End-to-End Deep-Learning-Based Diagnosis of Benign and Malignant Orbital Tumors on Computed Tomography Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CT Image Acquisition and Annotation
2.3. Preprocessing and Network Architecture
2.3.1. Preprocessing of the CT Images
2.3.2. Segmentation Network
2.3.3. Classification Network
2.4. Assessment by Ophthalmologists
2.5. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Tumor Segmentation in CT images
3.3. Tumor Classification
3.4. Comparison with Ophthalmologists’ Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shields, J.A.; Shields, C.L.; Scartozzi, R. Survey of 1264 patients with orbital tumors and simulating lesions—The 2002 montgomery lecture, part 1. Ophthalmology 2004, 111, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Rootman, D.B.; Heran, M.K.; Rootman, J.; White, V.A.; Luemsamran, P.; Yucel, Y.H. Cavernous venous malformations of the orbit (so-called cavernous haemangioma): A comprehensive evaluation of their clinical, imaging and histologic nature. Br. J. Ophthalmol. 2014, 98, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Scheuerle, A.F.; Steiner, H.H.; Kolling, G.; Kunze, S.; Aschoff, A. Treatment and long-term outcome of patients with orbital cavernomas. Am. J. Ophthalmol. 2004, 138, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.J. Cavernous hemangioma of the orbital apex: Pathogenetic considerations in surgical management. Am. J. Ophthalmol. 2010, 150, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Low, C.M.; Stokken, J.K. Typical orbital pathologies: Hemangioma. J. Neurol. Surg. B Skull Base 2021, 82, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Woolf, D.K.; Ahmed, M.; Plowman, P.N. Primary lymphoma of the ocular adnexa (orbital lymphoma) and primary intraocular lymphoma. Clin. Oncol. 2012, 24, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Kharod, S.M.; Herman, M.P.; Morris, C.G.; Lightsey, J.; Mendenhall, W.M.; Mendenhall, N.P. Radiotherapy in the management of orbital lymphoma a single institution’s experience over 4 decades. Am. J. Clin. Oncol.-Cancer Clin. Trials 2018, 41, 100–106. [Google Scholar]
- Demirci, H.; Shields, C.L.; Shields, J.A.; Honavar, S.G.; Mercado, G.J.; Tovilla, J.C. Orbital tumors in the older adult population. Ophthalmology 2002, 109, 243–248. [Google Scholar] [CrossRef]
- Khan, S.N.; Sepahdari, A.R. Orbital masses: CT and MRI of common vascular lesions, benign tumors, and malignancies. Saudi. J. Ophthalmol. 2012, 26, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Xian, J.F.; Zhang, Z.Y.; Wang, Z.C.; Li, J.; Yang, B.T.; Man, F.Y.; Chang, Q.L.; Zhang, Y.T. Value of MR imaging in the differentiation of benign and malignant orbital tumors in adults. Eur. Radiol. 2010, 20, 1692–1702. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, X.; Tang, F.; Gan, L.; Wei, X. Diagnostic imaging methods and comparative analysis of orbital cavernous hemangioma. Front. Oncol. 2020, 10, 577452. [Google Scholar] [CrossRef]
- Russell, E.J.; Czervionke, L.; Huckman, M.; Daniels, D.; McLachlan, D. Ct of the inferomedial orbit and the lacrimal drainage apparatus: Normal and pathologic anatomy. AJR Am. J. Roentgenol. 1985, 145, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Langer, B.G.; Mafee, M.F.; Pollack, S.; Spigos, D.G.; Gyi, B. Mri of the normal orbit and optic pathway. Radiol. Clin. N. Am. 1987, 25, 429–446. [Google Scholar] [CrossRef]
- Joseph, A.K.; Guerin, J.B.; Eckel, L.J.; Dalvin, L.A.; Keating, G.F.; Liebo, G.B.; Benson, J.C.; Brinjikji, W.; Laack, N.N.; Silvera, V.M. Imaging findings of pediatric orbital masses and tumor mimics. Radiographics 2022, 42, 880–897. [Google Scholar] [CrossRef]
- Priego, G.; Majos, C.; Climent, F.; Muntane, A. Orbital lymphoma: Imaging features and differential diagnosis. Insights. Imaging 2012, 3, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Beckett, K.R.; Moriarity, A.K.; Langer, J.M. Safe use of contrast media: What the radiologist needs to know. Radiographics 2015, 35, 1738–1750. [Google Scholar] [CrossRef]
