Axillary Treatment Management in Breast Cancer during COVID-19 Pandemic (Association between ACOSOG Z0011 Criteria and OSNA Test)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Procedures-Percentage Change I Phase vs. II Phase
Appendix B. OSNA–Percentage Change I Phase vs. II Phase
References
- Gazzetta Ufficiale, n. 59 del 8 Marzo 2020; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2020; Serie 59; p. 6.
- Chang, J.M.; Leung, J.W.T.; Moy, L.; Ha, S.M.; Moon, W.K. Axillary Nodal Evaluation in Breast Cancer: State of the Art. Radiology 2020, 295, 500–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirocchi, R.; Amabile, M.I.; De Luca, A.; Frusone, F.; Tripodi, D.; Gentile, P.; Tabola, R.; Pironi, D.; Forte, F.; Monti, M.; et al. New classifications of axillary lymph nodes and their anatomical-clinical correlations in breast surgery. World J. Surg. Onc0 2021, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, A.; Shimazu, K.; Naoi, Y.; Shimomura, A.; Shimoda, M.; Kagara, N.; Maruyama, N.; Kim, S.J.; Yoshidome, K.; Tsujimoto, M.; et al. One-step nucleic acid amplification assay for intraoperative prediction of non-sentinel lymph node metastasis in breast cancer patients with sentinel lymph node metastasis. Breast 2014, 23, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.; Williams, S.; Cook, J.; Jenkins, M.; Sohail, M.; Calder, C.; Winters, Z.E.; Rayter, Z. The real-time intra-operative evaluation of sentinel lymph nodes in breast cancer patients using One Step Nucleic Acid Amplification (OSNA) and implications for clinical decision-making. Eur. J. Surg. Oncol. 2014, 40, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, A.E.; Hunt, K.K.; Ballman, K.V.; Beitsch, P.D.; Whitworth, P.W.; Blumencranz, P.W.; Leitch, A.M.; Saha, S.; McCall, L.M.; Morrow, M. Axillary dissection vs. no axillary dissection in women with invasive breast cancer and sentinel node metastasis: A randomized clinical trial. JAMA 2011, 305, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Baldini, E.; Lauro, A.; Tripodi, D.; Pironi, D.; Amabile, M.I.; Ferent, I.C.; Lori, E.; Gagliardi, F.; Bellini, M.I.; Forte, F.; et al. Thyroid Diseases and Breast Cancer. J. Pers. Med. 2022, 12, 156. [Google Scholar] [CrossRef]
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs. No Axillary Dissection on 10-Year Overall Survival Among Women with Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. JAMA 2017, 318, 918–926. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Bravo, M.; Navarro-Cecilia, J.; Ramos Boyero, M.; Diaz-Botero, S.; Dueñas Rodríguez, B.; Luque López, C.; Ramos Grande, T.; Ruano Perez, R.; Peg, V.; Rubio, I.T. Intraoperative assessment of sentinel lymph node by one-step nucleic acid amplification in breast cancer patients after neoadjuvant treatment reduces the need for a second surgery for axillary lymph node dissection. Breast 2017, 31, 40–45. [Google Scholar] [CrossRef]
- Vieites, B.; López-García, M.Á.; Martín-Salvago, M.D.; Ramirez-Tortosa, C.L.; Rezola, R.; Sancho, M.; López-Vilaró, L.; Villardell, F.; Burgués, O.; Fernández-Rodriguez, B.; et al. Predictive and prognostic value of total tumor load in sentinel lymph nodes in breast cancer patients after neoadjuvant treatment using one-step nucleic acid amplification: The NEOVATTL study. Clin. Transl. Oncol. 2021, 23, 1377–1385. [Google Scholar] [CrossRef]
