Adjuvant Targeted Therapy in Solid Cancers: Pioneers and New Glories
Abstract
:1. Introduction
2. Melanoma
2.1. Epidemiology and Prognosis
2.2. Major Advances in the Adjuvant Setting
2.3. Future Directions
3. Gastrointestinal Stromal Tumor (GIST)
3.1. Epidemiology and Prognosis
3.2. Major Advances in the Adjuvant Setting
3.3. Future Directions
4. Non-Small Cell Lung Cancer (NSCLC)
4.1. Epidemiology and Prognosis
4.2. Major Advances in the Adjuvant Setting
4.3. Future Directions
4.3.1. EGFR Mutant NSCLC
4.3.2. Other Oncogene-Addicted NSCLC
5. Breast Cancer
5.1. Epidemiology and Prognosis
5.2. Major Advances in the Adjuvant Setting
5.2.1. HER2-Positive BC
5.2.2. Luminal (HER2-Negative) BC
5.2.3. Triple-Negative BC
5.3. Future Perspectives
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belluomini, L.; Riva, S.T.; Simbolo, M.; Nocini, R.; Trestini, I.; Avancini, A.; Tregnago, D.; Ferrara, M.G.; Caldart, A.; Dodi, A.; et al. Anticipating EGFR Targeting in Early Stages of Lung Cancer: Leave No Stone Unturned. Cells 2021, 10, 2685. [Google Scholar] [CrossRef]
- Dematteo, R.P.; Ballman, K.V.; Antonescu, C.R.; Maki, R.G.; Pisters, P.W.; Demetri, G.D.; Blackstein, M.E.; Blanke, C.D.; von Mehren, M.; Brennan, M.F.; et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: A randomised, double-blind, placebo-controlled trial. Lancet 2009, 373, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, H.; Eriksson, M.; Sundby Hall, K.; Hartmann, J.T.; Pink, D.; Schutte, J.; Ramadori, G.; Hohenberger, P.; Duyster, J.; Al-Batran, S.E.; et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: A randomized trial. JAMA 2012, 307, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandala, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. N. Engl. J. Med. 2017, 377, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; Kato, T.; et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef]
- Long, G.V.; Menzies, A.M.; Nagrial, A.M.; Haydu, L.E.; Hamilton, A.L.; Mann, G.J.; Hughes, T.M.; Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol. 2011, 29, 1239–1246. [Google Scholar] [CrossRef]
- Maio, M.; Lewis, K.; Demidov, L.; Mandala, M.; Bondarenko, I.; Ascierto, P.A.; Herbert, C.; Mackiewicz, A.; Rutkowski, P.; Guminski, A.; et al. Adjuvant vemurafenib in resected, BRAF(V600) mutation-positive melanoma (BRIM8): A randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 2018, 19, 510–520. [Google Scholar] [CrossRef]
- Amaria, R.N.; Prieto, P.A.; Tetzlaff, M.T.; Reuben, A.; Andrews, M.C.; Ross, M.I.; Glitza, I.C.; Cormier, J.; Hwu, W.J.; Tawbi, H.A.; et al. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: A single-centre, open-label, randomised, phase 2 trial. Lancet Oncol. 2018, 19, 181–193. [Google Scholar] [CrossRef]
- Long, G.V.; Saw, R.P.M.; Lo, S.; Nieweg, O.E.; Shannon, K.F.; Gonzalez, M.; Guminski, A.; Lee, J.H.; Lee, H.; Ferguson, P.M.; et al. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAF(V600) mutation-positive melanoma (NeoCombi): A single-arm, open-label, single-centre, phase 2 trial. Lancet Oncol. 2019, 20, 961–971. [Google Scholar] [CrossRef]
- Mocellin, S.; Pasquali, S.; Rossi, C.R.; Nitti, D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2010, 102, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.; Chiarion-Sileni, V.; Grob, J.J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2015, 16, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandala, M.; Kirkwood, J.M.; Chiarion Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; et al. Five-Year Analysis of Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. N. Engl. J. Med. 2020, 383, 1139–1148. [Google Scholar] [CrossRef]
- Hauschild, A.; Dummer, R.; Schadendorf, D.; Santinami, M.; Atkinson, V.; Mandala, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; et al. Longer Follow-Up Confirms Relapse-Free Survival Benefit with Adjuvant Dabrafenib Plus Trametinib in Patients with Resected BRAF V600-Mutant Stage III Melanoma. J. Clin. Oncol. 2018, 36, 3441–3449. [Google Scholar] [CrossRef]
- Casali, P.G.; Blay, J.Y.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.; et al. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 20–33. [Google Scholar] [CrossRef]
- DeMatteo, R.P.; Lewis, J.J.; Leung, D.; Mudan, S.S.; Woodruff, J.M.; Brennan, M.F. Two hundred gastrointestinal stromal tumors: Recurrence patterns and prognostic factors for survival. Ann. Surg. 2000, 231, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Corless, C.L.; Fletcher, J.A.; Heinrich, M.C. Biology of gastrointestinal stromal tumors. J. Clin. Oncol. 2004, 22, 3813–3825. [Google Scholar] [CrossRef]
- Boikos, S.A.; Pappo, A.S.; Killian, J.K.; Laquaglia, M.P.; Weldon, C.B.; George, S.; Trent, J.C.; Von Mehren, M.; Wright, J.A.; Schiffman, J.D.; et al. Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumors. JAMA Oncol. 2016, 2, 922. [Google Scholar] [CrossRef]
- Casali, P.G.; Le Cesne, A.; Poveda Velasco, A.; Kotasek, D.; Rutkowski, P.; Hohenberger, P.; Fumagalli, E.; Judson, I.R.; Italiano, A.; Gelderblom, H.; et al. Time to Definitive Failure to the First Tyrosine Kinase Inhibitor in Localized GI Stromal Tumors Treated with Imatinib As an Adjuvant: A European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Intergroup Randomized Trial in Collaboration with the Australasian Gastro-Intestinal Trials Group, UNICANCER, French Sarcoma Group, Italian Sarcoma Group, and Spanish Group for Research on Sarcomas. J. Clin. Oncol. 2015, 33, 4276–4283. [Google Scholar] [CrossRef]
- Dematteo, R.P.; Heinrich, M.C.; El-Rifai, W.M.; Demetri, G. Clinical management of gastrointestinal stromal tumors: Before and after STI-571. Hum. Pathol. 2002, 33, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Hirota, S.; Isozaki, K.; Moriyama, Y.; Hashimoto, K.; Nishida, T.; Ishiguro, S.; Kawano, K.; Hanada, M.; Kurata, A.; Takeda, M.; et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998, 279, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Buchdunger, E.; Zimmermann, J.; Mett, H.; Meyer, T.; Muller, M.; Druker, B.J.; Lydon, N.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996, 56, 100–104. [Google Scholar] [PubMed]
