Clinical Features and Paraclinical Findings in Patients with SARS CoV-2 Pneumonia and the Impact of Pulmonary Rehabilitation on the Instrumental Activities of Daily Living in POST-COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Selection
2.3. Respiratory Rehabilitation
Rehabilitation Evaluation
2.4. Data Collection and Management
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trevisan, C.; Del Signore, S.; Fumagalli, S.; Gareri, P.; Malara, A.; Mossello, E.; Volpato, S.; Monzani, F.; Coin, A.; Bellelli, G.; et al. Assessing the impact of COVID-19 on the health of geriatric patients: The European GeroCovid Observational Study. Eur. J. Intern. Med. 2021, 87, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Logue, J.K.; Franko, N.M.; McCulloch, D.J.; McDonald, D.; Magedson, A.; Wolf, C.R.; Chu, H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open 2021, 4, e210830. [Google Scholar] [CrossRef] [PubMed]
- Niculet, E.; Chioncel, V.; Elisei, A.M.; Miulescu, M.; Buzia, O.D.; Nwabudike, L.C.; Craescu, M.; Draganescu, M.; Bujoreanu, F.; Marinescu, E.; et al. Multifactorial expression of IL-6 with update on COVID-19 and the therapeutic strategies of its blockade (Review). Exp. Ther. Med. 2021, 21, 263. [Google Scholar] [CrossRef]
- Tatu, A.L.; Nadasdy, T.; Bujoreanu, F.C. Familial clustering of COVID-19 skin manifestations. Dermatol. Ther. 2020, 33, e14181. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetol. Metab. Syndr. 2021, 15, 869–875. [Google Scholar] [CrossRef]
- Edemekong, P.F.; Bomgaars, D.L.; Sukumaran, S.; Levy, S.B. Activities of Daily Living. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022; Volume 1, pp. 1–11. [Google Scholar]
- Cojocaru, D.C.; Postolache, P.; Petrariu, F.D.; Negru, R.D. Correlations between IADL scale and Clinical Parameters in Severe-to-very Severe COPD Patients. Med.-Surg. J. 2019, 123, 413–418. [Google Scholar]
- Pizarro-Pennarolli, C.; Sánchez-Rojas, C.; Torres-Castro, R.; Vera-Uribe, R.; Sanchez-Ramirez, D.C.; Vasconcello-Castillo, L.; Solís-Navarro, L.; Rivera-Lillo, G. Assessment of activities of daily living in patients post COVID-19: A systematic review. PeerJ 2021, 9, e11026. [Google Scholar] [CrossRef]
- Holland, A.E.; Cox, N.S.; Houchen-Wolloff, L.; Rochester, C.L.; Garvey, C.; ZuWallack, R.; Nici, L.; Limberg, T.; Lareau, S.C.; Yawn, B.P.; et al. Defining Modern Pulmonary Rehabilitation. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2021, 18, e12–e29. [Google Scholar] [CrossRef]
- Postolache, P.; Cojocaru, D.C. Pulmonary rehabilitation—From guidelines to practice. Med.-Surg. J. 2013, 17, 159–161; 380–387. [Google Scholar]
- Simpson, R.; Robinson, L. Rehabilitation After Critical Illness in People With COVID-19 Infection. Am. J. Phys. Med. Rehabil. 2020, 99, 470–474. [Google Scholar] [CrossRef]
- Chinese Association of Rehabilitation Medicine; Respiratory Rehabilitation Committee of Chinese Association of Rehabilitation Medicine; Cardiopulmonary Rehabilitation Group of Chinese Society of Physical Medicine and Rehabilitation. Recommendations for respiratory rehabilitation of coronavirus disease 2019 in adult. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, 308–314.
