Hydrogen Gas Treatment Improves Postoperative Delirium and Cognitive Dysfunction in Elderly Noncardiac Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Randomization and Masking
2.4. Procedures
2.5. Outcome Measures
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Michael, S.C.; Nell, A.F.; Anne, L.D.; Elizabeth, L.W. Postoperative delirium: Why, what, and how to confront it at your institution. Curr. Opin. Anaesthesiol. 2020, 33, 668–673. [Google Scholar]
- Witlox, J.; Eurelings, L.S.; de Jonghe, J.F.; Kalisvaart, K.J.; Eikelenboom, P.; van Gool, W.A. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: A meta-analysis. JAMA 2010, 304, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.D.; Pandharipande, P.P.; Davidson, A.J.; Ma, D.; Maze, M. Anticipating and managing postoperative delirium and cognitive decline in adults. BMJ 2011, 343, d4331. [Google Scholar] [CrossRef] [PubMed]
- Ballweg, T.; White, M.; Parker, M.; Casey, C.; Bo, A.; Farahbakhsh, Z.; Kayser, A.; Blair, A.; Lindroth, H.; Pearce, R.A.; et al. Association between plasma tau and postoperative delirium incidence and severity: A prospective observational study. Br. J. Anaesth. 2021, 126, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Casey, C.P.; Lindroth, H.; Mohanty, R.; Farahbakhsh, Z.; Ballweg, T.; Twadell, S.; Miller, S.; Krause, B.; Prabhakaran, V.; Blennow, K.; et al. Postoperative delirium is associated with increased plasma neurofilament light. Brain A J. Neurol. 2020, 143, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Mrkobrada, M.; Chan, M.T.V.; Cowan, D.; Campbell, D.; Wang, C.Y.; Torres, D.; Malaga, G.; Sanders, R.D.; Sharma, M.; Brown, C.; et al. Perioperative covert stroke in patients undergoing non-cardiac surgery (NeuroVISION): A prospective cohort study. Lancet 2019, 394, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, E.L.; Diaz-Ramirez, L.G.; Smith, A.K.; Boscardin, W.J.; Avidan, M.S.; Glymour, M.M. Cognitive Change after Cardiac Surgery Versus Cardiac Catheterization: A Population-Based Study. Ann. Thorac. Surg. 2019, 107, 1119–1125. [Google Scholar] [CrossRef]
- Schulte, P.J.; Roberts, R.O.; Knopman, D.S.; Petersen, R.C.; Hanson, A.C.; Schroeder, D.R.; Weingarten, T.N.; Martin, D.P.; Warner, D.O.; Sprung, J. Association between exposure to anaesthesia and surgery and long-term cognitive trajectories in older adults: Report from the Mayo Clinic Study of Aging. Br. J. Anaesth. 2018, 121, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Subramaniyan, S.; Terrando, N. Neuroinflammation and Perioperative Neurocognitive Disorders. Anesth. Analg. 2019, 128, 781–788. [Google Scholar] [CrossRef]
- Villeda, S.A.; Luo, J.; Mosher, K.I.; Zou, B.; Britschgi, M.; Bieri, G.; Stan, T.M.; Fainberg, N.; Ding, Z.; Eggel, A.; et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011, 477, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Villeda, S.A.; Plambeck, K.E.; Middeldorp, J.; Castellano, J.M.; Mosher, K.I.; Luo, J.; Smith, L.K.; Bieri, G.; Lin, K.; Berdnik, D.; et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 2014, 20, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014, 144, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Feng, J.; Lian, N.; Yang, M.; Xie, K.; Wang, G.; Wang, C.; Yu, Y. Hydrogen gas alleviates blood-brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway. Int. Immunopharmacol. 2020, 85, 106585. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xie, K.; Chen, H.; Dong, X.; Li, Y.; Yu, Y.; Wang, G.; Yu, Y. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res. 2014, 1589, 78–92. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, H.; Zhang, P.; Chang, L.; Xie, K. Molecular hydrogen inhalation attenuates postoperative cognitive impairment in rats. Neuroreport 2017, 28, 694–700. [Google Scholar] [CrossRef]