- Tuveson, D.A.; Willis, N.A.; Jacks, T.; Griffin, J.D.; Singer, S.; Fletcher, C.D.; Fletcher, J.A.; Demetri, G.D. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: Biological and clinical implications. Oncogene 2001, 20, 5054–5058. [Google Scholar] [CrossRef]
- Joensuu, H.; Roberts, P.J.; Sarlomo-Rikala, M.; Andersson, L.C.; Tervahartiala, P.; Tuveson, D.; Silberman, S.L.; Capdeville, R.; Dimitrijevic, S.; Druker, B.; et al. Effect of the Tyrosine Kinase Inhibitor STI571 in a Patient with a Metastatic Gastrointestinal Stromal Tumor. N. Engl. J. Med. 2001, 344, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Casali, P.G.; Zalcberg, J.; Le Cesne, A.; Reichardt, P.; Blay, J.-Y.; Lindner, L.H.; Judson, I.R.; Schöffski, P.; Leyvraz, S.; Italiano, A.; et al. Ten-Year Progression-Free and Overall Survival in Patients with Unresectable or Metastatic GI Stromal Tumors: Long-Term Analysis of the European Organisation for Research and Treatment of Cancer, Italian Sarcoma Group, and Australasian Gastrointestinal Tr. J. Clin. Oncol. 2017, 35, 1713–1720. [Google Scholar] [CrossRef]
- Gold, J.S.; Gönen, M.; Gutiérrez, A.; Broto, J.M.; García-Del-Muro, X.; Smyrk, T.C.; Maki, R.G.; Singer, S.; Brennan, M.F.; Antonescu, C.R.; et al. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: A retrospective analysis. Lancet Oncol. 2009, 10, 1045–1052. [Google Scholar] [CrossRef]
- Joensuu, H.; Wardelmann, E.; Sihto, H.; Eriksson, M.; Sundby Hall, K.; Reichardt, A.; Hartmann, J.T.; Pink, D.; Cameron, S.; Hohenberger, P.; et al. Effect of KIT and PDGFRA Mutations on Survival in Patients with Gastrointestinal Stromal Tumors Treated with Adjuvant Imatinib: An Exploratory Analysis of a Randomized Clinical Trial. JAMA Oncol. 2017, 3, 602–609. [Google Scholar] [CrossRef]
- Debiec-Rychter, M.; Sciot, R.; Le Cesne, A.; Schlemmer, M.; Hohenberger, P.; van Oosterom, A.T.; Blay, J.Y.; Leyvraz, S.; Stul, M.; Casali, P.G.; et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer 2006, 42, 1093–1103. [Google Scholar] [CrossRef]
- Schaefer, I.-M.; Dematteo, R.P.; Serrano, C. The GIST of Advances in Treatment of Advanced Gastrointestinal Stromal Tumor. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 885–899. [Google Scholar] [CrossRef]
- Pignon, J.-P.; Tribodet, H.; Scagliotti, G.V.; Douillard, J.-Y.; Shepherd, F.A.; Stephens, R.J.; Dunant, A.; Torri, V.; Rosell, R.; Seymour, L.; et al. Lung Adjuvant Cisplatin Evaluation: A Pooled Analysis by the LACE Collaborative Group. J. Clin. Oncol. 2008, 26, 3552–3559. [Google Scholar] [CrossRef] [PubMed]
- Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Kwak, E.L.; Bang, Y.-J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.-H.I.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; et al. Anaplastic Lymphoma Kinase Inhibition in Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2010, 363, 1693–1703. [Google Scholar] [CrossRef]
- Shaw, A.T.; Ou, S.-H.I.; Bang, Y.-J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hu, H.; Pan, Y.; Li, Y.; Ye, T.; Li, C.; Luo, X.; Wang, L.; Li, H.; Zhang, Y.; et al. RET Fusions Define a Unique Molecular and Clinicopathologic Subtype of Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2012, 30, 4352–4359. [Google Scholar] [CrossRef] [PubMed]
- Farago, A.F.; Taylor, M.S.; Doebele, R.C.; Zhu, V.W.; Kummar, S.; Spira, A.I.; Boyle, T.A.; Haura, E.B.; Arcila, M.E.; Benayed, R.; et al. Clinicopathologic Features of Non–Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis. Oncol. 2018, 1–12. [Google Scholar] [CrossRef]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Souquet, P.-J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, J.; Novello, S.; et al. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 2016, 17, 984–993. [Google Scholar] [CrossRef]
- Cappuzzo, F.; Bemis, L.; Varella-Garcia, M. HER2 Mutation and Response to Trastuzumab Therapy in Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2006, 354, 2619–2621. [Google Scholar] [CrossRef]
- Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; et al. MET Exon 14 Mutations in Non–Small-Cell Lung Cancer Are Associated with Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J. Clin. Oncol. 2016, 34, 721–730. [Google Scholar] [CrossRef]
- Tsuboi, M.; Kato, H.; Nagai, K.; Tsuchiya, R.; Wada, H.; Tada, H.; Ichinose, Y.; Fukuoka, M.; Jiang, H. Gefitinib in the adjuvant setting: Safety results from a phase III study in patients with completely resected non-small cell lung cancer. Anticancer Drugs 2005, 16, 1123–1128. [Google Scholar] [CrossRef]
- Goss, G.D.; O’Callaghan, C.; Lorimer, I.; Tsao, M.-S.; Masters, G.A.; Jett, J.; Edelman, M.J.; Lilenbaum, R.; Choy, H.; Khuri, F.; et al. Gefitinib Versus Placebo in Completely Resected Non–Small-Cell Lung Cancer: Results of the NCIC CTG BR19 Study. J. Clin. Oncol. 2013, 31, 3320–3326. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.Z.; Wang, Q.; Mao, W.M.; Xu, S.T.; Wu, L.; Shen, Y.; Liu, Y.Y.; Chen, C.; Cheng, Y.; Xu, L.; et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II–IIIA (N1–N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): A randomised, open-label, phase 3 study. Lancet Oncol. 2018, 19, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.; Altorki, N.K.; Eberhardt, W.E.E.; O’Brien, M.E.R.; Spigel, D.R.; Crinò, L.; Tsai, C.-M.; Kim, J.-H.; Cho, E.K.; Hoffman, P.C.; et al. Adjuvant Erlotinib Versus Placebo in Patients with Stage IB–IIIA Non–Small-Cell Lung Cancer (RADIANT): A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2015, 33, 4007–4014. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Wu, Y.-L.; John, T.; Grohe, C.; Majem, M.; Wang, J.; Kato, T.; Goldman, J.W.; Laktionov, K.; Kim, S.-W.; et al. Adjuvant Osimertinib for Resected EGFR-Mutated Stage IB–IIIA Non–Small-Cell Lung Cancer: Updated Results from the Phase III Randomized ADAURA Trial. J. Clin. Oncol. 2023, 41, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Mitsudomi, T.; Misumi, T.; Sugio, K.; Tsuboi, M.; Okamoto, I.; Iwamoto, Y.; Sakakura, N.; Sugawara, S.; Atagi, S.; et al. Randomized Phase III Study of Gefitinib Versus Cisplatin Plus Vinorelbine for Patients with Resected Stage II-IIIA Non–Small-Cell Lung Cancer with EGFR Mutation (IMPACT). J. Clin. Oncol. 2022, 40, 231–241. [Google Scholar] [CrossRef]