- Postolache, A.P.; Meca, A.-D. Chapter 9. Exercise Program and Prescription in Pulmonary Rehabilitation. In Handbook of Pulmonary Rehabilitation; Postolache, P.A., Marciniuk, D.D., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2020; pp. 141–163. [Google Scholar]
- Boldrini, P.; Bernetti, A.; Fiore, P.; SIMFER Executive Committee, SIMFER Committee for International Affairs. Impact of COVID-19 outbreak on rehabilitation services and Physical and Rehabilitation Medicine physicians’ activities in Italy. An official document of the Italian PRM Society (SIMFER). Eur. J. Phys. Rehabil. Med. 2020, 56, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Gianola, S.; Bargeri, S.; Campanini, I.; Corbetta, D.; Gambazza, S.; Innocenti, T.; Meroni, R.; Castellini, G.; Turolla, A. The Spread of COVID-19 Among 15,000 Physical Therapists in Italy: A Cross-Sectional Study. Phys. Ther. 2021, 101, pzab123. [Google Scholar] [CrossRef] [PubMed]
- Graf, C. The Lawton instrumental activities of daily living scale. Am. J. Nurs. 2008, 108, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Zeng, B.; Chen, D.; Qiu, Z.; Zhang, M.; Wang, G. Expert consensus on protocol of rehabilitation for COVID-19 patients using framework and approaches of WHO International Family Classifications. Aging Med. 2020, 3, 82–94. [Google Scholar] [CrossRef]
- Balteanu, M.; Kamal, C.; Kamal, D.; Postolache, P.; Traistaru, R. Pulmonary rehabilitation in copd patients. observational study. Med.-Surg. J. 2018, 122, 474–483. [Google Scholar]
- Mihaltan, F.; Rajnoveanu, R.M.; Arghir, O.C.; Alecu, S.; Postolache, P.A. High 24-Hour Respiratory Symptoms and Low Physical Activity in the Stable COPD Romanian Cohort of SPACE Study. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 2533–2544. [Google Scholar] [CrossRef]
- Postolache, P.; Pop, C.S.; Nemes, R.M.; Nitu, F.M. Pulmonary rehabilitation in copd. Arch. Balk. Med. Union 2015, 50, 262–267. [Google Scholar]
- Kurtaiş Aytür, Y.; Köseoğlu, B.F.; Özyemişçi Taşkıran, Ö.; Ordu-Gökkaya, N.K.; Delialioğlu S, Ü.; Tur, B.S. Pulmonary rehabilitation principles in SARS CoV-2 infection (COVID-19): A guideline for the acute and subacute rehabilitation. Turk. J. Phys. Med. Rehabil. 2020, 66, 104–120. [Google Scholar] [CrossRef]
- Onu, I.; Iordan, D.-A.; Matei, D.; Hrisca-Eva, O.-D.; Buculei, I.; Galaction, A.-I.; Serban, I.L.; Dobrin, M.-E.; Popa-Velea, O.; Costin, D.E.; et al. Impact of Physiotherapy on Patients Suffering from COVID-19: An Observational Study. Appl. Sci. 2022, 12, 5795. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef] [PubMed]
- Chippa, V.; Aleem, A.; Anjum, F. Post-Acute Coronavirus (COVID-19) Syndrome. [Updated 2021 Dec 8]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570608/ (accessed on 1 December 2022).
