Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Probiotics and Mucositis
3.1. Lactobacillus Strains
3.1.1. Lacticaseibacillus casei
3.1.2. Lactobacillus delbrueckii
3.1.3. Lacticaseibacillus rhamnosus
3.1.4. Lactobacillus acidophilus
3.1.5. Lactiplantibacillus plantarum
3.1.6. Lactobacillus johnsonii
3.1.7. Lacticaseibacillus reuteri
3.1.8. Limosilactobacillus fermentum
3.2. Bifidobacterium Strains
3.2.1. Bifidobacterium bifidum
3.2.2. Bifidobacterium breve Strain Yakult
3.2.3. Bifidobacterium infantis
3.2.4. Bifidobacterium lactis
3.3. Streptococcus thermophilus
3.4. Propionibacterium freudenreichii
3.5. Clostridium butyricum
3.6. Saccharomyces Strains
3.6.1. Saccharomyces cerevisiae
3.6.2. Saccharomyces boulardii
4. Probiotic Mixtures and Mucositis
5. Synbiotics and Mucositis
6. Postbiotics and Mucositis
7. Paraprobiotics and Mucositis
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 29 May 2023).
- Shah, D.; Bentrem, D. Environmental and genetic risk factors for gastric cancer. J. Surg. Oncol. 2020, 125, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Johdi, N.A.; Sukor, N.F. Colorectal Cancer Immunotherapy: Options and Strategies. Front. Immunol. 2020, 11, 1124. [Google Scholar] [CrossRef]
- Gutte, R.; Deshmukh, V. A comprehensive review of the preventive action of Natural Nutraceutical Ingredients in reducing Chemotherapy–Induced Side effects. Funct. Food Sci. 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Huang, J.; Hwang, A.Y.M.; Jia, Y.; Kim, B.; Iskandar, M.; Mohammed, A.I.; Cirillo, N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int. J. Mol. Sci. 2022, 23, 15434. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, D.; Lennernäs, H. Review on the Effect of Chemotherapy on the Intestinal Barrier: Epithelial Permeability, Mucus and Bacterial Translocation. Biomed. Pharmacother. 2023, 162, 114644. [Google Scholar] [CrossRef]
- Alonso Domínguez, T.; Civera Andrés, M.; Santiago Crespo, J.A.; García Malpartida, K.; Botella Romero, F. Digestive toxicity in cancer treatments. Bibliographic review. Influence on nutritional status. Endocrinol. Diabetes Y Nutr. 2023, 70, 136–150. [Google Scholar] [CrossRef]
- Romano, M.; Vitaglione, P.; Sellitto, S.; D’Argenio, G. Nutraceuticals for protection and healing of gastrointestinal mucosa. Curr. Med. Chem. 2012, 19, 109–117. [Google Scholar] [CrossRef]
- Cereda, E.; Caraccia, M.; Caccialanza, R. Probiotics and mucositis. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 399–404. [Google Scholar] [CrossRef]
- Thomsen, M.; Vitetta, L. Adjunctive Treatments for the Prevention of Chemotherapy- and Radiotherapy-Induced Mucositis. Integr. Cancer Ther. 2018, 17, 1027–1047. [Google Scholar] [CrossRef]
- Torricelli, P.; Antonelli, F.; Ferorelli, P.; Borromeo, I.; Shevchenko, A.; Lenzi, S.; De Martino, A. Oral nutritional supplement prevents weight loss and reduces side effects in patients in advanced lung cancer chemotherapy. Amino Acids 2020, 52, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef] [PubMed]
- Touchefeu, Y.; Montassier, E.; Nieman, K.; Gastinne, T.; Potel, G.; Bruley des Varannes, S.; Le Vacon, F.; de La Cochetière, M.F. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis—Current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 2014, 40, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Elad, S.; Cheng, K.K.F.; Lalla, R.V.; Yarom, N.; Hong, C.; Logan, R.M.; Bowen, J.; Gibson, R.; Saunders, D.P.; Zadik, Y.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2020, 126, 4423–4431. [Google Scholar] [CrossRef]
- McQuade, R.M.; Al Thaalibi, M.; Nurgali, K. Impact of chemotherapy-induced enteric nervous system toxicity on gastrointestinal mucositis. Curr. Opin. Support. Palliat. Care 2020, 14, 293–300. [Google Scholar] [CrossRef]
- Thorpe, D.; Stringer, A.; Butler, R. Chemotherapy-induced mucositis: The role of mucin secretion and regulation, and the enteric nervous system. Neurotoxicology 2013, 38, 101–105. [Google Scholar] [CrossRef]
- Miknevicius, P.; Zulpaite, R.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. Int. J. Mol. Sci. 2021, 22, 9347. [Google Scholar] [CrossRef] [PubMed]
- Badgeley, A.; Anwar, H.; Modi, K.; Murphy, P.; Lakshmikuttyamma, A. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188494. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations; World Health Organization. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. World Health Organization [Online]. 2001. Available online: http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf (accessed on 20 July 2023).
