Unexpected Transient Glioblastoma Regression in a Patient Previously Treated with Bacillus Calmette–Guérin Therapy: A Case Report and Immunomodulatory Effects Hypothesis
Abstract
:1. Introduction
2. Case Presentation
2.1. Clinical Examination and Findings
2.2. Imaging and Initial Diagnosis
2.3. Further Diagnostic Tests
2.4. Initial Surgical Intervention
2.5. Histological Examination
2.6. Treatment and Follow-Up
2.7. Disease Progression
2.8. End-of-Life Care
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandes, E.; Lodillinsky, C.; Cwirenbaum, R.; Argüelles, C.; Casabé, A.; Eiján, A.M. Cathepsin B is involved in the apoptosis intrinsic pathway induced by Bacillus Calmette-Guérin in transitional cancer cell lines. Int. J. Mol. Med. 2007, 20, 823–828. [Google Scholar] [CrossRef]
- Yu, D.S.; Wu, C.L.; Ping, S.Y.; Keng, C.; Shen, K.H. Bacille Calmette-Guerin can induce cellular apoptosis of urothelial cancer directly through toll-like receptor 7 activation. Kaohsiung J. Med. Sci. 2015, 31, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Kim, S.J.; Chi, B.H.; Kwon, J.K.; Chang, I.H. Modulating the internalization of bacille Calmette-Guérin by cathelicidin in bladder cancer cells. Urology 2015, 85, 964.e7–964.e12. [Google Scholar] [CrossRef] [PubMed]
- Geckin, B.; Konstantin Föhse, F.; Domínguez-Andrés, J.; Netea, M.G. Trained immunity: Implications for vaccination. Curr. Opin. Immunol. 2022, 77, 102190. [Google Scholar] [CrossRef] [PubMed]
- Holla, S.; Ghorpade, D.S.; Singh, V.; Bansal, K.; Balaji, K.N. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-α-induced apoptosis. Mol. Cancer 2014, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Ryk, C.; Koskela, L.R.; Thiel, T.; Wiklund, N.P.; Steineck, G.; Schumacher, M.C.; de Verdier, P.J. Outcome after BCG treatment for urinary bladder cancer may be influenced by polymorphisms in the NOS2 and NOS3 genes. Redox Biol. 2015, 6, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Biau, J.; Chautard, E.; De Schlichting, E.; Dupic, G.; Pereira, B.; Fogli, A.; Müller-Barthélémy, M.; Dalloz, P.; Khalil, T.; Dillies, A.F.; et al. Radiotherapy plus temozolomide in elderly patients with GBM: A “real-life” report. Radiat. Oncol. 2017, 12, 197. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Udono-Fujimori, R.; Totsune, K.; Murakami, O.; Shibahara, S. Suppression of cytokine-induced expression of adrenomedullin and endothelin-1 by dexamethasone in T98G human GBM cells. Peptides 2003, 24, 1053–1062. [Google Scholar] [CrossRef]
- Li, X.N.; Shu, Q.; Su, J.M.; Perlaky, L.; Blaney, S.M.; Lau, C.C. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol. Cancer Ther. 2005, 4, 1912–1922. [Google Scholar] [CrossRef]
- Peddi, P.; Ajit, N.E.; Burton, G.V.; El-Osta, H. Regression of a glioblastoma multiforme: Spontaneous versus a potential antineoplastic effect of dexamethasone and levetiracetam. BMJ Case Rep. 2016, 2016, bcr2016217393. [Google Scholar] [CrossRef]
- Sindoni, A.; Severo, C.; Vadala’, R.E.; Ferini, G.; Mazzei, M.M.; Vaccaro, M.; IatÌ, G.; Pontoriero, A.; Pergolizzi, S. Levetiracetam-induced radiation recall dermatitis in a patient undergoing stereotactic radiotherapy. J. Dermatol. 2016, 43, 1440–1441. [Google Scholar] [CrossRef]