- Ciobotaru, O.R.; Lupu, M.N.; Rebegea, L.; Ciobotaru, O.C.; Duca, O.M.; Tatu, A.L.; Voinescu, C.D.; Stoleriu, G.; Earar, K.; Miulescu, M. Dexamethasone—Chemical Structure and Mechanisms of Action in Prophylaxis of Postoperative Side Effects. Rev. Chim. 2019, 70, 843–847. [Google Scholar] [CrossRef]
- Israr, M.; Mitchell, D.; Alam, S.; Dinello, D.; Kishel, J.J.; Meyers, C. The HIV protease inhibitor lopinavir/ritonavir (Kaletra) alters the growth, differentiation and proliferation of primary gingival epithelium. HIV Med. 2011, 12, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Chen, Z.; Nie, Y.; Ma, Y.; Guo, Q.; Dai, X. Identification of Symptoms Prognostic of COVID-19 Severity: Multivariate Data Analysis of a Case Series in Henan Province. J. Med. Internet Res. 2020, 22, e19636. [Google Scholar] [CrossRef] [PubMed]
- Borg, K.; Stam, H. Editorial: COVID-19 and Physical and Rehabilitation Medicine. J. Rehabil. Med. 2020, 52, jrm00045. [Google Scholar] [CrossRef]
- Westerlind, E.; Palstam, A.; Sunnerhagen, K.S.; Persson, H.C. Patterns and predictors of sick leave after COVID-19 and long Covid in a national Swedish cohort. BMC Public Health 2021, 21, 1023. [Google Scholar] [CrossRef]
- Karlsson, N.E.; Carstensen, J.M.; Gjesdal, S.; Alexanderson, K.A. Risk factors for disability pension in a population-based cohort of men and women on long-term sick leave in Sweden. Eur. J. Public Health 2008, 18, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Puchner, B.; Sahanic, S.; Kirchmair, R.; Pizzini, A.; Sonnweber, B.; Wöll, E.; Mühlbacher, A.; Garimorth, K.; Dareb, B.; Ehling, R.; et al. Beneficial effects of multi-disciplinary rehabilitation in postacute COVID-19: An observational cohort study. Eur. J. Phys. Rehabil. Med. 2021, 57, 189–198. [Google Scholar] [CrossRef]
- Spielmanns, M.; Pekacka-Egli, A.M.; Schoendorf, S.; Windisch, W.; Hermann, M. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. Int. J. Environ. Res. Public Health 2021, 18, 2695. [Google Scholar] [CrossRef]
- Chikhanie, Y.A.; Veale, D.; Schoeffler, M.; Pépin, J.L.; Verges, S.; Hérengt, F. Effectiveness of pulmonary rehabilitation in COVID-19 respiratory failure patients post-ICU. Respir. Physiol. Neurobiol. 2021, 287, 103639. [Google Scholar] [CrossRef]
- Gautam, A.P.; Arena, R.; Dixit, S.; Borghi-Silva, A. Pulmonary rehabilitation in COVID-19 pandemic era: The need for a revised approach. Respirology 2020, 25, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Grigoletto, I.; Cavalheri, V.; Lima, F.F.; Ramos, E.M.C. Recovery after COVID-19: The potential role of pulmonary rehabilitation. Braz. J. Phys. Ther. 2020, 24, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.C.; Limbach, M.; Schuler, M.; Merkl, S.; Schwarzl, G.; Jakab, K.; Nowak, D.; Schultz, K. Effectiveness of a three-week inpatient pulmonary rehabilitation program for patients after COVID-19: A prospective observational study. Int. J. Environ. Res. 2021, 18, 9001. [Google Scholar] [CrossRef] [PubMed]