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Redman, M.G.; Ward, E.J.; Phillips, R.S. The efficacy and safety of probiotics in people with cancer: A systematic review. Ann. Oncol. 2014, 25, 1919–1929. [Google Scholar] [CrossRef]
- Nobre, L.M.S.; Fernandes, C.; Florêncio, K.G.D.; Alencar, N.M.N.; Wong, D.V.T.; Lima-Júnior, R.C.P. Could paraprobiotics be a safer alternative to probiotics for managing cancer chemotherapy-induced gastrointestinal toxicities? Braz. J. Med. Biol. 2023, 55, e12522. [Google Scholar] [CrossRef]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J. Fungi 2020, 6, 78. [Google Scholar] [CrossRef]
- Papizadeh, M.; Rohani, M.; Nahrevanian, H.; Javadi, A.; Pourshafie, M.R. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microb. Pathog. 2017, 111, 118–131. [Google Scholar] [CrossRef]
- Batista, V.L.; da Silva, T.F.; de Jesus, L.C.L.; Coelho-Rocha, N.D.; Barroso, F.A.L.; Tavares, L.M.; Azevedo, V.; Mancha-Agresti, P.; Drumond, M.M. Probiotics, Prebiotics, Synbiotics, and Paraprobiotics as a Therapeutic Alternative for Intestinal Mucositis. Front. Microbiol. 2020, 11, 544490. [Google Scholar] [CrossRef]
- Miura, K.; Ohnishi, H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 7381–7391. [Google Scholar] [CrossRef]
- Justino, P.F.C.; Franco, A.X.; Pontier-Bres, R.; Monteiro, C.E.S.; Barbosa, A.L.R.; Souza, M.H.L.P.; Czerucka, D.; Soares, P.M.G. Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-κB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic. Cytokine 2020, 125, 154791. [Google Scholar] [CrossRef]
- Aragón, F.; Carino, S.; Perdigón, G.; de Moreno de LeBlanc, A. The administration of milk fermented by the probiotic Lactobacillus casei CRL 431 exerts an immunomodulatory effect against a breast tumour in a mouse model. Immunobiology 2014, 219, 457–464. [Google Scholar] [CrossRef]
- Méndez Utz, V.E.; Pérez Visñuk, D.; Perdigón, G.; de Moreno de LeBlanc, A. Milk fermented by Lactobacillus casei CRL431 administered as an immune adjuvant in models of breast cancer and metastasis under chemotherapy. Appl. Microbiol. Biotechnol. 2021, 105, 327–340. [Google Scholar] [CrossRef]
- Cordeiro, B.F.; Oliveira, E.R.; da Silva, S.H.; Savassi, B.M.; Acurcio, L.B.; Lemos, L.; Alves, J.L.; Carvalho Assis, H.; Vieira, A.T.; Faria, A.M.C.; et al. Whey Protein Isolate-Supplemented Beverage, Fermented by Lactobacillus casei BL23 and Propionibacterium freudenreichii 138, in the Prevention of Mucositis in Mice. Front. Microbiol. 2018, 9, 2035. [Google Scholar] [CrossRef]
- Barbosa, S.J.A.; Oliveira, M.M.B.; Ribeiro, S.B.; de Medeiros, C.A.C.X.; Lima, M.L.S.; Guerra, G.C.B.; de Araújo Júnior, R.F.; de Sousa Junior, F.C.; Martins, A.A.; Paiva, D.F.F.; et al. The beneficial effects of Lacticaseibacillus casei on the small intestine and colon of Swiss mice against the deleterious effects of 5-fluorouracil. Front. Immunol. 2022, 13, 954885. [Google Scholar] [CrossRef]
- De Jesus, L.C.L.; Drumond, M.M.; de Carvalho, A.; Santos, S.S.; Martins, F.S.; Ferreira, Ê.; Salgado Fernandes, R.; Branco de Barros, A.L.; do Carmo, F.L.R.; Vasco Azevedo, P.F.P.; et al. Protective effect of Lactobacillus delbrueckii subsp. Lactis CIDCA 133 in a model of 5 Fluorouracil-Induced intestinal mucositis. J. Funct. Foods 2019, 53, 197–207. [Google Scholar] [CrossRef]