- He, J.; Su, C.; Liang, W.; Xu, S.; Wu, L.; Fu, X.; Zhang, X.; Ge, D.; Chen, Q.; Mao, W.; et al. Icotinib versus chemotherapy as adjuvant treatment for stage II–IIIA EGFR-mutant non-small-cell lung cancer (EVIDENCE): A randomised, open-label, phase 3 trial. Lancet Respir. Med. 2021, 9, 1021–1029. [Google Scholar] [CrossRef]
- Inoue, A.; Saijo, Y.; Maemondo, M.; Gomi, K.; Tokue, Y.; Kimura, Y.; Ebina, M.; Kikuchi, T.; Moriya, T.; Nukiwa, T. Severe acute interstitial pneumonia and gefitinib. Lancet 2003, 361, 137–139. [Google Scholar] [CrossRef]
- Li, N.; Ou, W.; Ye, X.; Sun, H.-B.; Zhang, L.; Fang, Q.; Zhang, S.-L.; Wang, B.-X.; Wang, S.-Y. Pemetrexed-Carboplatin Adjuvant Chemotherapy with or Without Gefitinib in Resected Stage IIIA-N2 Non-Small Cell Lung Cancer Harbouring EGFR Mutations: A Randomized, Phase II Study. Ann. Surg. Oncol. 2014, 21, 2091–2096. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Y.; Cai, K.; Wu, H.; Xiong, G.; Wang, H.; Zhang, Z. Randomized Adjuvant Chemotherapy of EGFR-Mutated Non-Small Cell Lung Cancer Patients with or without Icotinib Consolidation Therapy. PLoS ONE 2015, 10, e0140794. [Google Scholar] [CrossRef]
- Yue, D.; Xu, S.; Wang, Q.; Li, X.; Shen, Y.; Zhao, H.; Chen, C.; Mao, W.; Liu, W.; Liu, J.; et al. Erlotinib versus vinorelbine plus cisplatin as adjuvant therapy in Chinese patients with stage IIIA EGFR mutation-positive non-small-cell lung cancer (EVAN): A randomised, open-label, phase 2 trial. Lancet Respir. Med. 2018, 6, 863–873. [Google Scholar] [CrossRef]
- Zhong, W.-Z.; Wang, Q.; Mao, W.-M.; Xu, S.-T.; Wu, L.; Wei, Y.-C.; Liu, Y.-Y.; Chen, C.; Cheng, Y.; Yin, R.; et al. Gefitinib Versus Vinorelbine Plus Cisplatin as Adjuvant Treatment for Stage II–IIIA (N1–N2) EGFR-Mutant NSCLC: Final Overall Survival Analysis of CTONG1104 Phase III Trial. J. Clin. Oncol. 2021, 39, 713–722. [Google Scholar] [CrossRef]
- Herbst, R.S.; Tsuboi, M.; John, T.; Kato, T.; Majem, M.; Grohé, C.; Wang, J.; Goldman, J.W.; Lu, S.; Su, W.-C.; et al. Overall survival analysis from the ADAURA trial of adjuvant osimertinib in patients with resected EGFR-mutated (EGFRm) stage IB–IIIA non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41, LBA3. [Google Scholar] [CrossRef]
- Solomon, B.J.; Ahn, J.S.; Barlesi, F.; Dziadziuszko, R.; Nishio, M.; Shaw, A.T.; Bordogna, W.; Meyenberg, C.; Wu, Y.-L. ALINA: A phase III study of alectinib versus chemotherapy as adjuvant therapy in patients with stage IB–IIIA anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2019, 37, TPS8569. [Google Scholar] [CrossRef]
- Lee, J.M.; Sepesi, B.; Toloza, E.M.; Lin, J.; Pass, H.I.; Johnson, B.E.; Heymach, J.V.; Johnson, M.L.; Ding, B.; Schulze, K.; et al. EP02.04-005 Phase II NAUTIKA1 Study of Targeted Therapies in Stage II–III NSCLC: Preliminary Data of Neoadjuvant Alectinib for ALK+ NSCLC. J. Thorac. Oncol. 2022, 17, S233–S234. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef]
- Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E.; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; et al. Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer. N. Engl. J. Med. 2005, 353, 1673–1684. [Google Scholar] [CrossRef]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef]
- Joensuu, H.; Kellokumpu-Lehtinen, P.-L.; Bono, P.; Alanko, T.; Kataja, V.; Asola, R.; Utriainen, T.; Kokko, R.; Hemminki, A.; Tarkkanen, M.; et al. Adjuvant Docetaxel or Vinorelbine with or without Trastuzumab for Breast Cancer. N. Engl. J. Med. 2006, 354, 809–820. [Google Scholar] [CrossRef]
- Joensuu, H.; Bono, P.; Kataja, V.; Alanko, T.; Kokko, R.; Asola, R.; Utriainen, T.; Turpeenniemi-Hujanen, T.; Jyrkkiö, S.; Möykkynen, K.; et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: Final results of the FinHer Trial. J. Clin. Oncol. 2009, 27, 5685–5692. [Google Scholar] [CrossRef]
- Pivot, X.; Romieu, G.; Debled, M.; Pierga, J.Y.; Kerbrat, P.; Bachelot, T.; Lortholary, A.; Espié, M.; Fumoleau, P.; Serin, D.; et al. 6 months versus 12 months of adjuvant trastuzumab for patients with HER2-positive early breast cancer (PHARE): A randomised phase 3 trial. Lancet Oncol. 2013, 14, 741–748. [Google Scholar] [CrossRef]
- Conte, P.; Frassoldati, A.; Bisagni, G.; Brandes, A.A.; Donadio, M.; Garrone, O.; Piacentini, F.; Cavanna, L.; Giotta, F.; Aieta, M.; et al. Nine weeks versus 1 year adjuvant trastuzumab in combination with chemotherapy: Final results of the phase III randomized Short-HER study. Ann. Oncol. 2018, 29, 2328–2333. [Google Scholar] [CrossRef] [PubMed]
- Mavroudis, D.; Saloustros, E.; Malamos, N.; Kakolyris, S.; Boukovinas, I.; Papakotoulas, P.; Kentepozidis, N.; Ziras, N.; Georgoulias, V. Six versus 12 months of adjuvant trastuzumab in combination with dose-dense chemotherapy for women with HER2-positive breast cancer: A multicenter randomized study by the Hellenic Oncology Research Group (HORG). Ann. Oncol. 2015, 26, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Earl, H.M.; Hiller, L.; Vallier, A.L.; Loi, S.; McAdam, K.; Hughes-Davies, L.; Harnett, A.N.; Ah-See, M.L.; Simcock, R.; Rea, D.; et al. 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer (PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial. Lancet 2019, 393, 2599–2612. [Google Scholar] [CrossRef] [PubMed]
- Goss, P.E.; Smith, I.E.; O’Shaughnessy, J.; Ejlertsen, B.; Kaufmann, M.; Boyle, F.; Buzdar, A.U.; Fumoleau, P.; Gradishar, W.; Martin, M.; et al. Adjuvant lapatinib for women with early-stage HER2-positive breast cancer: A randomised, controlled, phase 3 trial. Lancet Oncol. 2013, 14, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Piccart-Gebhart, M.; Holmes, E.; Baselga, J.; de Azambuja, E.; Dueck, A.C.; Viale, G.; Zujewski, J.A.; Goldhirsch, A.; Armour, A.; Pritchard, K.I.; et al. Adjuvant Lapatinib and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Results from the Randomized Phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J. Clin. Oncol. 2016, 34, 1034–1042. [Google Scholar] [CrossRef]
