak, R.H.; Aerts, H.J. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother. Oncol. 2016, 119, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kong, C.; Xu, W.; Yang, S.; Shi, D.; Zhang, J.; Du, M.; Wang, S.; Bai, Y.; Zhang, T.; et al. Decoding tumor mutation burden and driver mutations in early stage lung adenocarcinoma using CT-based radiomics signature. Thorac. Cancer 2019, 10, 1904–1912. [Google Scholar] [CrossRef] [Green Version]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [Green Version]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Lck, S.; Initiative, F. Image biomarker standardisation initiative. 2016. Available online: http://arxiv.org/abs/1612.07003 (accessed on 16 May 2019).
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Vickers, A.J.; Elkin, E.B. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Zhu, D.; Wang, X.; Shen, Q.; Rao, Q.; Zhou, X. The Value of Prognostic Factors for Survival in Synchronous Multifocal Lung Cancer: A Retrospective Analysis of 164 Patients. Ann. Thorac. Surg. 2018, 105, 930–936. [Google Scholar] [CrossRef] [Green Version]
- Kocaturk, C.I.; Gunluoglu, M.Z.; Cansever, L.; Demir, A.; Cinar, U.; Dincer, S.I.; Bedirhan, M.A. Survival and prognostic factors in surgically resected synchronous multiple primary lung cancers. Eur. J. Cardiothorac Surg. 2011, 39, 160–166. [Google Scholar] [CrossRef]
- Girard, N.; Sima, C.S.; Jackman, D.M.; Sequist, L.V.; Chen, H.; Yang, J.C.; Ji, H.; Waltman, B.; Rosell, R.; Taron, M.; et al. Nomogram to predict the presence of EGFR activating mutation in lung adenocarcinoma. Eur. Respir. J. 2012, 39, 366–372. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, J.; Qu, F.; Liu, S.; Wang, H.; Balagurunathan, Y.; Ye, Z.; Gillies, R.J. CT Features Associated with Epidermal Growth Factor Receptor Mutation Status in Patients with Lung Adenocarcinoma. Radiology 2016, 280, 271–280. [Google Scholar] [CrossRef]
Characteristic | All n = 108 | Data Set | p Value | |
---|---|---|---|---|
Train (n = 75) | Validation (n = 33) | |||
Age, year | 57.82 ± 8.94 | 57.84 ± 8.48 | 57.79 ± 10.03 | 0.979 |
Sex, % | 0.104 | |||
Male | 33 (30.56) | 27 (36.00) | 6 (18.18) | |
Female | 75 (69.44) | 48 (64.00) | 27 (81.82) | |
Smoking, % | 0.544 | |||
No | 94 (87.04) | 64 (85.33) | 30 (90.91) | |
Yes | 14 (12.96) | 11 (14.67) | 3 (9.09) | |
*BMI, kg/m2 | 23.14 ± 2.73 | 23.31 ± 2.91 | 22.75 ± 2.27 | 0.285 |
*MAP, mmHg | 92.85 ± 9.38 | 91.96 ± 9.80 | 94.86 ± 8.12 | 0.114 |
*EGFR mutation, % | 0.123 | |||
No | 53 (49.07) | 41 (54.67) | 12 (36.36) | |
Yes | 55 (50.93) | 34 (45.33) | 21 (63.64) | |
*TMB, % | 0.537 | |||
No | 59 (54.63) | 39 (52.00) | 20 (60.61) | |
Yes | 49 (45.37) | 36 (48.00) | 13 (39.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, W.; Wang, W.; Zou, C.; Li, M.; Chen, H.; Meng, F.; Dong, G.; Wang, J.; Yu, Q.; Sun, M.; et al. Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules. J. Pers. Med. 2023, 13, 16. https://doi.org/10.3390/jpm13010016
Yin W, Wang W, Zou C, Li M, Chen H, Meng F, Dong G, Wang J, Yu Q, Sun M, et al. Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules. Journal of Personalized Medicine. 2023; 13(1):16. https://doi.org/10.3390/jpm13010016
Chicago/Turabian StyleYin, Wenda, Wei Wang, Chong Zou, Ming Li, Hao Chen, Fanchen Meng, Guozhang Dong, Jie Wang, Qian Yu, Mengting Sun, and et al. 2023. "Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules" Journal of Personalized Medicine 13, no. 1: 16. https://doi.org/10.3390/jpm13010016
APA StyleYin, W., Wang, W., Zou, C., Li, M., Chen, H., Meng, F., Dong, G., Wang, J., Yu, Q., Sun, M., Xu, L., Lv, Y., Wang, X., & Yin, R. (2023). Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules. Journal of Personalized Medicine, 13(1), 16. https://doi.org/10.3390/jpm13010016