- Barroso, F.A.L.; de Jesus, L.C.L.; da Silva, T.F.; Batista, V.L.; Laguna, J.; Coelho-Rocha, N.D.; Vital, K.D.; Fernandes, S.O.A.; Cardoso, V.N.; Ferreira, E.; et al. Lactobacillus delbrueckii CIDCA 133 Ameliorates Chemotherapy-Induced Mucositis by Modulating Epithelial Barrier and TLR2/4/Myd88/NF-κB Signaling Pathway. Front. Microbiol. 2022, 13, 858036. [Google Scholar] [CrossRef] [PubMed]
- Mauger, C.A.; Butler, R.N.; Geier, M.S.; Tooley, K.L.; Howarth, G.S. Probiotic effects on 5-fluorouracil-induced mucositis assessed by the sucrose breath test in rats. Dig. Dis. Sci. 2007, 52, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.Y.; Chan, W.T.; Jiang, C.B.; Cheng, M.L.; Liu, C.Y.; Chang, S.W.; Chiang Chiau, J.S.; Lee, H.C. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model. PLoS ONE 2015, 10, e0138746. [Google Scholar] [CrossRef]
- Yeung, C.Y.; Chiang Chiau, J.S.; Cheng, M.L.; Chan, W.T.; Chang, S.W.; Chang, Y.H.; Jiang, C.B.; Lee, H.C. Modulations of probiotics on gut microbiota in a 5-fluorouracil-induced mouse model of mucositis. J. Gastroenterol. Hepatol. 2020, 35, 806–814. [Google Scholar] [CrossRef]
- Huang, L.; Chiang Chiau, J.S.; Cheng, M.L.; Chan, W.T.; Jiang, C.B.; Chang, S.W.; Yeung, C.Y.; Lee, H.C. SCID/NOD mice model for 5-FU induced intestinal mucositis: Safety and effects of probiotics as therapy. Pediatr. Neonatol. 2019, 60, 252–260. [Google Scholar] [CrossRef]
- Chang, C.W.; Liu, C.Y.; Lee, H.C.; Huang, Y.H.; Li, L.H.; Chiau, J.C.; Wang, T.E.; Chu, C.H.; Shih, S.C.; Tsai, T.H.; et al. Lactobacillus casei Variety rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Front. Microbiol. 2018, 9, 983. [Google Scholar] [CrossRef]
- Osterlund, P.; Ruotsalainen, T.; Korpela, R.; Saxelin, M.; Ollus, A.; Valta, P.; Kouri, M.; Elomaa, I.; Joensuu, H. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: A randomised study. Br. J. Cancer 2007, 97, 1028–1034. [Google Scholar] [CrossRef]
- Reyna-Figueroa, J.; Barrón-Calvillo, E.; García-Parra, C.; Galindo-Delgado, P.; Contreras-Ochoa, C.; Lagunas-Martínez, A.; Campos-Romero, F.H.; Silva-Estrada, J.A.; Limón-Rojas, A.E. Probiotic Supplementation Decreases Chemotherapy-induced Gastrointestinal Side Effects in Patients with Acute Leukemia. J. Pediatr. Hematol./Oncol. 2019, 41, 468–472. [Google Scholar] [CrossRef]
- Justino, P.F.; Melo, L.F.; Nogueira, A.F.; Morais, C.M.; Mendes, W.O.; Franco, A.X.; Souza, E.P.; Ribeiro, R.A.; Souza, M.H.; Soares, P.M. Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother. Pharmacol. 2015, 75, 559–567. [Google Scholar] [CrossRef]
- Levit, R.; Savoy de Giori, G.; de Moreno de LeBlanc, A.; LeBlanc, J.G. Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition 2018, 54, 165–172. [Google Scholar] [CrossRef]
- Southcott, E.; Tooley, K.L.; Howarth, G.S.; Davidson, G.P.; Butler, R.N. Yoghurts containing probiotics reduce disruption of the small intestinal barrier in methotrexate-treated rats. Dig. Dis. Sci. 2008, 53, 1837–1841. [Google Scholar] [CrossRef]
- Kato, S.; Hamouda, N.; Kano, Y.; Oikawa, Y.; Tanaka, Y.; Matsumoto, K.; Amagase, K.; Shimakawa, M. Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses. Clin. Exp. Pharmacol. Physiol. 2017, 44, 1017–1025. [Google Scholar] [CrossRef]
- Wada, M.; Nagata, S.; Saito, M.; Shimizu, T.; Yamashiro, Y.; Matsuki, T.; Asahara, T.; Nomoto, K. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support. Care Cancer 2010, 18, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.T.; Yu, H.L.; Feng, W.D.; Chong, P.; Yang, T.; Xue, C.L.; Yu, M.; Shi, H.P. Bifidobacterium infantis has a beneficial effect on 5-fluorouracil-induced intestinal mucositis in rats. Benef. Microbes 2015, 6, 113–118. [Google Scholar] [CrossRef]