- Inouye, S.K. Delirium in older persons. N. Engl. J. Med. 2006, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Hshieh, T.T.; Inouye, S.K.; Oh, E.S. Delirium in the Elderly. Psychiatr. Clin. N. Am. 2018, 41, 1–17. [Google Scholar] [CrossRef]
- Silverstein, J.H.; Timberger, M.; Reich, D.L.; Uysal, S. Central nervous system dysfunction after noncardiac surgery and anesthesia in the elderly. Anesthesiology 2007, 3, 7. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.K.; Kim, H.Y.; Kim, J.K.; Choi, S.W. Risk factors of emergence agitation in adults undergoing general anesthesia for nasal surgery. Clin. Exp. Otorhinolaryngol. 2015, 8, 46–51. [Google Scholar] [CrossRef]
- Ritmala-Castren, M.; Lakanmaa, R.L.; Virtanen, I.; Leino-Kilpi, H. Evaluating adult patients’ sleep: An integrative literature review in critical care. Scand. J. Caring Sci. 2014, 28, 435–448. [Google Scholar] [CrossRef]
- Su, X.; Meng, Z.-T.; Wu, X.-H.; Cui, F.; Li, H.-L.; Wang, D.-X.; Zhu, X.; Zhu, S.-N.; Maze, M.; Ma, D. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: A randomised, double-blind, placebo-controlled trial. Lancet 2016, 388, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Noordzij, M.; Dekker, F.W.; Zoccali, C.; Jager, K.J. Sample size calculations. Nephron Clin. Pract. 2011, 118, c319–c323. [Google Scholar] [PubMed] [Green Version]
- Oh, S.T.; Park, J.Y. Postoperative delirium. Korean J. Anesthesiol. 2019, 72, 4–12. [Google Scholar] [CrossRef]
- Choi, S.H.; Chung, T.S.; Park, K.M.; Jung, Y.C.; Kim, S.I.; Kim, J.J. Neural network functional connectivity during and after an episode of delirium. Am. J. Psychiatry 2012, 169, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Toyooka, T.; Takeuchi, S.; Otani, N.; Wada, K.; Tomiyama, A.; Mori, K. Hydrogen gas inhalation improves delayed brain injury by alleviating early brain injury after experimental subarachnoid hemorrhage. Sci. Rep. 2020, 10, 12319. [Google Scholar] [CrossRef]
- Park, S.; Na, S.H.; Oh, J.; Lee, J.S.; Oh, S.T.; Kim, J.J.; Park, J.Y. Pain and anxiety and their relationship with medication doses in the intensive care unit. J. Crit. Care 2018, 47, 65–69. [Google Scholar] [CrossRef]
- Vasilevskis, E.E.; Han, J.H.; Hughes, C.G.; Ely, E.W. Epidemiology and risk factors for delirium across hospital settings. Best practice & research. Clin. Anaesthesiol. 2012, 26, 277–287. [Google Scholar]
- Bruce, A.J.; Ritchie, C.W.; Blizard, R.; Lai, R.; Raven, P. The incidence of delirium associated with orthopedic surgery: A meta-analytic review. Int. Psychogeriatr. 2007, 19, 197–214. [Google Scholar] [CrossRef]
- Ding, X.; Gao, X.; Chen, Q.; Jiang, X.; Li, Y.; Xu, J.; Qin, G.; Lu, S.; Huang, D. Preoperative Acute Pain Is Associated with Postoperative Delirium. Pain Med. 2021, 22, 15–21. [Google Scholar] [CrossRef]