- Martin, M.; Holmes, F.A.; Ejlertsen, B.; Delaloge, S.; Moy, B.; Iwata, H.; von Minckwitz, G.; Chia, S.K.L.; Mansi, J.; Barrios, C.H.; et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1688–1700. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N. Engl. J. Med. 2017, 377, 122–131. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef]
- Krop, I.E.; Im, S.A.; Barrios, C.; Bonnefoi, H.; Gralow, J.; Toi, M.; Ellis, P.A.; Gianni, L.; Swain, S.M.; Im, Y.H.; et al. Trastuzumab Emtansine Plus Pertuzumab Versus Taxane Plus Trastuzumab Plus Pertuzumab After Anthracycline for High-Risk Human Epidermal Growth Factor Receptor 2-Positive Early Breast Cancer: The Phase III KAITLIN Study. J. Clin. Oncol. 2022, 40, 438–448. [Google Scholar] [CrossRef]
- Johnston, S.R.D.; Harbeck, N.; Hegg, R.; Toi, M.; Martin, M.; Shao, Z.M.; Zhang, Q.Y.; Martinez Rodriguez, J.L.; Campone, M.; Hamilton, E.; et al. Abemaciclib Combined with Endocrine Therapy for the Adjuvant Treatment of HR+, HER2−, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J. Clin. Oncol. 2020, 38, 3987–3998. [Google Scholar] [CrossRef]
- Johnston, S.R.D.; Toi, M.; O’Shaughnessy, J.; Rastogi, P.; Campone, M.; Neven, P.; Huang, C.S.; Huober, J.; Jaliffe, G.G.; Cicin, I.; et al. Abemaciclib plus endocrine therapy for hormone receptor-positive, HER2-negative, node-positive, high-risk early breast cancer (monarchE): Results from a preplanned interim analysis of a randomised, open-label, phase 3 trial. Lancet Oncol. 2023, 24, 77–90. [Google Scholar] [CrossRef]
- Slamon, D.J.; Stroyakovskiy, D.; Yardley, D.A.; Huang, C.-S.; Fasching, P.A.; Crown, J.; Bardia, A.; Chia, S.; Im, S.-A.; Martin, M.; et al. Ribociclib and endocrine therapy as adjuvant treatment in patients with HR+/HER2− early breast cancer: Primary results from the phase III NATALEE trial. J. Clin. Oncol. 2023, 41, LBA500. [Google Scholar] [CrossRef]
- Mayer, E.L.; Dueck, A.C.; Martin, M.; Rubovszky, G.; Burstein, H.J.; Bellet-Ezquerra, M.; Miller, K.D.; Zdenkowski, N.; Winer, E.P.; Pfeiler, G.; et al. Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): Interim analysis of a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2021, 22, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Marmé, F.; Martin, M.; Untch, M.; Bonnefoi, H.; Kim, S.B.; Bear, H.; McCarthy, N.; Melé Olivé, M.; Gelmon, K.; et al. Palbociclib for Residual High-Risk Invasive HR-Positive and HER2-Negative Early Breast Cancer-The Penelope-B Trial. J. Clin. Oncol. 2021, 39, 1518–1530. [Google Scholar] [CrossRef] [PubMed]
- Gregor, M.C.-M.; Barlow, W.E.; Pusztai, L.; Goetz, M.P.; Rastogi, P.; Ganz, P.A.; Mamounas, E.P.; Paik, S.; Bandos, H.; Gralow, J.; et al. Phase III randomized, placebo-controlled clinical trial evaluating the use of adjuvant endocrine therapy +/− one year of everolimus in patients with high-risk, hormone receptor (HR) positive and HER2-negative breast cancer (BC): SWOG/NRG/Alliance S1207 (NCT01674140). J. Clin. Oncol. 2015, 33, TPS637. [Google Scholar]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Jeruss, J.S.; Tucker, S.L.; Kolli, A.; Newman, L.A.; Gonzalez-Angulo, A.M.; Buchholz, T.A.; Sahin, A.A.; Cormier, J.N.; Buzdar, A.U.; et al. Validation of a Novel Staging System for Disease-Specific Survival in Patients with Breast Cancer Treated with Neoadjuvant Chemotherapy. J. Clin. Oncol. 2011, 29, 1956–1962. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.; Piccart-Gebhart, M.J.; Gelber, R.D.; Procter, M.; Goldhirsch, A.; de Azambuja, E.; Castro, G., Jr.; Untch, M.; Smith, I.; Gianni, L.; et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 2017, 389, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.-H.; Sledge, G.; Geyer, C.E.; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.M.; et al. Trastuzumab Plus Adjuvant Chemotherapy for Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: Planned Joint Analysis of Overall Survival From NSABP B-31 and NCCTG N9831. J. Clin. Oncol. 2014, 32, 3744–3752. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, H.; Fraser, J.; Wildiers, H.; Huovinen, R.; Auvinen, P.; Utriainen, M.; Nyandoto, P.; Villman, K.K.; Halonen, P.; Granstam-Björneklett, H.; et al. Effect of Adjuvant Trastuzumab for a Duration of 9 Weeks vs 1 Year with Concomitant Chemotherapy for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: The SOLD Randomized Clinical Trial. JAMA Oncol. 2018, 4, 1199–1206. [Google Scholar] [CrossRef]
- Chan, A.; Moy, B.; Mansi, J.; Ejlertsen, B.; Holmes, F.A.; Chia, S.; Iwata, H.; Gnant, M.; Loibl, S.; Barrios, C.H.; et al. Final Efficacy Results of Neratinib in HER2-Positive Hormone Receptor-positive Early-Stage Breast Cancer from the Phase III ExteNET Trial. Clin. Breast Cancer 2021, 21, 80–91.e87. [Google Scholar] [CrossRef] [PubMed]
- Barcenas, C.H.; Hurvitz, S.A.; Di Palma, J.A.; Bose, R.; Chien, A.J.; Iannotti, N.; Marx, G.; Brufsky, A.; Litvak, A.; Ibrahim, E.; et al. Improved tolerability of neratinib in patients with HER2-positive early-stage breast cancer: The CONTROL trial. Ann. Oncol. 2020, 31, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Piccart, M.; Procter, M.; Fumagalli, D.; de Azambuja, E.; Clark, E.; Ewer, M.S.; Restuccia, E.; Jerusalem, G.; Dent, S.; Reaby, L.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer in the APHINITY Trial: 6 Years’ Follow-Up. J. Clin. Oncol. 2021, 39, 1448–1457. [Google Scholar] [CrossRef]