- Mi, H.; Dong, Y.; Zhang, B.; Wang, H.; Peter, C.C.K.; Gao, P.; Fu, H.; Gao, Y. Bifidobacterium Infantis Ameliorates Chemotherapy-Induced Intestinal Mucositis Via Regulating T Cell Immunity in Colorectal Cancer Rats. Cell. Physiol. Biochem. 2017, 42, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- Whitford, E.J.; Cummins, A.G.; Butler, R.N.; Prisciandaro, L.D.; Fauser, J.K.; Yazbeck, R.; Lawrence, A.; Cheah, K.Y.; Wright, T.H.; Lymn, K.A.; et al. Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent, 5-Fluorouracil (5-FU). Cancer Biol. Ther. 2009, 8, 505–511. [Google Scholar] [CrossRef]
- Tooley, K.L.; Howarth, G.S.; Lymn, K.A.; Lawrence, A.; Butler, R.N. Oral ingestion of streptococcus thermophilus diminishes severity of small intestinal mucositis in methotrexate treated rats. Cancer Biol. Ther. 2006, 5, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Tooley, K.L.; Howarth, G.S.; Lymn, K.A.; Lawrence, A.; Butler, R.N. Oral ingestion of Streptococcus thermophilus does not affect mucositis severity or tumor progression in the tumor-bearing rat. Cancer Biol. Ther. 2011, 12, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Brook, C.L.; Whittaker, A.L.; Lawrence, A.; Yazbeck, R.; Howarth, G.S. Effects of Streptococcus thermophilus TH-4 in a rat model of doxorubicin-induced mucositis. Scand. J. Gastroenterol. 2013, 48, 959–968. [Google Scholar] [CrossRef]
- Levit, R.; Savoy de Giori, G.; de Moreno de LeBlanc, A.; LeBlanc, J.G. Folate-producing lactic acid bacteria reduce inflammation in mice with induced intestinal mucositis. J. Appl. Microbiol. 2018, 125, 1494–1501. [Google Scholar] [CrossRef]
- Shen, S.R.; Chen, W.J.; Chu, H.F.; Wu, S.H.; Wang, Y.R.; Shen, T.L. Amelioration of 5-fluorouracil-induced intestinal mucositis by Streptococcus thermophilus ST4 in a mouse model. PLoS ONE 2021, 16, e0253540. [Google Scholar] [CrossRef]
- Do Carmo, F.L.R.; Rabah, H.; Cordeiro, B.F.; da Silva, S.H.; Pessoa, R.M.; Fernandes, S.O.A.; Cardoso, V.N.; Gagnaire, V.; Deplanche, M.; Savassi, B.; et al. Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019, 10, 7198–7219. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, M.; Song, W.; Jiang, R.; Li, Y.Q. Effects of probiotics on chemotherapy in patients with lung cancer. Oncol. Lett. 2019, 17, 2836–2848. [Google Scholar] [CrossRef]
- Bastos, R.W.; Pedroso, S.H.; Vieira, A.T.; Moreira, L.M.; França, C.S.; Cartelle, C.T.; Arantes, R.M.; Generoso, S.V.; Cardoso, V.N.; Neves, M.J.; et al. Saccharomyces cerevisiae UFMG A-905 treatment reduces intestinal damage in a murine model of irinotecan-induced mucositis. Benef. Microbes 2016, 7, 549–557. [Google Scholar] [CrossRef]
- Porto, B.A.A.; Monteiro, C.F.; Souza, É.L.S.; Leocádio, P.C.L.; Alvarez-Leite, J.I.; Generoso, S.V.; Cardoso, V.N.; Almeida-Leite, C.M.; Santos, D.A.; Santos, J.R.A.; et al. Treatment with selenium-enriched Saccharomyces cerevisiae UFMG A-905 partially ameliorates mucositis induced by 5-fluorouracil in mice. Cancer Chemother. Pharmacol. 2019, 84, 117–126. [Google Scholar] [CrossRef]
- Sezer, A.; Usta, U.; Cicin, I. The effect of Saccharomyces boulardii on reducing irinotecan-induced intestinal mucositis and diarrhea. Med. Oncol. 2009, 26, 350–357. [Google Scholar] [CrossRef]