- Ben Simon, G.J.; Annunziata, C.C.; Fink, J.; Villablanca, P.; McCann, J.D.; Goldberg, R.A. Rethinking orbital imaging—Establishing guidelines for interpreting orbital imaging studies and evaluating their predictive value in patients with orbital tumors. Ophthalmology 2005, 112, 2196–2207. [Google Scholar] [CrossRef]
- Nichols, J.A.; Herbert Chan, H.W.; Baker, M.A.B. Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophys. Rev. 2019, 11, 111–118. [Google Scholar] [CrossRef]
- Cho, S.M.; Austin, P.C.; Ross, H.J.; Abdel-Qadir, H.; Chicco, D.; Tomlinson, G.; Taheri, C.; Foroutan, F.; Lawler, P.R.; Billia, F.; et al. Machine learning compared with conventional statistical models for predicting myocardial infarction readmission and mortality: A systematic review. Can. J. Cardiol. 2021, 37, 1207–1214. [Google Scholar] [CrossRef]
- Brehar, R.; Mitrea, D.A.; Vancea, F.; Marita, T.; Nedevschi, S.; Lupsor-Platon, M.; Rotaru, M.; Badea, R.I. Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images. Sensors 2020, 20, 3085. [Google Scholar] [CrossRef]
- Ye, Y.; Xiong, Y.; Zhou, Q.; Wu, J.; Li, X.; Xiao, X. Comparison of machine learning methods and conventional logistic regressions for predicting gestational diabetes using routine clinical data: A retrospective cohort study. J. Diabetes. Res. 2020, 2020, 4168340. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Cheung, C.Y.L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.-L.; Sun, Y.-J.; Zhan, X.; Li, G.-Y. Orbital and eyelid diseases: The next breakthrough in artificial intelligence? Front. Cell. Dev. Biol. 2022, 10, 1069248. [Google Scholar] [CrossRef]
- Pan, L.; Chen, K.; Zheng, Z.; Zhao, Y.; Yang, P.; Li, Z.; Wu, S. Aging of chinese bony orbit: Automatic calculation based on UNet++ and connected component analysis. Surg. Radiol. Anat. 2022, 44, 749–758. [Google Scholar] [CrossRef]
- Li, Z.; Chen, K.; Yang, J.; Pan, L.; Wang, Z.; Yang, P.; Wu, S.; Li, J. Deep learning-based ct radiomics for feature representation and analysis of aging characteristics of asian bony orbit. J. Craniofac. Surg. 2022, 33, 312–318. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Z.; Shen, C.; Li, Z.; Yan, F.; Tian, J.; Xian, J. Mr-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation. Eur. Radiol. 2018, 28, 3872–3881. [Google Scholar] [CrossRef]
- Hou, Y.; Xie, X.; Chen, J.; Lv, P.; Jiang, S.; He, X.; Yang, L.; Zhao, F. Bag-of-features-based radiomics for differentiation of ocular adnexal lymphoma and idiopathic orbital inflammation from contrast-enhanced mri. Eur. Radiol. 2021, 31, 24–33. [Google Scholar] [CrossRef]
- Hua, K.-L.; Hsu, C.-H.; Hidayati, H.C.; Cheng, W.-H.; Chen, Y.-J. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015, 8, 2015–2022. [Google Scholar]
- Nam, J.G.; Park, S.; Hwang, E.J.; Lee, J.H.; Jin, K.-N.; Lim, K.Y.; Vu, T.H.; Sohn, J.H.; Hwang, S.; Goo, J.M.; et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019, 290, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.W.; Hui, R.; Tian, Z. Classification of ct brain images based on deep learning networks. Comput. Methods Programs Biomed. 2017, 138, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Balkenende, L.; Teuwen, J.; Mann, R.M. Application of deep learning in breast cancer imaging. Semin. Nucl. Med. 2022, 52, 584–596. [Google Scholar] [CrossRef]
- Yin, X.X.; Sun, L.; Fu, Y.; Lu, R.; Zhang, Y. U-net-based medical image segmentation. J. Healthc. Eng. 2022, 2022, 4189781. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Hsu, C.R.; Chen, Y.Y.; Yao, M.; Wei, Y.H.; Hsieh, Y.T.; Liao, S.L. Orbital and ocular adnexal lymphoma: A review of epidemiology and prognostic factors in Taiwan. Eye 2021, 35, 1946–1953. [Google Scholar] [CrossRef]