- Loibl, S.; Jassem, J.; Sonnenblick, A.; Parlier, D.; Winer, E.; Bergh, J.; Gelber, R.D.; Restuccia, E.; Im, Y.H.; Huang, C.; et al. VP6-2022: Adjuvant pertuzumab and trastuzumab in patients with early HER-2 positive breast cancer in APHINITY: 8.4 years’ follow-up. Ann. Oncol. 2022, 33, 986–987. [Google Scholar] [CrossRef]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- Swain, S.M.; Ewer, M.S.; Viale, G.; Delaloge, S.; Ferrero, J.M.; Verrill, M.; Colomer, R.; Vieira, C.; Werner, T.L.; Douthwaite, H.; et al. Pertuzumab, trastuzumab, and standard anthracycline- and taxane-based chemotherapy for the neoadjuvant treatment of patients with HER2-positive localized breast cancer (BERENICE): A phase II, open-label, multicenter, multinational cardiac safety study. Ann. Oncol. 2018, 29, 646–653. [Google Scholar] [CrossRef]
- Mamounas, E.P.; Untch, M.; Mano, M.S.; Huang, C.S.; Geyer, C.E., Jr.; von Minckwitz, G.; Wolmark, N.; Pivot, X.; Kuemmel, S.; DiGiovanna, M.P.; et al. Adjuvant T-DM1 versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: Subgroup analyses from KATHERINE. Ann. Oncol. 2021, 32, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Royce, M.; Osgood, C.; Mulkey, F.; Bloomquist, E.; Pierce, W.F.; Roy, A.; Kalavar, S.; Ghosh, S.; Philip, R.; Rizvi, F.; et al. FDA Approval Summary: Abemaciclib with Endocrine Therapy for High-Risk Early Breast Cancer. J. Clin. Oncol. 2022, 40, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.H.; Freedman, R.A.; Somerfield, M.R. Abemaciclib with Endocrine Therapy in the Treatment of High-Risk Early Breast Cancer: ASCO Optimal Adjuvant Chemotherapy and Targeted Therapy Guideline Rapid Recommendation Update. J. Clin. Oncol. 2022, 40, 307–309. [Google Scholar] [CrossRef]
- Mayer, E.L.; Fesl, C.; Hlauschek, D.; Garcia-Estevez, L.; Burstein, H.J.; Zdenkowski, N.; Wette, V.; Miller, K.D.; Balic, M.; Mayer, I.A.; et al. Treatment Exposure and Discontinuation in the PALbociclib CoLlaborative Adjuvant Study of Palbociclib with Adjuvant Endocrine Therapy for Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Early Breast Cancer (PALLAS/AFT-05/ABCSG-42/BIG-14-03). J. Clin. Oncol. 2022, 40, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Gnant, M.; Dueck, A.C.; Frantal, S.; Martin, M.; Burstein, H.J.; Greil, R.; Fox, P.; Wolff, A.C.; Chan, A.; Winer, E.P.; et al. Adjuvant Palbociclib for Early Breast Cancer: The PALLAS Trial Results (ABCSG-42/AFT-05/BIG-14-03). J. Clin. Oncol. 2022, 40, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Geyer, C.E., Jr.; Garber, J.E.; Gelber, R.D.; Yothers, G.; Taboada, M.; Ross, L.; Rastogi, P.; Cui, K.; Arahmani, A.; Aktan, G.; et al. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann. Oncol. 2022, 33, 1250–1268. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Tarantino, P.; Corti, C.; Schmid, P.; Cortes, J.; Mittendorf, E.A.; Rugo, H.; Tolaney, S.M.; Bianchini, G.; Andrè, F.; Curigliano, G. Immunotherapy for early triple negative breast cancer: Research agenda for the next decade. NPJ Breast Cancer 2022, 8, 23. [Google Scholar] [CrossRef]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Bachelot, T.; Bianchini, G.; Harbeck, N.; Loi, S.; Park, Y.H.; Prat, A.; Gilham, L.; Boulet, T.; Gochitashvili, N.; et al. ASTEFANIA: Adjuvant ado-trastuzumab emtansine and atezolizumab for high-risk, HER2-positive breast cancer. Future Oncol. 2022, 18, 3563–3572. [Google Scholar] [CrossRef]
- Cescon, D.W.; Kalinsky, K.; Parsons, H.A.; Smith, K.L.; Spears, P.A.; Thomas, A.; Zhao, F.; DeMichele, A. Therapeutic Targeting of Minimal Residual Disease to Prevent Late Recurrence in Hormone-Receptor Positive Breast Cancer: Challenges and New Approaches. Front. Oncol. 2021, 11, 667397. [Google Scholar] [CrossRef] [PubMed]
- Suciu, S.; Eggermont, A.M.M.; Lorigan, P.; Kirkwood, J.M.; Markovic, S.N.; Garbe, C.; Cameron, D.; Kotapati, S.; Chen, T.T.; Wheatley, K.; et al. Relapse-Free Survival as a Surrogate for Overall Survival in the Evaluation of Stage II–III Melanoma Adjuvant Therapy. J. Natl. Cancer Inst. 2018, 110, 87–96. [Google Scholar] [CrossRef]
- Mauguen, A.; Pignon, J.-P.; Burdett, S.; Domerg, C.; Fisher, D.; Paulus, R.; Mandrekar, S.J.; Belani, C.P.; Shepherd, F.A.; Eisen, T.; et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: A re-analysis of meta-analyses of individual patients’ data. Lancet Oncol. 2013, 14, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Caparica, R.; Lambertini, M.; Pondé, N.; Fumagalli, D.; de Azambuja, E.; Piccart, M. Post-neoadjuvant treatment and the management of residual disease in breast cancer: State of the art and perspectives. Ther. Adv. Med. Oncol. 2019, 11, 1758835919827714. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Tóvári, J.; Vári-Mező, D.; Surguta, S.E.; Ladányi, A.; Kigyós, A.; Cserepes, M. Evolving Acquired Vemurafenib Resistance in a BRAF V600E Mutant Melanoma PDTX Model to Reveal New Potential Targets. Cells 2023, 12, 1919. [Google Scholar] [CrossRef]
- Wu, X.; Huang, S.; He, W.; Song, M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int. Immunopharmacol. 2023, 122, 110602. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hancock, B.A.; Solzak, J.P.; Brinza, D.; Scafe, C.; Miller, K.D.; Radovich, M. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. NPJ Breast Cancer 2017, 3, 24. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019, 16, 409–424. [Google Scholar] [CrossRef]
- Buzdar, A.U.; Ibrahim, N.K.; Francis, D.; Booser, D.J.; Thomas, E.S.; Theriault, R.L.; Pusztai, L.; Green, M.C.; Arun, B.K.; Giordano, S.H.; et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: Results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J. Clin. Oncol. 2005, 23, 3676–3685. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, M.; Weder, W.; Escriu, C.; Blakely, C.; He, J.; Dacic, S.; Yatabe, Y.; Zeng, L.; Walding, A.; Chaft, J.E. Neoadjuvant osimertinib with/without chemotherapy versus chemotherapy alone for EGFR-mutated resectable non-small-cell lung cancer: NeoADAURA. Future Oncol. 2021, 17, 4045–4055. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, A.; Minari, R.; Boni, L.; Gnetti, L.; Verzè, M.; Ventura, L.; Musini, L.; Tognetto, M.; Tiseo, M. Phase II, Open-label, Single-arm, Multicenter Study to Assess the Activity and Safety of Alectinib as Neoadjuvant Treatment in Surgically Resectable Stage III ALK-positive NSCLC: ALNEO Trial. Clin. Lung Cancer 2021, 22, 473–477. [Google Scholar] [CrossRef] [PubMed]