- Justino, P.F.; Melo, L.F.; Nogueira, A.F.; Costa, J.V.; Silva, L.M.; Santos, C.M.; Mendes, W.O.; Costa, M.R.; Franco, A.X.; Lima, A.A.; et al. Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br. J. Nutr. 2014, 111, 1611–1621. [Google Scholar] [CrossRef] [PubMed]
- Maioli, T.U.; de Melo Silva, B.; Dias, M.N.; Paiva, N.C.; Cardoso, V.N.; Fernandes, S.O.; Carneiro, C.M.; Dos Santos Martins, F.; de Vasconcelos Generoso, S. Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice. J. Negat. Results Biomed. 2014, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, M.K.; Garcia-So, J.; Justice, N.; Myers, J.; Tyagi, S.; Nemchek, M.; McMurdie, P.J.; Kolterman, O.; Eid, J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes 2021, 13, 1907272. [Google Scholar] [CrossRef] [PubMed]
- Van der Aa Kühle, A.; Skovgaard, K.; Jespersen, L. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 2005, 101, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Czerucka, D.; Rampal, P. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World J. Gastroenterol. 2019, 25, 2188–2203. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, Y.; Huang, Z.; Dong, W.; Deng, Y.; Wang, F.; Li, M.; Yuan, J. Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats. Nutrition 2017, 33, 96–104. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Lin, Z.; Wang, Q.; Li, Y.; Wang, A.; Shan, X.; Liu, J. Administration of a Probiotic Mixture Ameliorates Cisplatin-Induced Mucositis and Pica by Regulating 5-HT in Rats. J. Immunol. Res. 2021, 2021, 9321196. [Google Scholar] [CrossRef]
- Quaresma, M.; Damasceno, S.; Monteiro, C.; Lima, F.; Mendes, T.; Lima, M.; Justino, P.; Barbosa, A.; Souza, M.; Souza, E.; et al. Probiotic mixture containing Lactobacillus spp. and Bifidobacterium spp. attenuates 5-fluorouracil-induced intestinal mucositis in mice. Nutr. Cancer 2020, 72, 1355–1365. [Google Scholar] [CrossRef]
- Bowen, J.M.; Stringer, A.M.; Gibson, R.J.; Yeoh, A.S.; Hannam, S.; Keefe, D. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol. Ther. 2007, 6, 1449–1454. [Google Scholar] [CrossRef]
- Levit, R.; Savoy de Giori, G.; de Moreno de LeBlanc, A.; LeBlanc, J. Evaluation of vitamin-producing and immunomodulatory lactic acid bacteria as a potential co-adjuvant for cancer therapy in a mouse model. J. Appl. Microbiol. 2021, 130, 2063–2074. [Google Scholar] [CrossRef]
- Jakubauskas, M.; Jakubauskiene, L.; Leber, B.; Horvath, A.; Strupas, K.; Stiegler, P.; Schemmer, P. Probiotic Supplementation Attenuates Chemotherapy-Induced Intestinal Mucositis in an Experimental Colorectal Cancer Liver Metastasis Rat Model. Nutrients 2023, 15, 1117. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.E. Efficacy of Bifidobacterium tetragenous viable bacteria tablets for cancer patients with functional constipation. APJCP 2014, 15, 10241–10244. [Google Scholar] [CrossRef] [PubMed]
- Mego, M.; Chovanec, J.; Vochyanova-Andrezalova, I.; Konkolovsky, P.; Mikulova, M.; Reckova, M.; Miskovska, V.; Bystricky, B.; Beniak, J.; Medvecova, L.; et al. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study. Complement. Ther. Med. 2015, 23, 356–362. [Google Scholar] [CrossRef]
- Smith, C.L.; Geier, M.S.; Yazbeck, R.; Torres, D.M.; Butler, R.N.; Howarth, G.S. Lactobacillus fermentum BR11 and fructo-oligosaccharide partially reduce jejunal inflammation in a model of intestinal mucositis in rats. Nutr. Cancer 2008, 60, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.S.; Lee, J.Y.; Lee, J.M.; Lee, K.W.; Kim, Y. Mulberry leaf extract fermented with Lactobacillus acidophilus A4 ameliorates 5-fluorouracil-induced intestinal mucositis in rats. Lett. Appl. Microbiol. 2017, 64, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Noguchi, T.; Mizoguchi, Y.; Shimoyama, T.; Nakazawa, T.; Ikuta, T. A Synbiotic with Tumor Necrosis Factor-α Inhibitory Activity Ameliorates Experimental Jejunoileal Mucosal Injury. BioMed Res. Int. 2018, 2018, 9184093. [Google Scholar] [CrossRef] [PubMed]