- Olsen, T.G.; Heegaard, S. Orbital lymphoma. Surv. Ophthalmol. 2019, 64, 45–66. [Google Scholar] [CrossRef]
- Mombaerts, I.; Ramberg, I.; Coupland, S.E.; Heegaard, S. Diagnosis of orbital mass lesions: Clinical, radiological, and pathological recommendations. Surv. Ophthalmol. 2019, 64, 741–756. [Google Scholar] [CrossRef]
- Koukkoulli, A.; Pilling, J.D.; Patatas, K.; El-Hindy, N.; Chang, B.; Kalantzis, G. How accurate is the clinical and radiological evaluation of orbital lesions in comparison to surgical orbital biopsy? Eye 2018, 32, 1329–1333. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Kuai, X.P.; Chen, X.S.; Tao, X.F. Assessment of dynamic contrast-enhanced magnetic resonance imaging in the differentiation of malignant from benign orbital masses. Eur. J. Radiol. 2013, 82, 1506–1511. [Google Scholar] [CrossRef]
- Khalek, A.A.; Razek, A.; Elkhamary, S.; Mousa, A. Differentiation between benign and malignant orbital tumors at 3-T diffusion mr-imaging. Neuroradiology 2011, 53, 517–522. [Google Scholar]
- Resnikoff, S.; Felch, W.; Gauthier, T.M.; Spivey, B. The number of ophthalmologists in practice and training worldwide: A growing gap despite more than 200,000 practitioners. Br. J. Ophthalmol. 2012, 96, 783–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruls, R.J.M.; Kwee, R.M. Workload for radiologists during on-call hours: Dramatic increase in the past 15 years. Insights Imaging 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Du, L.; Mo, Y.; Huang, C.; Yuan, Q. Machine learning based non-enhanced ct radiomics for the identification of orbital cavernous venous malformations: An innovative tool. J. Craniofac. Surg. 2022, 33, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, S.; Chen, R.; Zhang, K.; Xiang, Y.; Wang, R.; Lin, H.; Yang, H. Differentiate cavernous hemangioma from schwannoma with artificial intelligence (AI). Ann. Transl. Med. 2020, 8, 710. [Google Scholar] [CrossRef]
Items | Total | Hemangioma | Lymphoma |
---|---|---|---|
Number of patients | 64 | 35 | 29 |
Male | 36 | 17 | 19 |
Female | 28 | 18 | 10 |
Mean age (years) | 51.69 | 47.46 | 56.79 |
Items | ResNet-34 | Ophthalmologist | ||
---|---|---|---|---|
A | B | C | ||
Sensitivity (%) | 80.00 | 85.71 | 77.14 | 82.86 |
Specificity (%) | 94.12 | 82.35 | 97.06 | 88.24 |
False-Positive Rate (%) | 5.88 | 17.65 | 2.94 | 11.76 |
False-Negative Rate (%) | 20.00 | 14.29 | 22.86 | 17.14 |
Positive Predictive Value (%) | 93.33 | 83.33 | 96.43 | 87.88 |
Negative Predictive Value (%) | 82.05 | 84.85 | 80.49 | 83.33 |
Accuracy (%) | 86.96 | 84.06 | 86.96 | 85.51 |
AUC | 0.9126 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Zhu, J.; Jin, K.; Guan, X.; Jian, T.; Xue, Y.; Wang, C.; Xu, X.; Sun, F.; Si, K.; et al. End-to-End Deep-Learning-Based Diagnosis of Benign and Malignant Orbital Tumors on Computed Tomography Images. J. Pers. Med. 2023, 13, 204. https://doi.org/10.3390/jpm13020204
Shao J, Zhu J, Jin K, Guan X, Jian T, Xue Y, Wang C, Xu X, Sun F, Si K, et al. End-to-End Deep-Learning-Based Diagnosis of Benign and Malignant Orbital Tumors on Computed Tomography Images. Journal of Personalized Medicine. 2023; 13(2):204. https://doi.org/10.3390/jpm13020204
Chicago/Turabian StyleShao, Ji, Jiazhu Zhu, Kai Jin, Xiaojun Guan, Tianming Jian, Ying Xue, Changjun Wang, Xiaojun Xu, Fengyuan Sun, Ke Si, and et al. 2023. "End-to-End Deep-Learning-Based Diagnosis of Benign and Malignant Orbital Tumors on Computed Tomography Images" Journal of Personalized Medicine 13, no. 2: 204. https://doi.org/10.3390/jpm13020204
APA StyleShao, J., Zhu, J., Jin, K., Guan, X., Jian, T., Xue, Y., Wang, C., Xu, X., Sun, F., Si, K., Gong, W., & Ye, J. (2023). End-to-End Deep-Learning-Based Diagnosis of Benign and Malignant Orbital Tumors on Computed Tomography Images. Journal of Personalized Medicine, 13(2), 204. https://doi.org/10.3390/jpm13020204