- Dechman, G.; Aceron, R.; Beauchamp, M.; Bhutani, M.; Bourbeau, J.; Brooks, D.; Goldstein, R.; Goodridge, D.; Hernandez, P.; Janaudis-Ferreira, T.; et al. Delivering pulmonary rehabilitation during the COVID-19 pandemic: A Canadian Thoracic Society position statement. Can. J. Respir. Crit. Care Sleep Med. 2020, 4, 232–235. [Google Scholar] [CrossRef]
- Tsutsui, M.; Gerayeli, F.; Sin, D.D. Pulmonary Rehabilitation in a Post-COVID-19 World: Telerehabilitation as a New Standard in Patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 379–391. [Google Scholar] [CrossRef]
- Gonzalez-Gerez, J.J.; Bernal-Utrera, C.; Anarte-Lazo, E.; Garcia-Vidal, J.A.; Botella-Rico, J.M.; Rodriguez-Blanco, C. Therapeutic pulmonary telerehabilitation protocol for patients affected by COVID-19, confined to their homes: Study protocol for a randomized controlled trial. Trials 2020, 21, 588. [Google Scholar] [CrossRef]
- Andritoi, D.; Luca, C.; Onu, I.; Corciova, C.; Fuior, R.; Salceanu, A.; Iordan, D.-A. The Use of Modern Technologies in Post-COVID-19 Cardiopulmonary Rehabilitation. Appl. Sci. 2022, 12, 7471. [Google Scholar] [CrossRef]
- Ciro, C.A.; James, S.A.; McGuire, H.; Lepak, V.; Dresser, S.; Costner-Lark, A.; Robinson, W.; Fritz, T. Natural, longitudinal recovery of adults with COVID-19 using standardized rehabilitation measures. Front. Aging Neurosci. 2022, 14, 958744. [Google Scholar] [CrossRef]
- Jaywant, A.; Vanderlind, W.M.; Alexopoulos, G.S.; Fridman, C.B.; Perlis, R.H.; Gunning, F.M. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology 2021, 46, 2235–2240. [Google Scholar] [CrossRef]
Comorbidities | Total n = 106 | SARS CoV-2 and Pneumonia n = 26 | SARS CoV-2 and Non-Pneumonia n = 80 | Chi2 Test p | Estimate Risk (95%CI) |
---|---|---|---|---|---|
Demographic Data | |||||
Age (years; median/interval) | 50/3-90 | 57/23-86 | 48/3-90 | 0.009 | - |
Female | 70 (66.0%) | 13 (50.0%) | 57 (71.3%) | 0.042 | 0.70 (0.47–1.06) |
≥50 years | 54 (50.9%) | 18 (69.2%) | 36 (45.0%) | 0.027 | 1.94 (1.01–3.74) |
Urban | 70 (66.0%) | 17 (65.4%) | 53 (66.3%) | 0.557 | 0.97 (0.48–1.96) |
Smoking | 23 (21.7%) | 5 (19.2%) | 18 (21.7%) | 0.727 | 0.85 (0.35–2.07) |
Clinical Findings | |||||
Dry cough | 22 (20.8%) | 11 (42.3%) | 11 (13.8%) | 0.003 | 2.80 (1.51–5.21) |
Productive cough | 12 (11.3%) | 4 (15.4%) | 8 (10.0%) | 0.465 | 1.42 (0.59–3.43) |
Dyspnoea | 5 (4.7%) | 5 (19.2%) | 0 (0.0%) | 0.001 | 4.81 (3.29–7.04) |
Asthenia | 9 (8.5%) | 3 (11.5%) | 6 (7.5%) | 0.534 | 1.41 (0.52–3.79) |
Myalgia | 11 (10.4%) | 6 (23.1%) | 5 (6.3%) | 0.023 | 2.59 (1.33–5.04) |
Fever | 11 (10.4%) | 8 (30.8%) | 3 (3.8%) | 0.001 | 3.84 (2.21–6.66) |
Shiver | 7 (6.6%) | 3 (11.5%) | 4 (5.0%) | 0.271 | 1.85 (0.73–4.66) |
Ageusia | 11 (10.4%) | 4 (15.4%) | 7 (8.8%) | 0.354 | 1.57 (0.66–3.72) |
Anosmia | 13 (12.3%) | 5 (19.2%) | 8 (10.0%) | 0.232 | 1.70 (0.78–3.73) |