- Trindade, L.M.; Martins, V.D.; Rodrigues, N.M.; Souza, E.L.S.; Martins, F.S.; Costa, G.M.F.; Almeida-Leite, C.M.; Faria, A.M.C.; Cardoso, V.N.; Maioli, T.U.; et al. Oral administration of Simbioflora® (synbiotic) attenuates intestinal damage in a mouse model of 5-fluorouracil-induced mucositis. Benef. Microbes 2018, 9, 477–486. [Google Scholar] [CrossRef]
- Savassi, B.; Cordeiro, B.F.; Silva, S.H.; Oliveira, E.R.; Belo, G.; Figueiroa, A.G.; Alves Queiroz, M.I.; Faria, A.M.C.; Alves, J.; da Silva, T.F.; et al. Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Front. Pharmacol. 2021, 12, 755871. [Google Scholar] [CrossRef]
- Prisciandaro, L.D.; Geier, M.S.; Butler, R.N.; Cummins, A.G.; Howarth, G.S. Probiotic factors partially improve parameters of 5-fluorouracil-induced intestinal mucositis in rats. Cancer Biol. Ther. 2011, 11, 671–677. [Google Scholar] [CrossRef]
- Wang, H.; Jatmiko, Y.D.; Bastian, S.E.; Mashtoub, S.; Howarth, G.S. Effects of Supernatants from Escherichia coli Nissle 1917 and Faecalibacterium prausnitzii on Intestinal Epithelial Cells and a Rat Model of 5-Fluorouracil-Induced Mucositis. Nutr. Cancer 2017, 69, 307–318. [Google Scholar] [CrossRef]
- Nobre, L.M.S.; da Silva Lopes, M.H.; Geraix, J.; Cajado, A.G.; Silva, J.M.R.; Ribeiro, L.R.; Freire, R.S.; Cavalcante, D.I.M.; Wong, D.V.T.; Alves, A.P.N.N.; et al. Paraprobiotic Enterococcus faecalis EC-12 prevents the development of irinotecan-induced intestinal mucositis in mice. Life Sci. 2022, 296, 120445. [Google Scholar] [CrossRef]
- Kaur, H.; Ali, S.A. Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct. 2022, 13, 7423–7447. [Google Scholar] [CrossRef]
- Wei, H.; Li, B.; Sun, A.; Guo, F. Interleukin-10 Family Cytokines Immunobiology and Structure. Adv. Exp. Med. Biol. 2019, 1172, 79–96. [Google Scholar] [CrossRef]
- Garrett, W.S. Cancer and the microbiota. Science 2015, 348, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.M.; Botelho, P.B. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Front. Nutr. 2022, 9, 935830. [Google Scholar] [CrossRef] [PubMed]
- Gracie, D.J.; Ford, A.C. Symbiotics in irritable bowel syndrome—Better than probiotics alone? Curr. Opin. Clin. Nutr. Metab. 2015, 18, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Zawistowska-Rojek, A.; Tyski, S. Are Probiotic Really Safe for Humans? Pol. J. Microbiol. 2018, 67, 251–258. [Google Scholar] [CrossRef]
- Doron, S.; Snydman, D.R. Risk and safety of probiotics. Clin. Infect. Dis. 2015, 60 (Suppl. 2), S129–S134. [Google Scholar] [CrossRef] [PubMed]
Probiotics | Live microorganisms which when administered in adequate amounts confer a health benefit on the host. |
Synbiotics | A mixture of probiotics and microbial dietary supplements (prebiotics) that selectively stimulates the growth and/or activate the metabolism of one or a limited number of health-promoting bacteria, improving host welfare. |
Postbiotics | Soluble factors originated from bacterial lysis or secreted by live bacteria |
Paraprobiotics | Non-viable microbial cells or cell fractions that confer benefits when administered in adequate amounts |