- Wu, Y.; Potempa, L.A.; El Kebir, D.; Filep, J.G. C-reactive protein and inflammation: Conformational changes affect function. Biol. Chem. 2015, 396, 1181–1197. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Xie, K.; Yu, Y.; Huang, Y.; Zheng, L.; Li, J.; Chen, H.; Han, H.; Hou, L.; Gong, G.; Wang, G. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 2012, 37, 548–555. [Google Scholar] [CrossRef]
- Iketani, M.; Ohsawa, I. Molecular Hydrogen as a Neuroprotective Agent. Curr. Neuropharmacol. 2017, 15, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Dillon, S.T.; Vasunilashorn, S.M.; Ngo, L.; Otu, H.H.; Inouye, S.K.; Jones, R.N.; Alsop, D.C.; Kuchel, G.A.; Metzger, E.D.; Arnold, S.E.; et al. Higher C-Reactive Protein Levels Predict Postoperative Delirium in Older Patients Undergoing Major Elective Surgery: A Longitudinal Nested Case-Control Study. Biol. Psychiatry 2017, 81, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef]
- Nagatani, K.; Wada, K.; Takeuchi, S.; Kobayashi, H.; Uozumi, Y.; Otani, N.; Fujita, M.; Tachibana, S.; Nawashiro, H. Effect of hydrogen gas on the survival rate of mice following global cerebral ischemia. Shock 2012, 37, 645–652. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, J.; Zhan, W.; Xiong, Y.; Hu, C.; Li, X.; Li, X.; Li, Y.; Liao, X. The neuroprotective effects of intraperitoneal injection of hydrogen in rabbits with cardiac arrest. Resuscitation 2013, 84, 690–695. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, C.; Suzuki, H.; Hu, Q.; Zhi, X.; Zhang, J.H. Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit. Care Med. 2012, 40, 1291–1296. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, C.; Zhang, J.H.; Cai, J.M.; Cao, Y.P.; Sun, X.J. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res. 2010, 1328, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, J.; Liu, Q.; Yang, R.; Zhang, J.H.; Cao, Y.P.; Sun, X.J. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kappaB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci. Lett. 2011, 491, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Gögenur, I.; Middleton, B.; Burgdorf, S.; Rasmussen, L.S.; Skene, D.; Rosenberg, J. Impact of sleep and circadian disturbances in urinary 6-sulphatoxymelatonin levels, on cognitive function after major surgery. J. Pineal. Res. 2007, 7, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Mędrzycka-Dąbrowska, W.; Friganović, A.; Religa, D.; Krupa, S. Patients’ and Relatives’ Experiences of Delirium in the Intensive Care Unit-A Qualitative Study. Int. J. Environ. Res. Public Health 2022, 7, 1601. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, K.; Mędrzycka-Dąbrowska, W.; Pilch, D.; Wach, K.; Fortunato, A.; Krupa, S.; Ozga, D. Sleep Deprivation from the Perspective of a Patient Hospitalized in the Intensive Care Unit-Qualitative Study. Healthcare 2020, 7, 351. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristic | Sham (n = 70) | Hydrogen (n = 83) | p_Value |
---|---|---|---|
Age (years) (mean ± SD) | 70.74 ± 5.39 | 70.45 ± 5.20 | 0.73 |
Sex (%) | |||
Male | 36(51%) | 37(44%) | 0.50 |
Female | 34(49%) | 46(56%) | |
Weight (kg) (mean ± SD) | 67.53 ± 11.86 | 66.94 ± 12.42 | 0.77 |
Height (cm) (mean ± SD) | 165.49 ± 7.99 | 164.41 ± 8.12 | 0.41 |
ASA (%) | 0.39 | ||
Ⅱ | 37(53%) | 37(44%) | |
Ⅲ | 33(47%) | 46(56%) | |
Hgb | 127.56 ± 14.47 | 127.81 ± 16.07 | 0.92 |
PLT | 215.5 ± 62.27 | 230.06 ± 51.72 | 0.12 |
ALB | 36.87 ± 4.10 | 37.66 ± 3.80 | 0.22 |
ALT | 19.79 ± 16.22 | 18.01 ± 10.02 | 0.41 |