- Peña, K.B.; Kepa, A.; Cochs, A.; Riu, F.; Parada, D.; Gumà, J. Total Tumor Load of mRNA Cytokeratin 19 in the Sentinel Lymph Node as a Predictive Value of Axillary Lymphadenectomy in Patients with Neoadjuvant Breast Cancer. Genes 2021, 12, 77. [Google Scholar] [CrossRef]
- Vieites, B.; Lopez-García, M.A.; Castilla, C.; Hernandez, M.J.; Biscuola, M.; Alfaro, L.; Atienza, M.R.; Castilla, M.A.; Palacios, J. CK19 expression in breast tumours and lymph node metastasis after neoadjuvant therapy. Histopathology 2016, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Associazione Italiana Oncologia Medica (AIOM). Linee Guida Neoplasie Della Mammella; Sistema Nazionale Linee Guida (SNLG) dell’Istituto Superiore di Sanità: Rome, Italy, 2021; pp. 1–742. [Google Scholar]
- Senonetwork Italia Onlus. Trattamento Dopo Chemioterapia Primaria o Neoadjuvant Chemotherapy (NAC); Senonetwork Italia Onlus: Firenze, Italy, 2017; pp. 1–25. [Google Scholar]
- World Health Organization (WHO). Breast Tumours WHO Classification of Tumours, 5th ed.; WHO Classification of Tumours Editorial Board: Lyon, France, 2019; Volume 2, pp. 1–368. [Google Scholar]
- Prinzi, N.; Sorrenti, S.; Baldini, E.; De Vito, C.; Tuccilli, C.; Catania, A.; Coccaro, C.; Bianchini, M.; Nesca, A.; Grani, G.; et al. Association of thyroid diseases with primary extra-thyroidal malignancies in women: Results of a cross-sectional study of 6386 patients. PLoS ONE 2015, 10, e0122958. [Google Scholar] [CrossRef] [PubMed]
- Huxley, N.; Jones-Hughes, T.; Coelho, H.; Snowsill, T.; Cooper, C.; Meng, Y.; Hyde, C.; Mújica-Mota, R. A systematic review and economic evaluation of intraoperative tests RD-100i one-step nucleic acid amplification (OSNA) system and Metasin test] for detecting sentinel lymph node metastases in breast cancer. Health Technol. Assess. 2015, 19, 1–216. [Google Scholar] [CrossRef] [Green Version]
- Biganzoli, L.; Cardoso, F.; Beishon, M.; Cameron, D.; Cataliotti, L.; Coles, C.E.; Delgado Bolton, R.C.; Die Trill, M.; Erdem, S.; Fjell, M.; et al. The requirements of a specialist breast centre. Breast 2020, 51, 65–84. [Google Scholar] [CrossRef]
- Medas, F.; Coni, P.; Podda, F.; Salaris, C.; Cappellacci, F.; Faa, G.; Calò, P.G. Evaluation of accuracy of one-step nucleic acid amplification (OSNA) in diagnosis of lymph node metastases of papillary thyroid carcinoma. Diagnostic study. Ann. Med. Surg. 2019, 46, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Agenzia Nazionale per i Servizi Sanitari Regionali (AGENAS). Chirurgia Oncologica. In Programma Nazionale Esiti Edizione; Ministero della Salute: Roma, Italy, 2022; pp. 46–50. [Google Scholar]
- Tasoulis, M.-K.; Roche, N.; MacNeill, F. Rationalizing breast cancer surgery during the COVID-19 pandemic. Eur. J. Surg. Oncol. 2020, 46, 1192–1193. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, F.; Xie, L.; Wang, C.; Wang, J.; Chen, R.; Jia, P.; Guan, H.Q.; Peng, L.; Chen, Y.; et al. Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. 2020, 31, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.S.; Hamilton, D.G. Assessing the impact of the COVID-19 pandemic on breast cancer screening and diagnosis rates: A rapid review and meta-analysis. J. Med. Screen. 2022, 29, 9691413221101808. [Google Scholar] [CrossRef]
- Koca, B.; Yildirim, M. Delay in breast cancer diagnosis and its clinical consequences during the coronavirus disease pandemic. J. Surg. Oncol. 2021, 124, 261–267. [Google Scholar] [CrossRef]