Probiotic Mixtures | Combinations of different probiotic bacteria, able to enhance the beneficial effects of isolated probiotics. |
Probiotic | Experimental Model | Chemotherapy Drug | Main Findings | References |
---|---|---|---|---|
Lacticaseibacillus casei | Breast cancer model Balb/c mice | None |
| [29] |
Breast cancer model Balb/c mice | Capecitabine |
| [30] | |
Balb/c mice | 5-FU |
| [31] | |
Swiss mice (female) | 5-FU |
| [32] | |
Lactobacillus delbrueckii | Balb/c mice | 5-FU |
| [33] |
Balb/c mice | 5-FU |
| [34] | |
Lacticaseibacillus rhanmosus | Dark agouti rats | 5-FU |
| [35] |
Balb/c mice | 5-FU |
| [36] | |
Balb/c mice | 5-FU |
| [37] | |
Nod/scid mice | 5-FU |
| [38] | |
Balb/c mice | FOLFOX |
| [39] | |
Patients | 5-FU |
| [40] | |
Patients | Vincristine, daunorubicin, L-asparaginase |
| [41] | |
Lactobacillus acidophilus | Swiss mice | 5-FU |
| [42] |
Lactiplantibacillus plantarum | Balb/c mice | 5-FU |
| [43] |
Lactobacillus johnsonii | Sprague–Dawley rats | MTX |
| [44] |
Limosilactobacillus reuteri | Balb/c mice | 5-FU |
| [37] |
Limosilactobacillus fermentum | Dark agouti rats | 5-FU |
| [35] |
Bifidobacterium bifidum | ICR (CD1) mice | 5-FU |
| [45] |
Bifidobacterium breve | Pediatric patients with leukemia | Not specified |
| [46] |
Bifidobacterium infantis | Sprage-Dawley rats | 5-FU |
| [47] |
Sprage-Dawley rats | 5-FU/oxaliplatin |
| [48] | |
Bifidobacterium lactis | Dark agouti rats | 5-FU |
| [35] |
Streptococcus thermophilus | Female Dark Agouti rats | 5-FU |
| [49] |
Female Dark Agouti rats | MTX |
| [50] | |
Female Dark Agouti rats (tumor bearing) | MTX |
| [51] | |
Female Dark Agouti rats | Doxorubicin |
| [52] | |
Female Balb/c mice | 5-FU |
| [53] | |
Balb/c mice | 5-FU |
| [54] | |
Propionibacterium freudenreichii | Balb/c mice/HT-29 cells | 5-FU |
| [55] |
Balb/c mice | 5-FU |
| [31] | |
Clostridium butirycum | Patients | Platinum based |
| [56] |
Saccharomyces cerevisiae | Swiss mice | Irinotecan |
| [57] |
Swiss mice | 5-FU |
| [58] | |
Saccharomyces boulardii | Sprague–Dawley rats | Irinotecan |
| [59] |
Swiss mice | 5-FU |
| [60] | |
Swiss mice/Caco cells | 5-FU |
| [28] | |
Swiss mice | 5-FU |
| [61] |
Probiotic Mixture | Experimental Model | Chemotherapy Drug | Main Findings | References |
---|---|---|---|---|
Lactobacillus bulgaricus/Streptococcus thermophilus | Sprague–Dawley rats | MTX |
| [44] |
Probiotic mixture, DM#1 | Sprague–Dawley rats | 5-FU |
| [65] |
Probiotic mixture, DM#1 | Sprague–Dawley rats | Cisplatin |
| [66] |
PM1-Lactobacillus acidophilus/Bifidobacterium lactis | Swiss mice | 5-FU |
| [67] |
PM2-Lactobacillus acidophilus, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Bifidobacterium lactis | Swiss mice | 5-FU |
| [67] |
Labi-Lactobacillus acidophilus/Bifidobacterium bifidum | Balb/c mice | 5-FU |
| [36] |
Labi-Lactobacillus acidophilus/Bifidobacterium bifidum | Nod Scid mice | 5-FU |
| [38] |
Probiotic mixture VSL#3 | Female Dark Agouti rats | Irinotecan |
| [68] |
Lact. plantarum CRL 2130, Strep. thermophilus CRL 808 and Strep. thermophilus CRL 807 | Balb/c mice (model of breast cancer) | 5-FU |
| [69] |
Lacticaseibacillus casei W56; Lactobacillus acidophilus W37; Levilactobacillus brevis W63; Lactococcus lactis W58; Bifidobacterium lactis W52; Lactococcus lactis W19; Ligilactobacillus salivarius W24; and Bifidobacterium bifidum W23 | Wistar rats | FOLFOX |
| [70] |