Trial | Phase | Setting | Stage | Study Arm(s) | Target | N | Primary Endpoint | Main Results | Safety (AEs Grade 3–4) |
---|---|---|---|---|---|---|---|---|---|
Long et al. [4] (Combi-AD) (NCT01682083) | III | Adjuvant | IIIA, IIIB, IIIC | Dabrafenib–trametinib vs. placebo for 1 year | BRAF + MEK | 870 | DFS | 3 y DFS 58% (D+T) 39% (P) HR = 0.47 (0.39–0.58) p < 0.001 3 y OS 86% (D+T) 77% (P) HR = 0.57 (0.42–0.79) p = 0.0006 | 41% (D+T) 14% (P) |
Maio et al. [9] (BRIM-8) (NCT01667419) | III | Adjuvant | Cohort 1: IIC, IIIA, IIIB Cohort 2: IIIC | Vemurafenib vs. placebo for 1 year | BRAF | Cohort 1: 364 Cohort 2: 184 | DFS | Cohort 1: mDFS NR (V) 36.9 mo (21.4-NE) HR = 0.54 (0.37–0.78) p = 0·0010 Cohort 2: mDFS 23.1 mo (18.6–26.5) (V) 15.4 mo (11.1–35.9) (P) HR = 0.80 (0.54–1.18) p = 0.026 | 57% (V) 15% (P) |
Amaria et al. [10] (COMBI-Neo) (NCT02231775) | II | Neoadjuvant/Adjuvant | III, oligometastatic IV | Dabrafenib–trametinib (8 wks neoadjuvant + 44 wks adjuvant) vs. SOC | BRAF + MEK | 21 | EFS | mEFS 19.7 mo (16.2-NE) (D + T) 2.9 mo (1.7-NE) (SoC) HR = 0.016 (0.00012–0.14) p < 0.0001 | G3 diarrhea 15% Other 6 G3 AEs (each 8%) |
Long et al. [11] (Neo-COMBI) (NCT01972347) | II | Neoadjuvant/Adjuvant | IIIB-C | Dabrafenib–trametinib (12 wks neoadjuvant + 40 wks adjuvant) | BRAF + MEK | 35 | pCR | pCR 49% (31–66) non-pCR 51% (34–69) | 29% |
Clinical Trial Identifier (Trial Name) | Design | Number of Patients (N) | Stage | Study Arms | Target | Duration TKIs | Primary Endpoint | Status |
---|---|---|---|---|---|---|---|---|
NCT05270044 (Columbus-AD) | Phase III, randomized, triple-blinded, 2-arm | 815 | IIA/B/C | Encorafenib + binimetinib vs. placebo | BRAF + MEK | 1y | DFS | Recruiting |
Trial | Phase | Stage | Study Arm(s) | Target | N | Primary Endpoint | Main Results | Safety (AEs Grade 3–4) |
---|---|---|---|---|---|---|---|---|
Dematteo et al. [2] (Z9001 trial) (NCT00041197) | III | >3 cm | Imatinib vs. placebo for 1 year | c-Kit | 713 | DFS | 1 y DFS 98% (I) 83% (P) HR = 0.35 (0.22–0.53) p < 0.0001 1 y OS 99.2% (I) 99.7% (P) HR = 0.66 (0.22–2.03) p = 0.4714 | 18.3 (P) 30.9% (I) |
Joensuu et al. [3] (NCT00116935) | III | High Risk | Imatinib—1 vs. 3 years | c-Kit | 400 | DFS | 5 y DFS: 71.1% (3y) 52.3% (1y) HR = 0.60 (0.44–0.81) p = 0.001 5 y OS: 91.9% (3y) 85.3% (1y) HR= 0.60 (0.37–0.97) p = 0.036 | 32.8% (3y) 20.1% (1y) |
Casali et al. [20] (NCT00103168) | III | High/Intermediate Risk | Imatinib vs. placebo for 2 years | c-Kit | 835 | IFFS | 10 y IFFS 75% (I) 74% (P) HR = 0.87 (0.65–1.15) p = 0.31 10 y DFS 63% (I) 61% (P) HR = 0.71 (0.57–0.89) p = 0.002 10 y OS 80% (I) 78% (P) HR = 0.88 (0.65–1.21) p = 0.43 | 15.4% (I) |
Clinical Trial Identifier | Design | Number of Patients (N) | Stage | Study Arms | Target | Duration TKIs | Primary Endpoint | Status |
---|---|---|---|---|---|---|---|---|
NCT02413736 | Phase III, randomized, open label, 2-arm | 250 | High Risk | Imatinib | c-Kit | 3 vs. 5 y | DFS | Recruiting |
NCT02260505 | Phase III, randomized, open label, 2-arm | 134 | High Risk | Imatinib | c-kit | 3 vs. 6 y | DFS | Recruiting |
NCT02009423 | Phase III, randomized, double-blinded, 2-arm | 7 | High Risk | Masitinib vs. Placebo | c-kit PDGFR | 2 y | DFS | Terminated by sponsor |
Trial | Phase | Stage | Study Arm(s) | Target | N | Primary Endpoint | Main Results | Safety (AEs Grade 3–4) |
---|---|---|---|---|---|---|---|---|
Tsuboi et al. [40] (NCT02511106) | III | IB−IIIA | Gefitinib vs. placebo (2y) | EGFR | 38 (UP) | NA | NA | NA |
Goss et al. [41] (BR19) (NCT00049543) | III | IB−IIIA | Gefitinib vs. placebo (2y) | EGFR | 503 (UP) 15 (EGFRm) | OS | mOS 5.1 y (4.4-NE) (G)—NR (P) HR = 1.24 (0.94–1.64), p = 0.14 mDFS 4.2 y (3.2-NE) (G)—NR (P) HR = 1.22 (0.93–1.61), p = 0.15 | 5–8% (G) (mainly rash, diarrhea, dyspnea) |
Zhong et al. [42] (CTONG1104/ ADJUVANT) (NCT01405079) | III | II−IIIA (N1-2) | Gefitinib (2 y) vs. ChT (4 cycles) | EGFR | 222 (EGFR m) | DFS | DFS 28.7 mo (G)—18 mo (ChT) HR = 0.60 (0.42–0.87), p = 0.0054 mOS 75.5 mo (G)—79.2 mo (ChT) HR = 0.96 (0.64–1.43), p = 0.823 | 12% (G) 48% (ChT) |
Kelly et al. [43] (RADIANT) (NCT00373425) | III | IB−IIA | Erlotinib vs. placebo (2y) | EGFR | 973 (EGFR exp) (161 EGFRm) | DFS | mDFS 50.5 mo (E)—48.2 mo (P) HR = 0.90 (0.74–1.10) p = 0.324 mOS NR (E)—NR (P) HR = 1.13 (0.881–1.448) p = 0.335 In EGFRm pts mDFS 46.4 (E)—28.5 mo (P) HR = 0.61 (0.384–0.981) | 22.3% (rash) (E) 6.2% (diarrhea) (E) |
Herbst et al. [44] (ADAURA) (NCT02511106) | III | IB−IIIA | Osimertinib (3 y) vs. placebo (3 y) | EGFR | 682 (EGFRm) | DFS in II-IIIA pts | DFS (II-IIIA) 65.8 (O)—21.9 mo (P) HR = 0.23 (0.18–0.30) DFS (OP) 65.8 (O)—28.1 mo (P) HR = 0.27 (0.21–0.34) | 23% (O) 14% (P) |
Tada et al. [45] (IMPACT) (UMIN000006252) | III | II-IIIA | Gefitinib (2 y) ChT (4 cycles) | EGFR | 232 (EGFR m) | DFS | DFS 35.9 mo (G)—25.0 mo (ChT) HR = 0.92 (0.67–1.28), p = 0.63 5 y survival rates: 78.0% (G) vs. 74.6% (ChT) HR = 1.03 (0.65–1.65), p = 0.89 | NA |
He et al. [46] (EVIDENCE) (NCT02448797) | III | II-IIIA | Icotinib (2y) vs. ChT (4 cycles) | EGFR | 322 (EGFR m) | DFS | mDFS 47.0 mo (I)—22.1 mo (ChT) HR = 0.36 (0.24–0.55), p < 0.0001 3y-DFS 63.9% (51.8–73.7) (I)—32.5% (21.3–44.2) (ChT) | -Rash (2%) (I) -Neutropenia (41%) (ChT) -Leukopenia (19%) (ChT) -Vomiting (13%) (ChT) -Nausea (7%) (ChT) |
Clinical Trial Identifier | Design | Setting | Driver Mutation | Estimated Number of Patients (N) | Stage | Study Arms | Duration TKIs | Primary Endpoint | Status |
---|---|---|---|---|---|---|---|---|---|
NCT01996098 (ICTAN) | Phase III, randomized, open label, 3-arm | Adjuvant | EGFR activating mutation in exon 19 or 21 | 318 | IIA-IIIA | Icotinib + chemo (6 mo) vs. icotinib + chemo (12 mo) vs. chemo alone | 6 mo vs. 12 mo | DFS | Unknown |
NCT05120349 (ADAURA2) | Phase III, randomized, triple blind, 2-arm | Adjuvant | EGFR Ex19Del L858R | 380 | IA2, IA3 | Osimertinib vs. placebo | 3 y | DFS | Recruiting |