AST | 20.09 ± 9.45 | 18.67 ± 13.20 | 0.28 |
GLU | 5.62 ± 1.35 | 5.45 ± 1.51 | 0.48 |
Hypertension | 12(17%) | 10(12%) | 0.37 |
Diabetes | 12(17%) | 10(12%) | 0.37 |
Sham (n = 70) | Hydrogen (n = 83) | p_Value | |
---|---|---|---|
Type of surgery | |||
orthopedic | 50(71%) | 53(63%) | |
abdominal | 15(21%) | 18(22%) | |
thoracic | 5(8%) | 12(15%) | |
Duration of surgery (min) (mean ± SD) | 117.77 ± 84.48 | 116.08 ± 50.51 | 0.88 |
Total intra-operative infusion (ml) (mean ± SD) | 1391.43 ± 416.85 | 1389.16 ± 434.49 | 0.20 |
Urine volume (ml) (mean ± SD) | 308.57 ± 256.50 | 348.57 ± 287.97 | 0.37 |
Bleeding volume (ml) (mean ± SD) | 154.14 ± 327.50 | 83.72 ± 114.43 | 0.07 |
Use of other analgesic during the first 7 postoperative days | |||
Morphine (n) | 1(1%) | 1(1%) | 0.90 |
Morphine (mg) | 10 | 10 | |
Flurbiprofen axetil (n) | 24(34%) | 18(21%) | 0.08 |
Flurbiprofen axetil (mg) | 104.17 ± 44.03 | 100 ± 34.3 | 0.74 |
Sham (n = 70) | Hydrogen (n = 83) | p_Value | |
---|---|---|---|
Primary endpoint | |||
Overall incidence of delirium | 17(24%)(95% CI = 1.49 to 1.67) | 10(12%)(95% CI = 1.18 to 1.57) | 0.048 * |
Secondary endpoints | |||
Length of stay in the hospital after surgery (day) | 9.70 ± 2.18 | 9.23 ± 1.90 | 0.16 |
All-cause 30-day mortality | 0(0%) | 0(0%) | |
Prespecified analyses | |||
NRS for pain (score) | |||
First morning after surgery | 3.54 ± 1.77 | 4.08 ± 1.77 | 0.048 * |
Third morning after surgery | 2.15 ± 1.11 | 2.2 ± 1.10 | 0.82 |
Seventh morning after surgery | 1.06 ± 0.99 | 1.08 ± 0.91 | 0.84 |
NRS for sleep quality (score) | |||
First morning after surgery | 5.21 ± 1.84 | 5.24 ± 1.64 | 0.93 |
Third morning after surgery | 6.11 ± 1.50 | 5.95 ± 1.53 | 0.50 |
Seventh morning after surgery | 6.50 ± 1.43 | 6.41 ± 1.53 | 0.71 |
Exploratory analyses | |||
Time to onset of delirium (day) | 2.29 ± 1.26 | 2.45 ± 1.21 | 0.74 |
Duration of delirium (day) | 1.71 ± 0.69 | 1.36 ± 0.67 | 0.21 |
Haloperidol treatment | 2(2.8%) | 3(3.6%) |
Sham (n = 70) | Hydrogen (n = 83) | p_Value | |
---|---|---|---|
SPO2_PACU < 92% (n)(%) | 2(3%) | 6(7%) | 0.23 |
PONV (n)(%) | 5(7%) | 4(5%) | 0.55 |
Headache (n)(%) | 0(0%) | 0(0%) | |
Uroschesis (n)(%) | 0(0%) | 0(0%) | |
Bradycardia (n)(%) | 0(0%) | 1(1%) | 0.36 |
Hypotension (n)(%) | 2(3%) | 3(4%) | 0.80 |
Hypertension (n)(%) | 2(3%) | 3(4%) | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Du, J.; Tian, Z.; Yu, Y.; Cui, Y.; Xie, K. Hydrogen Gas Treatment Improves Postoperative Delirium and Cognitive Dysfunction in Elderly Noncardiac Patients. J. Pers. Med. 2023, 13, 67. https://doi.org/10.3390/jpm13010067
Lin H, Du J, Tian Z, Yu Y, Cui Y, Xie K. Hydrogen Gas Treatment Improves Postoperative Delirium and Cognitive Dysfunction in Elderly Noncardiac Patients. Journal of Personalized Medicine. 2023; 13(1):67. https://doi.org/10.3390/jpm13010067
Chicago/Turabian StyleLin, Hua, Jian Du, Zhigang Tian, Yonghao Yu, Yan Cui, and Keliang Xie. 2023. "Hydrogen Gas Treatment Improves Postoperative Delirium and Cognitive Dysfunction in Elderly Noncardiac Patients" Journal of Personalized Medicine 13, no. 1: 67. https://doi.org/10.3390/jpm13010067
APA StyleLin, H., Du, J., Tian, Z., Yu, Y., Cui, Y., & Xie, K. (2023). Hydrogen Gas Treatment Improves Postoperative Delirium and Cognitive Dysfunction in Elderly Noncardiac Patients. Journal of Personalized Medicine, 13(1), 67. https://doi.org/10.3390/jpm13010067