Bifidobacterium tetragenous | Patients | CHOP for patients with lymphoma, fluoropyrimidine-based chemotherapy for patients with colorectal cancer, TP regimen in patients with lung cancer |
| [71] |
Probiotic formula Colon Dophilus™ | Patients | Irinotecan |
| [72] |
Synbiotic | Experimental Model | Chemotherapy Drug | Main Findings | References |
---|---|---|---|---|
Limosilactobacillus fermentum BR11 and the prebiotic, fructo-oligosaccharide | Female Dark Agouti rats | 5-FU |
| [73] |
Mulberry leaf extract and Lactobacillus acidophilus A4 | Wistar rats | 5-FU |
| [74] |
Synbiotic Gut Working Tablet | Sprague–Dawley rats | MTX |
| [75] |
Simbioflora® | Balb/c mice | 5-FU |
| [76] |
Lacticaseibacillus casei BL23, Lactiplantibacillus plantarum B7, Lacticaseibacillus rhamnosus, whey protein and fructo-oligosaccharide | Female Balb/c mice | 5-FU |
| [77] |
Postbiotic | Experimental Model | Chemotherapy Drug | Main Findings | References |
---|---|---|---|---|
Supernatant from Streptococcus thermophilus TH-4 | Female Dark Agouti rats | 5-FU |
| [49] |
Supernatants from Escherichia coli Nissle 1917 | Female Dark Agouti rats | 5-FU |
| [78] |
Supernatants from Limosilactobacillus fermentum BR11 | Female Dark Agouti rats | 5-FU |
| [78] |
Supernatants from Faecalibacterium prausnitzii | Female Dark Agouti rats Cell cultures | 5-FU |
| [79] |
Supernatants from Escherichia coli Nissle 1917 | Female Dark Agouti rats Cell cultures | 5-FU |
| [79] |
Paraprobiotic | Experimental Model | Chemotherapy Drug | Main Findings | References |
---|---|---|---|---|
Paraprobiotic EC-12S | C57BL/6 male mice | Irinotecan |
| [80] |
Paraprobiotic-based preparation Med Lan–S® | C57BL/6 male mice | Irinotecan |
| [80] |
Regulation of dysbiosis | Lacticaseibacillus casei Lacticaseibacillus rhamnosus Bifidobacterium bifidum Bifidobacterium breve Clostridium butyricum |
Modulation of epithelial barrier permeability | Lacticaseibacillus casei Lactobacillus delbrueckii Propionibacterium freudenreichii Saccharomyces cerevisiae |
Anti-inflammatory effects | Lacticaseibacillus casei Lacticaseibacillus rhamnosus Lactobacillus delbrueckii Bifidobacterium bifidus Bifidobacterium infantis Streptococcus thermophilus Propionibacterium freudenreichii Clostridium butyricum Saccharomyces boulardii |
Modulation of host immune response | Lactobacillus delbrueckii Lactobacillus acidophilus Bifidobacterium bifidum Bifidobacterium infantis Streptococcus thermophilus Propionibacterium freudenreichii Saccharomyces cerevisiae Saccharomyces boulardii |
Reduction of oxidative stress | Saccharomyces cerevisiae Saccharomyces boulardii |
Prevention of apoptosis | Saccharomyces boulardii Lacticaseibacillus rhamnosus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gómez, L.; Alcorta, A.; Abalo, R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J. Pers. Med. 2023, 13, 1487. https://doi.org/10.3390/jpm13101487
López-Gómez L, Alcorta A, Abalo R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. Journal of Personalized Medicine. 2023; 13(10):1487. https://doi.org/10.3390/jpm13101487
Chicago/Turabian StyleLópez-Gómez, Laura, Alexandra Alcorta, and Raquel Abalo. 2023. "Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review" Journal of Personalized Medicine 13, no. 10: 1487. https://doi.org/10.3390/jpm13101487
APA StyleLópez-Gómez, L., Alcorta, A., & Abalo, R. (2023). Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. Journal of Personalized Medicine, 13(10), 1487. https://doi.org/10.3390/jpm13101487