- Hwang, K.; Kim, J.; Kang, S.G.; Jung, T.Y.; Kim, J.H.; Kim, S.H.; Kang, S.H.; Hong, Y.K.; Kim, T.M.; Kim, Y.J.; et al. Levetiracetam as a sensitizer of concurrent chemoradiotherapy in newly diagnosed glioblastoma: An open-label phase 2 study. Cancer Med. 2022, 11, 371–379. [Google Scholar] [CrossRef]
- Pallud, J.; Huberfeld, G.; Dezamis, E.; Peeters, S.; Moiraghi, A.; Gavaret, M.; Guinard, E.; Dhermain, F.; Varlet, P.; Oppenheim, C.; et al. Effect of Levetiracetam Use Duration on Overall Survival of Isocitrate Dehydrogenase Wild-Type Glioblastoma in Adults: An Observational Study. Neurology 2022, 98, e125–e140. [Google Scholar] [CrossRef]
- Roh, T.H.; Moon, J.H.; Park, H.H.; Kim, E.H.; Hong, C.K.; Kim, S.H.; Kang, S.G.; Chang, J.H. Association between survival and levetiracetam use in glioblastoma patients treated with temozolomide chemoradiotherapy. Sci. Rep. 2020, 10, 10783. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, T.; Joo, J.D.; Han, J.H.; Kim, Y.J.; Kim, I.A.; Yun, C.H.; Kim, C.Y. Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme. Cancer 2015, 121, 2926–2932. [Google Scholar] [CrossRef]
- Kumar, A.A.; Abraham Koshy, A. Regression of Recurrent High-Grade Glioma with Temozolomide, Dexamethasone, and Levetiracetam: Case Report and Review of the Literature. World Neurosurg. 2017, 108, 990.e11–990.e16. [Google Scholar] [CrossRef]
- Albright, L.; Seab, J.A.; Ommaya, A.K. Intracerebral delayed hypersensitivity reactions in GBM multiforme patients. Cancer 1977, 39, 1331–1336. [Google Scholar] [CrossRef]
- Knerich, R.; Robustelli della Cuna, G.; Butti, G.; Pavesi, L.; Adinolfi, D.; Preti, P.; Locatelli, D. Chemotherapy plus immunotherapy for patients with primary and metastatic brain tumors. J. Neurosurg. Sci. 1985, 29, 19–24. [Google Scholar]
- Albright, L.; Madigan, J.C.; Gaston, M.R.; Houchens, D.P. Therapy in an intracerebral murine glioma model, using Bacillus Calmette-Guérin, neuraminidase-treated tumor cells, and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. Cancer Res. 1975, 35, 658–665. [Google Scholar]
- Wikstrand, C.J.; Bigner, D.D. Hyperimmunization of non-human primates with BCG-CW and cultured human glioma-derived cells. Production of reactive antisera and absence of EAE induction. J. Neuroimmunol. 1981, 1, 249–260. [Google Scholar] [CrossRef]
- Holladay, F.P.; Heitz-Turner, T.; Bayer, W.L.; Wood, G.W. Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J. Neurooncol. 1996, 27, 179–189. [Google Scholar] [CrossRef] [PubMed]
- van Puffelen, J.H.; Keating, S.T.; Oosterwijk, E.; van der Heijden, A.G.; Netea, M.G.; Joosten, L.A.B.; Vermeulen, S.H. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol. 2020, 17, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Parlato, C.; Barbarisi, M.; Moraci, M.; Moraci, A. Surgery, radiotherapy and temozolomide in treating high-grade gliomas. Front. Biosci. 2006, 11, 1280–1283. [Google Scholar] [CrossRef] [PubMed]
- Laigle-Donadey, F.; Figarella-Branger, D.; Chinot, O.; Taillandier, L.; Cartalat-Carel, S.; Honnorat, J.; Kaloshi, G.; Delattre, J.Y.; Sanson, M. Up-front temozolomide in elderly patients with glioblastoma. J. Neurooncol. 2010, 99, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, F.; Takayasu, T.; Nosaka, R.; Haratake, D.; Arihiro, K.; Ueno, H.; Shimomura, R.; Akiyama, Y.; Sugiyama, K.; Matsumoto, M.; et al. Transient spontaneous regression of brainstem glioblastoma. J. Neurosurg. Sci. 2018, 62, 610–612. [Google Scholar] [CrossRef] [PubMed]