NCT04853342 (FORWARD) | Phase III, randomized, double blind, 2-arm | Adjuvant | EGFR Ex19Del L858R | 318 | II-IIIA | Furmonertinib versus placebo | NA | DFS | Not yet recruiting |
NCT04762459 (APEX) | Phase III, randomized, open label, 3-arm | Adjuvant | EGFR Ex19Del L858R | 606 | II-IIIA | Almonertinib vs. almonertinib + chemo vs. Chemo alone | 3 y | DFS | Enrolling by invitation |
NCT02193282 (ALCHEMIST) | Phase III, randomized, 4-arm | Adjuvant | EGFR Ex19Del L858R | 450 | IB (≥4cm)-IIIA | Erlotinib vs. placebo (blinded) vs. erlotinib vs. placebo (unblinded) | 2 y | OS | Active, not recruiting |
NCT03381066 | Phase III, randomized, open label, 2-arm | Adjuvant | EGFR Ex19Del L858R | 225 | IIa-IIIb (excluding N3) | Chemo + gefitinib vs. chemo | 1 y | DFS | Unknown |
NCT04687241 | Phase III, randomized, triple blind, 2-arm | Adjuvant | EGFR Ex19Del L858R | 192 | II-IIIB | Almonertinib vs. placebo | NA | DFS | Active, not recruiting |
NCT02125240 | Phase III, randomized, quadruple blind, 2-arm | Adjuvant | Sensitive EGFR gene mutation (19/21) | 124 | II-IIIA | Icotinib vs. placebo | NA | DFS | Unknown |
NCT04351555 (NEOADAURA) | Phase III, randomized, double blind, 3-arm | (Neo) Adjuvant | EGFR Ex19Del L858R | 328 | II-IIIB N2 | Placebo + chemo vs. osimertinib + chemo vs. osimertinib alone | ≥9 weeks | MPR | Recruiting |
NCT03456076 | Phase III, randomized, open label, 2-arm | Adjuvant | ALK | 257 | IB-IIIA | Alectinib vs. chemo alone | 2 y | DFS | Active, not recruiting |
NCT05341583 | Phase III, randomized, quadruple blind, 2-arm | Adjuvant | ALK | 202 | II-IIIB | Ensartinib vs. placebo | 2 y | DFS | Recruiting |
NCT04819100 (LIBRETTO-432) | Phase III, randomized, triple blind, 2-arm | Adjuvant | RET | 170 | IB-IIIA | Selpercatinib vs. placebo | 3 y | EFS | Recruiting |
Trial | Phase | Stage | Study Arm(s) | N | Primary Endpoint | Main Results | Safety (AEs Grade 3–4) |
---|---|---|---|---|---|---|---|
Piccart-Gebhart et al. [55] (HERA) (NCT00045032) | III | I–IIIC (node negative T ≥ 1 cm) | ChT (4 cycles) vs. ChT followed by H (1 year) vs. ChT followed by H (2 years) | 5081 | DFS | H 1 year vs. observation DFS: HR 0.54 (0.43–0.67), p < 0.0001 OS: HR: 0.66 (0.47–0.91) p = 0.015 11-year follow-up H 1 year vs. H 2 years HR 1.02 (0.89–1.17) | 7.9% (H 1y) vs. 4% (ChT) |
Romond et al. [56] (NSABP B-31/NCCTG N9831) (NCT00005970) | III | pN positive Only for NCCTG N9831: pN negative with at least one of the following: T ≥ 2 cm if HoR positive T ≥ 1 cm if HOR negative | AC-TXL +/− H (52 wks) | 3351 | DSF | DFS: HR 0.48 (0.39–0.59), p < 0.001 OS: HR 0.67 (0.48–0.93) p = 0.015 | Class III or IV congestive heart failure: NSABP-B31 4.1% (H) vs. 0.8% (ChT) N9831 2.9% vs. 0% |
Slamon et al. [57] (BCIRG 006) (NCT00021255) | III | Stage I–III | AC-TXT +/− H (52 wks) vs. TXT/carbo/H (52 wks) | 3222 | DFS | AC-TXT vs. AC-TXT+H 5-year-DFS: HR 0.64, p < 0.001 5-year-OS: HR 0.63, p < 0.001 AC-TXT vs. TXT/Carbo/H 5y-DFS: HR 0.75, p = 0.04 5y-OS: HR 0.77, p = 0.04 | Class III or IV congestive heart failure: 2% (AC-TXT-H) 0.7% (AC-TXT) 0.4% (TXT/carbo/H |
Joensuu et al. [58] (FinHer) (ISRCTN76560285) | III | HER2-positive subgroup: pN positive or pN negative with T ≥ 2 and PgR negative | TXT→FEC vs. TXT/H (9 wks)→FEC vs. V → FEC vs. V/H (9 wks)→FEC | 1010 232 HER2-positive | DDFS | RFS: HR 0.42 (0.21–0.83) p = 0.01 OS: HR 0.41 (0.16–1.08) p = 0.07 5-year DDFS ChT+H vs. ChT HR 0.65 (0.38–1.12), p = 0.12 TXT/H -> FEC vs. TXT-> FEC HR 0.32 (0.12–0.89), p = 0.029 | 100% (TXT/H) 75.9% (V/H) |
Joensuu et al. [59] (SOLD) (NCT00593697) | III | Stage I–III | TXT/H (9 wks)→ FEC vs. TXT/H (9 wks)→ FEC→ H (42 wks) | 2176 | DFS | HR 1.39 (1.12–1.72) | 56% (H 9 wks) vs. 58% (H 1 year) Cardiac adverse event: 2% (H 9 wks) 4% (H 1 year) |
Pivot et al. [60] (PHARE) (NCT00381901) | III | Stage I–III | After at least 4 cycles of ChT: H (6 months) vs. H (1 year) | 3380 | DFS | HR 1.28 (1.05–1.56), p = 0.29 | Cardiac events (any grade) 5.7% (1 year) vs. 1.9% (6 months) |
Conte et al. [61] (Short-HER) (NCT00629278) | III | Stage I–IIIC (if pN0 at least one of: pT > 2 cm, G3, lympho-vascular invasion, Ki-67 > 20%, age ≤35 years, or HoR negative | TXT/H (9 wks)→FEC vs. AC→TXL or TXT/H (1 year) | 1254 | DFS (non-inferiority) | HR 1.13 (0.89–1.42) (non-inferiority margin set at 1.29) | Cardiac events 1.3% (H 9 wks) vs. 2.9 (H 1 year) |
Mavroudis et al. [62] (HORG) (NCT00615602) | III | pN positive or high-risk pN negative | ChT/H (6 months) vs. ChT/H (1 year) | 481 | DFS (non-inferiority) | DFS HR 1.57 (0.86–2.10); p = 0.137 (non-inferiority margin set at 1.53) | Cardiotoxicity 0.8% (H 6 months) |
Earl et al. [63] (PERSEPHONE) (NCT00712140) | III | Stage I–III | ChT/H (6 months) vs. ChT/H (1 year) | 4088 | DFS | 4y-DFS: HR 1·07 (0·92–1·24) p = 0.023 for non-inferiority, p = 0.49 for superiority 4y-OS: HR 1.13 (0.94–1.37); p = 0.017 for non-inferiority, p = 0.27 for superiority | 24% (H 1 year) 19% (H 6 months) |
Goss et al. [64] (TEACH) (NCT00374322) | III | Stage I–III | Lapatinib vs. placebo (1 year) | 3161 | DFS | HR 0.83 (0.70–1.00), p = 0.053 | Diarrhea: 6% (L) vs. 1% (P) |
Piccart-Gebhart et al. [65] (ALTTO) (NCT00490139) | III | Stage I–III (if N negative T > 1 cm) | Lapatinib vs. lapatinib/H vs. LH-lapatinib vs. H | 8381 | DFS | Lapatinib/H vs. H HR 0.84 (0.70–1.02), p = 0.48 H→lapatinib vs. H HR 0.96(0.80–1.15), p = 0.61 | 46% (L/H) 32% (H/L) 41% (L) 25% (H) |
Martin et al. [66] (ExteNET) (NCT00878709) | III | Stage II–III | Neratinib vs. placebo (1 year) | 2840 | iDFS | 5y-iDFS 90.2% (neratinib)–87.7 (placebo) HR 0.73 (0.57–0.92), p = 0.0083 | Diarrhea:40% (neratinib) vs. 2% (P) Nausea and vomiting: 2–3% (neratinib) vs. <1% (P) |
Von Minckwitz et al. [67] (APHINITY) (NCT01358877) | III | Stage I–III | ChT with Pert/H vs. ChT with H/placebo | 4804 | iDFS | ITT: HR 0.81 (0.66–1.00) p = 0.045 N positive population: HR 0.77 (0.62–0.96), p = 0.02 N negative population: HR 1.13 (0.68–1.86), p = 0.64 | 64.2%(Pert) vs. 57.35% (H) |