Oropharyngeal pain | 3 (2.8%) | 1 (3.8%) | 2 (2.5%) | 0.728 | 1.37 (0.27–7.05) |
Chest pain | 12 (11.3%) | 6 (23.1%) | 6 (7.5%) | 0.041 | 2.35 (1.18–4.67) |
Paraesthesia | 1 (0.9%) | 1 (3.8%) | 0 (0.0%) | 0.092 | 4.20 (2.98–5.91) |
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
---|---|---|---|---|---|---|---|---|---|
R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
1 | 0.193 a | 0.037 | 0.028 | 0.426 | 0.037 | 40.026 | 1 | 104 | 0.047 |
2 | 0.304 b | 0.093 | 0.075 | 0.416 | 0.055 | 60.290 | 1 | 103 | 0.014 |
3 | 0.305 c | 0.093 | 0.066 | 0.418 | 0.000 | 0.030 | 1 | 102 | 0.862 |
4 | 0.332 d | 0.110 | 0.075 | 0.416 | 0.017 | 10.947 | 1 | 101 | 0.166 |
Sign | AUC | Standard Error | p | 95%CI | |
---|---|---|---|---|---|
−95%CI | +95%CI | ||||
Dry cough | 0.643 | 0.067 | 0.029 | 0.512 | 0.774 |
Productive cough | 0.527 | 0.067 | 0.681 | 0.396 | 0.658 |
Dyspnoea | 0.596 | 0.069 | 0.142 | 0.460 | 0.732 |
Asthenia | 0.520 | 0.066 | 0.758 | 0.390 | 0.651 |
Myalgia | 0.584 | 0.068 | 0.199 | 0.450 | 0.718 |
Fever | 0.635 | 0.069 | 0.039 | 0.500 | 0.770 |
Shiver | 0.533 | 0.067 | 0.618 | 0.401 | 0.664 |
Ageusia | 0.533 | 0.067 | 0.612 | 0.402 | 0.664 |
Anosmia | 0.546 | 0.067 | 0.481 | 0.414 | 0.678 |
Oropharyngeal pain | 0.507 | 0.066 | 0.918 | 0.378 | 0.636 |
Chest pain | 0.578 | 0.068 | 0.234 | 0.444 | 0.712 |
Paraesthesia | 0.519 | 0.067 | 0.769 | 0.389 | 0.650 |
Comorbidities | Total n = 106 | SARS CoV-2 and Pneumonia n = 26 | SARS CoV-2 and Non-Pneumonia n = 80 | Chi2 Test p | Estimate Risk (95%CI) |
---|---|---|---|---|---|
HBP | 53 (50.0%) | 13 (50.0%) | 40 (50.0%) | 1.000 | 1.00 (0.51–1.95) |
Diabetes mellitus | 8 (7.5%) | 3 (11.5%) | 5 (6.3%) | 0.396 | 1.60 (0.61–4.19) |
Obesity | 16 (15.1%) | 2 (7.7%) | 14 (17.5%) | 0.197 | 0.47 (0.12–1.79) |
Cancers | 5 (4.7%) | 5 (19.2%) | 0 (0.0%) | 0.001 | 4.81 (3.29–7.04) |
Autoimmune disease | 5 (4.7%) | 0 (0.0%) | 5 (6.3%) | 0.089 | 1.35 (1.20–1.51) |
COPD | 7 (6.6%) | 2 (7.7%) | 5 (6.3%) | 0.800 | 1.18 (0.35–4.00) |
Ischemic heart disease | 17 (16.0%) | 6 (23.1%) | 11 (13.7%) | 0.276 | 1.57 (0.74–3.33) |
Psychiatric illness | 4 (3.8%) | 1 (3.8%) | 3 (3.8%) | 0.982 | 1.02 (0.18–5.76) |
Neurological disease | 9 (8.5%) | 2 (7.7%) | 7 (8.8%) | 0.865 | 0.90 (0.25–3.20) |
Digestive disease | 13 (12.3%) | 5 (19.2%) | 8 (10.0%) | 0.232 | 1.70 (0.78–3.73) |
Hematological disease | 5 (4.7%) | 1 (3.8%) | 4 (5.0%) | 0.805 | 0.81 (0.14–4.82) |
Paraclinical Parameters | Total n = 106 | SARS CoV-2 and Pneumonia n = 26 | SARS CoV-2 and Non-Pneumonia n = 80 | t-Student Test p |
---|---|---|---|---|
White blood cells | 5.15 ± 3.08 | 6.22 ±4.05 | 4.80 ± 2.63 | 0.039 |
PMN% | 54.53 ± 21.16 | 64.18 ± 9.89 | 51.39 ± 22.88 | 0.007 |
PMN-abs | 2.89 ± 2.02 | 3.55 ± 1.89 | 2.68 ± 2.03 | 0.050 |
Lymphocytes | 25.29 ± 12.02 | 24.82 ± 8.46 | 25.45 ± 13.01 | 0.819 |
Lymphocytes -abs | 1.23 ± 0.71 | 1.27 ± 0.48 | 1.22 ± 0.77 | 0.747 |