- Gandhoke, C.S.; Ansari, M.T.; Syal, S.K.; Singh, D.; Saran, R.K. Spontaneous Regression of a Suspected Temporal lobe Glioblastoma Multiforme and its Re-appearance at a Different Site. JCR 2017, 7, 214–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Žarković, N.; Jaganjac, M.; Žarković, K.; Gęgotek, A.; Skrzydlewska, E. Spontaneous Regression of Cancer: Revealing Granulocytes and Oxidative Stress as the Crucial Double-edge Sword. Front. Biosci. (Landmark Ed.) 2022, 27, 119. [Google Scholar] [CrossRef]
- Pokhrel, B.; Chidharla, A.; Neupane, P. Spontaneous Regression of the Pulmonary Metastases in Adenoid Cystic Carcinoma of the Parotid Gland: A Case Report. Cureus 2022, 14, e30783. [Google Scholar] [CrossRef]
- Roseman, J.M. Regression of locally recurrent squamous cell carcinoma of the skin following excision of a metastasis: With review of the literature. J. Surg. Oncol. 1988, 39, 213–214. [Google Scholar] [CrossRef]
- Arrieta, V.A.; Dmello, C.; McGrail, D.J.; Brat, D.J.; Lee-Chang, C.; Heimberger, A.B.; Chand, D.; Stupp, R.; Sonabend, A.M. Immune checkpoint blockade in glioblastoma: From tumor heterogeneity to personalized treatment. J. Clin. Investig. 2023, 133, e163447. [Google Scholar] [CrossRef]
- Ghouzlani, A.; Kandoussi, S.; Tall, M.; Reddy, K.P.; Rafii, S.; Badou, A. Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Front. Immunol. 2021, 12, 679425. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, B.; Sun, Q.; Xiong, X.; Chen, Q. Immune Checkpoint Targeted Therapy in Glioma: Status and Hopes. Front. Immunol. 2020, 11, 578877. [Google Scholar] [CrossRef]
- Croese, T.; Castellani, G.; Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat. Immunol. 2021, 22, 1083–1092. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalia, G.; Ferini, G.; Marrone, S.; Salvati, M.; Yamamoto, V.; Kateb, B.; Schulte, R.; Forte, S.; Umana, G.E. Unexpected Transient Glioblastoma Regression in a Patient Previously Treated with Bacillus Calmette–Guérin Therapy: A Case Report and Immunomodulatory Effects Hypothesis. J. Pers. Med. 2023, 13, 1661. https://doi.org/10.3390/jpm13121661
Scalia G, Ferini G, Marrone S, Salvati M, Yamamoto V, Kateb B, Schulte R, Forte S, Umana GE. Unexpected Transient Glioblastoma Regression in a Patient Previously Treated with Bacillus Calmette–Guérin Therapy: A Case Report and Immunomodulatory Effects Hypothesis. Journal of Personalized Medicine. 2023; 13(12):1661. https://doi.org/10.3390/jpm13121661
Chicago/Turabian StyleScalia, Gianluca, Gianluca Ferini, Salvatore Marrone, Maurizio Salvati, Vicky Yamamoto, Babak Kateb, Reinhard Schulte, Stefano Forte, and Giuseppe Emmanuele Umana. 2023. "Unexpected Transient Glioblastoma Regression in a Patient Previously Treated with Bacillus Calmette–Guérin Therapy: A Case Report and Immunomodulatory Effects Hypothesis" Journal of Personalized Medicine 13, no. 12: 1661. https://doi.org/10.3390/jpm13121661
APA StyleScalia, G., Ferini, G., Marrone, S., Salvati, M., Yamamoto, V., Kateb, B., Schulte, R., Forte, S., & Umana, G. E. (2023). Unexpected Transient Glioblastoma Regression in a Patient Previously Treated with Bacillus Calmette–Guérin Therapy: A Case Report and Immunomodulatory Effects Hypothesis. Journal of Personalized Medicine, 13(12), 1661. https://doi.org/10.3390/jpm13121661