Von Minckwitz et al. [68] (KATHERINE) (NCT01772472) | III | Residual disease after NACT (taxane + H ± anthracycline) | T-DM1 vs. H (14 cycles) | 1486 | iDFS | 3 y iDFS: 88.3% (T-DM1) vs. 77.0% (H) HR 0.50; (0.39–0.64), p < 0.001 | 25.7% (Pert) vs. 15.4% (H) |
Krop et al. [69] (KAITLIN) (NCT01966471) | III | Stage II (with N positive or HoR negative) III | After 3–4 cycles of anthracycline-based ChT: T-DM1/pert vs. taxane/pert/H | 1846 (1658 node positive) | iDFS | iDFS N positive: HR 0.97; (0.71–1.32), p = 0.83 iDFS overall population: HR 0.98 (0.72–1.32) | 55.4% (T-DM1/Pert) vs. 51.8% (Pert/H) |
Trial | Phase | Subtype | Stage | Study Arm(s) | Target | N | Primary Endpoint | Main Results | Safety (AEs Grade 3–4) |
---|---|---|---|---|---|---|---|---|---|
Stephen et al. [70,71] (monarchE) (NCT03155997) | III | HoR-positive | ≥N2 or ≥N1 with at least one of the following: G3, T ≥ 5 cm, or Ki 67 > 20% | ET/abemaciclib vs. ET/placebo (2 years) | CDK4/6 | 5637 | iDFS | 2 y iDFS: 92.2% (A) vs. 88.7% (P) HR 0.75 (0.60–0.93), p = 0.01 | 45.2% (A) vs. 12.7% (P) |
Slamon et al. [72] (NATALEE) (NCT03701334) | III | HoR-positive | Stage II–III | ET/ribociclib vs. ET/placebo (3 year) | CDK4/6 | 5101 | iDFS | 3 y iDFS: 90.4 (RB) vs. 87.1% (P) HR: 0.75 (0.62–0.90), p = 0.0014 | Neutropenia 43.8%(RB) vs. 0.8% (P) Liver related AEs 8.3% (RB) vs. 1.5%(P) |
Mayer et al. [73] (PALLAS) (NCT02513394) | III | HoR-positive | Stage II–III | ET+/−palbociclib (2 years) | CDK4/6 | 5760 | iDFS | 3-y iDFS 88.2% (PA) vs. 88.5% HR 0.93 (0.76–1.15), p = 0.51 | 72.4% (PA) vs. 14.6% |
Loibl et al. [74] (PENELOPE-B) (NCT01864746) | III | HoR-positive | RD after NACT and CPS-EG≥3 or 2 and ypN+ | ET/palbociclib vs. ET/placebo (13 cycles) | CDK4/6 | 1250 | iDFS | HR 0.93 (0.74–1.17), p = 0.525 | 79.6% (PA) vs. 20.1% (P) |
Chavez-MacGregor et al. [75] (SWOG S1207) (NCT01674140) | III | HoR-positive | -RD and ypN + -pN2 -pN0, T ≥ 2 cm and RS > 25 or MammaPrint high risk -pN1 and RS > 25 or MammaPrint high risk or G3 | ET/everolimus vs. ET/placebo (1 year) | mTOR | 1939 | iDFS | HR 0.94 (0.77–1.14), p = 0.52 | 35% (E) vs. 7% (P) |
Tutt et al. [76] (OlympiA) (NCT02032823) | III | HoR-positive and TN (BRCA1-2-mutated) | HoR-positive: ≥pN2 or not pCR and CPS+EG ≥ 3 TN: ≥pN2 or ≥pT2 or not pCR | Olaparib vs. placebo (1 y) | PARP | 1836 | iDFS | 3-y iDFS 87.5% (O) vs. 80.4% (P) HR 0.57 (0.39–0.83), p < 0.001 4-y OS 89.8% (O) vs. 86.4% HR 0.68 (0.47–0.97), p = 0.009 | 26.4% (O) vs. 11.7% (P) |
Clinical Trial Identifier (Trial Name) | Design | Target Disease | Number of Patients (N) | Stage | Study Arms | Target | Duration TKIs | Primary Endpoint | Status |
---|---|---|---|---|---|---|---|---|---|
NCT04622319 (DESTINY-Breast05) | Phase III, randomized, open-label, 2-arm | HER2-positive | 1600 | High-risk patients 1 with RD after NACT | T-DXd vs. T-DM1 | HER2 | 14 cycles | iDFS | Recruiting |
NCT04457596 (CompassHER2 RD) | Phase III, randomized, double blind, 2-arm | HER2-positive | 1031 | High-risk patients 2 with RD after NACT | T-DM1/tucatinib vs. T-DM1 | HER2 | 14 cycles | iDFS | Recruiting |
NCT04873362 (ASTEFANIA) | Phase III, randomized, double-blind, 2-arm | HER2-positive | 1700 | High-risk patients 3 with RD after NACT | T-DM1/atezolizumab vs. T-DM1 | HER2 + PDL1 | 14 cycles | iDFS | Recruiting |
NCT04595565 (SASCIA) | Phase III, randomized, open-label, parallel group,2-arm | HER2-negative | 1200 | RD after NACT with high risk of relapse 4 | sacituzumab govitecan vs. TPC 5 | TROP2 | 8 cycles | iDFS | Recruiting |
NCT05633654 (ASCENT-5) | Phase III, randomized, open-label, 2-arm | TNBC | 1514 | RD after NACT | sacituzumab govitecan vs. TPC 6 | TROP2 | 8 cycles | iDFS | Recruiting |
NCT04752332 (eMonarcHER) | Phase III, randomized, open-label, 2-arm | HoR- and HER2-positive | 2450 | High-risk disease 7 | ET/abemaciclib vs. ET | CDK4/6 | 26 cycles | iDFS | Active, not recruiting |
NCT04055493 (ADAPTcycle) | Phase III, randomized, open-label, 2-arm | HoR positive | 1670 | Intermediate risk according to the ADAPT definition (if missing Oncotype DX clinical intermediate-risk definition) | ET/ribociclib vs. standard-of-care chemotherapy | CDK4/6 | 26 cycles | iDFS DDFS | Recruiting |
NCT04565054 (ADAPTlate) | Phase III, randomized, open-label, 2-arm | HoR positive | 1250 | High clinical risk 8 or intermediate clinical risk: RS > 18 in patients with c/pN 1 or RS > 25 in patients with c/pN 0 | ET/abemaciclib vs. ET | CDK4/6 | 2 years | iDFS | Recruiting |
NCT04915755 (ZEST) | Phase III, randomized, double-blind, 2-arm | BRCA-mutated HER2-negative or TNBC | 800 | I-III with detectable ctDNA following surgery or completion of adjuvant therapy | Niraparib vs. placebo | PARP | 3 years | DFS | Prematurely closed 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sposito, M.; Belluomini, L.; Pontolillo, L.; Tregnago, D.; Trestini, I.; Insolda, J.; Avancini, A.; Milella, M.; Bria, E.; Carbognin, L.; et al. Adjuvant Targeted Therapy in Solid Cancers: Pioneers and New Glories. J. Pers. Med. 2023, 13, 1427. https://doi.org/10.3390/jpm13101427
Sposito M, Belluomini L, Pontolillo L, Tregnago D, Trestini I, Insolda J, Avancini A, Milella M, Bria E, Carbognin L, et al. Adjuvant Targeted Therapy in Solid Cancers: Pioneers and New Glories. Journal of Personalized Medicine. 2023; 13(10):1427. https://doi.org/10.3390/jpm13101427
Chicago/Turabian StyleSposito, Marco, Lorenzo Belluomini, Letizia Pontolillo, Daniela Tregnago, Ilaria Trestini, Jessica Insolda, Alice Avancini, Michele Milella, Emilio Bria, Luisa Carbognin, and et al. 2023. "Adjuvant Targeted Therapy in Solid Cancers: Pioneers and New Glories" Journal of Personalized Medicine 13, no. 10: 1427. https://doi.org/10.3390/jpm13101427
APA StyleSposito, M., Belluomini, L., Pontolillo, L., Tregnago, D., Trestini, I., Insolda, J., Avancini, A., Milella, M., Bria, E., Carbognin, L., & Pilotto, S. (2023). Adjuvant Targeted Therapy in Solid Cancers: Pioneers and New Glories. Journal of Personalized Medicine, 13(10), 1427. https://doi.org/10.3390/jpm13101427