CRP | 1.79 ±0.40 | 4.86 ± 1.45 | 0.78 ± 1.30 | 0.001 |
ESR | 14.13 ± 1.80 | 22.65 ± 5.36 | 11.36 ± 1.54 | 0.006 |
Fibrinogen | 273.18 ± 25.82 | 446.31 ± 60.22 | 216.91 ± 25.26 | 0.001 |
Ferritin | 123.63 ± 19.63 | 283.90 ± 61.73 | 71.54 ± 12.11 | 0.001 |
Urea | 23.23 ± 15.44 | 26.42 ± 16.20 | 22.19 ± 15.14 | 0.227 |
Creatinine | 0.85 ± 0.71 | 1.16 ± 1.18 | 0.74 ± 0.43 | 0.006 |
Glycemia | 91.48 ± 47.52 | 106.71 ± 51.66 | 86.53 ± 45.34 | 0.050 |
ALT | 29.74 ± 31.08 | 39.63 ± 27.47 | 26.48 ± 31.66 | 0.050 |
AST | 22.63 ± 13.66 | 32.01 ± 13.89 | 19.58 ± 12.19 | 0.001 |
GGT | 28.70 ± 4.80 | 50.63 ± 12.07 | 21.57 ± 4.79 | 0.001 |
Bilirubin | 0.35 ± 0.27 | 0.51 ± 0.19 | 0.30 ± 0.28 | 0.001 |
Parameter | AUC | Standard Error | p | 95%CI | |
---|---|---|---|---|---|
−95%CI | +95%CI | ||||
Blood | |||||
White blood cells | 0.594 | 0.061 | 0.150 | 0.475 | 0.714 |
PMN | 0.676 | 0.057 | 0.007 | 0.566 | 0.787 |
CRP | 0.779 | 0.054 | 0.001 | 0.672 | 0.886 |
ESR | 0.590 | 0.071 | 0.170 | 0.452 | 0.729 |
Fibrinogen | 0.734 | 0.066 | 0.001 | 0.605 | 0.863 |
Ferritin | 0.767 | 0.056 | 0.001 | 0.657 | 0.877 |
ALT | 0.706 | 0.056 | 0.002 | 0.595 | 0.817 |
AST | 0.769 | 0.052 | 0.001 | 0.668 | 0.871 |
GGT | 0.684 | 0.066 | 0.005 | 0.554 | 0.814 |
Bilirubin | 0.758 | 0.047 | 0.001 | 0.665 | 0.851 |
Glycemia | 0.625 | 0.061 | 0.056 | 0.505 | 0.746 |
Creatinine | 0.625 | 0.061 | 0.057 | 0.505 | 0.745 |
Biometric Measurements | Total n = 106 | SARS CoV-2 and Pneumonia n = 26 | SARS CoV-2 and Non-Pneumonia n = 80 | t-Student Test p |
---|---|---|---|---|
Systolic blood pressure | 121 ± 26 | 127 ± 14 | 119 ± 29 | 0.152 |
Diastolic blood pressure | 76 ± 18 | 77 ± 17 | 75 ± 19 | 0.684 |
Heart rate | 77 ± 18 | 79 ± 14 | 77 ± 19 | 0.586 |
SpO2 | 95.97 ± 9.59 | 95.73 ± 2.48 | 96.05 ± 10.97 | 0.884 |
Min SpO2 | 94.71 ± 9.77 | 93.46 ± 4.04 | 95.11 ±11.0 | 0.457 |
Treatment | Total n = 106 | SARS CoV-2 and Pneumonia n = 26 | SARS CoV-2 and Non-Pneumonia n = 80 | Chi2 Test p |
---|---|---|---|---|
Remdesivir | 2 (1.9%) | 1 (3.8%) | 1 (1.3%) | 0.433 |
Anticoagulant | 30 (28.3%) | 9 (34.6%) | 21 (26.3%) | 0.417 |
Kaletra (lopinavir 80 mg and ritonavir 20 mg) | 20 (18.9%) | 12 (46.2%) | 7 (10.0%) | 0.001 |
Dexamethasone | 24 (22.6%) | 15 (57.7%) | 9 (11.3%) | 0.001 |
Antibiotic | 37 (34.9%) | 20 (76.9%) | 17 (21.3%) | 0.001 |
Ceftriaxone | 27 (25.5%) | 14 (53.8%) | 13 (16.3%) | 0.001 |
Augmentin | 4 (3.8%) | 1 (3.8%) | 3 (3.8%) | 0.982 |
Clarithromycin | 8 (7.5%) | 5 (19.2%) | 3 (3.8%) | 0.017 |
Azithromycin | 2 (1.9%) | 2 (7.7%) | 0 (0.0%) | 0.012 |
Paracetamol | 84 (79.2%) | 21 (80.8%) | 63 (78.7%) | 0.824 |
Codeine | 17 (16.0%) | 5 (19.2%) | 12 (15.0%) | 0.615 |
Vitamins | 100 (94.3%) | 25 (96.2%) | 75 (93.8%) | 0.631 |
Antihistamines | 6 (5.7%) | 2 (7.7%) | 4 (5.0%) | 0.617 |
Sign | AUC | Standard Error | p | 95%CI | |
---|---|---|---|---|---|
−95%CI | +95%CI | ||||
Dry cough | 0.643 | 0.077 | 0.057 | 0.491 | 0.795 |
Productive cough | 0.532 | 0.077 | 0.668 | 0.381 | 0.683 |
Dyspnoea | 0.505 | 0.075 | 0.946 | 0.357 | 0.653 |
Asthenia | 0.482 | 0.073 | 0.814 | 0.338 | 0.626 |
Myalgia | 0.605 | 0.080 | 0.162 | 0.448 | 0.761 |
Fever | 0.571 | 0.079 | 0.342 | 0.416 | 0.726 |
Shiver | 0.460 | 0.071 | 0.596 | 0.321 | 0.600 |
Ageusia | 0.504 | 0.075 | 0.953 | 0.357 | 0.652 |
Anosmia | 0.493 | 0.074 | 0.926 | 0.347 | 0.639 |
Oropharyngeal pain | 0.516 | 0.076 | 0.827 | 0.367 | 0.666 |
Chest pain | 0.532 | 0.077 | 0.668 | 0.381 | 0.683 |
Paraesthesia | 0.528 | 0.077 | 0.711 | 0.376 | 0.680 |
IADL | Before Rehabilitation Program | Chi2 Test | After Rehabilitation Program | Chi2 Test | |
---|---|---|---|---|---|
Less Able To | Group I n = 26 | Group II n = 80 | p | Group I n = 26 | p |
feed | 24 (92.3%) | 13 (16.3%) | 0.001 | 12 (46.2%) | 0.001 |
bath | 24 (92.3%) | 5 (6.3%) | 0.001 | 13 (50.0%) | 0.001 |
dress | 25 (92.2%) | 5 (6.3%) | 0.001 | 13 (50.0%) | 0.001 |
walk | 25 (96.2%) | 1 (1.3%) | 0.001 | 15 (57.7%) | 0.001 |
take medications | 13 (50.0%) | 25 (31.3%) | 0.085 | 5 (19.2%) | 0.021 |
cook | 25 (92.2%) | 16 (20.0%) | 0.001 | 18 (69.2%) | 0.028 |
telephone | 8 (30.8%) | 11 (13.7%) | 0.077 | 5 (19.2%) | 0.341 |
manage finances | 17 (65.4%) | 11 (13.8%) | 0.001 | 16 (61.5%) | 0.775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postolache, P.A.; Nechifor, A.; Buculei, I.; Soare, I.; Mocanu, H.; Petrariu, F.D. Clinical Features and Paraclinical Findings in Patients with SARS CoV-2 Pneumonia and the Impact of Pulmonary Rehabilitation on the Instrumental Activities of Daily Living in POST-COVID-19 Patients. J. Pers. Med. 2023, 13, 182. https://doi.org/10.3390/jpm13020182
Postolache PA, Nechifor A, Buculei I, Soare I, Mocanu H, Petrariu FD. Clinical Features and Paraclinical Findings in Patients with SARS CoV-2 Pneumonia and the Impact of Pulmonary Rehabilitation on the Instrumental Activities of Daily Living in POST-COVID-19 Patients. Journal of Personalized Medicine. 2023; 13(2):182. https://doi.org/10.3390/jpm13020182
Chicago/Turabian StylePostolache, Paraschiva A., Alexandru Nechifor, Ioana Buculei, Ioana Soare, Horia Mocanu, and Florin Dumitru Petrariu. 2023. "Clinical Features and Paraclinical Findings in Patients with SARS CoV-2 Pneumonia and the Impact of Pulmonary Rehabilitation on the Instrumental Activities of Daily Living in POST-COVID-19 Patients" Journal of Personalized Medicine 13, no. 2: 182. https://doi.org/10.3390/jpm13020182
APA StylePostolache, P. A., Nechifor, A., Buculei, I., Soare, I., Mocanu, H., & Petrariu, F. D. (2023). Clinical Features and Paraclinical Findings in Patients with SARS CoV-2 Pneumonia and the Impact of Pulmonary Rehabilitation on the Instrumental Activities of Daily Living in POST-COVID-19 Patients. Journal of Personalized Medicine, 13(2), 182. https://doi.org/10.3390/jpm13020182