- Ikeda, N.; Yamamoto, H.; Taketomi, A.; Hibi, T.; Ono, M.; Niikura, N.; Sugitani, I.; Isozumi, U.; Miyata, H.; Nagano, H.; et al. The impact of COVID-19 on surgical procedures in Japan: Analysis of data from the National Clinical Database. Surg. Today 2022, 52, 22–35. [Google Scholar] [CrossRef]
- Johnson, B.A.; Waddimba, A.C.; Ogola, G.O.; Fleshman, J.W.; Preskitt, J.T. A systematic review and meta-analysis of surgery delays and survival in breast, lung and colon cancers: Implication for surgical triage during the COVID-19 pandemic. Am. J. Surg. 2021, 222, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Mangone, L.; Mancuso, P.; Braghiroli, M.B.; Bisceglia, I.; Campari, C.; Caroli, S.; Marino, M.; Caldarella, A.; Giorgi Rossi, P.; Pinto, C. Prompt Resumption of Screening Programme Reduced the Impact of COVID-19 on New Breast Cancer Diagnoses in Northern Italy. Cancers 2022, 14, 3029. [Google Scholar] [CrossRef] [PubMed]
- Deliere, A.E.; Kuchta, K.M.; Pesce, C.E.; Kopkash, K.A.; Yao, K.A. Impact of Surgical Delay on Tumor Upstaging and Outcomes in Estrogen Receptor-Negative Ductal Carcinoma in Situ Patients. J. Am. Coll. Surg. 2022, 235, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Søreide, K.; Hallet, J.; Matthews, J.B.; Schnitzbauer, A.A.; Line, P.D.; Lai, P.B.S.; Otero, J.; Callegaro, D.; Warner, S.G.; Baxter, N.N.; et al. Immediate and long-term impact of the COVID-19 pandemic on delivery of surgical services. Br. J. Surg. 2020, 107, 1250–1261. [Google Scholar] [CrossRef]
- Kapp, K.A.; Cheng, A.L.; Bruton, C.M.; Ahmadiyeh, N. Impact of COVID-19 Restrictions on Stage of Breast Cancer at Presentation and Time to Treatment at an Urban Safety-Net Hospital. Ann. Surg. Oncol. 2022, 29, 6189–6196. [Google Scholar] [CrossRef] [PubMed]
- Gathani, T.; Clayton, G.; MacInnes, E.; Horgan, K. The COVID-19 pandemic and impact on breast cancer diagnoses: What happened in England in the first half of 2020. Br. J. Cancer 2021, 124, 710–712. [Google Scholar] [CrossRef]
- Bosch, X.; Montori-Palacin, E.; Martínez-Ferrer, R.; Aldea, A.; Moreno, P.; López-Soto, A. Time intervals in the care pathway to cancer diagnosis during the COVID-19 pandemic: A large retrospective study from a high-volume center. Int. J. Cancer 2023, 152, 384–395. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Meena, S.M.; Jame, A.; Aft, R.; Doreen, A.; Allison, K.H.; Anderson, B.; Burstein, H.J.; Chew, H.; Dang, C.; et al. Breast Cancer, Version 3.2022. NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 691–722. [Google Scholar] [CrossRef]
- Hyeda, A.; da Costa, É.S.M.; Kowalski, S.C. The trend and direct costs of screening and chemotherapy treatment of breast cancer in the new coronavirus pandemic: Total and interrupted time series study. BMC Health Serv. Res. 2022, 22, 1466. [Google Scholar] [CrossRef]
- Medas, F.; Ansaldo, G.L.; Avenia, N.; Basili, G.; Bononi, M.; Bove, A.; Carcoforo, P.; Casaril, A.; Cavallaro, G.; Conzo, G.; et al. Impact of the COVID-19 pandemic on surgery for thyroid cancer in Italy: Nationwide retrospective study. Br. J. Surg. 2021, 108, 166–167. [Google Scholar] [CrossRef] [PubMed]
Surgery | Phase 1 | Phase 2 | Total | p | |||
---|---|---|---|---|---|---|---|
n. | % | n. | % | n. | % | ||
Procedures | 203 | 214 | 417 | ||||
Quadrantectomy | 106 | 52.2 | 94 | 43.9 | 200 | 48.0 | 0.11 |
Single Mastectomy | 40 | 19.7 | 52 | 24.3 | 92 | 22.1 | 0.31 |
Double Mastectomy | 13 | 6.4 | 16 | 7.5 | 29 | 6.9 | 0.81 |
Others 1 | 44 | 21.7 | 52 | 24.3 | 96 | 23.0 | 0.96 |
Phase 1 (n = 75) | Phase 2 (n = 91) | Total | p | |
---|---|---|---|---|
Sex | 0.86 | |||
Female | 74 | 89 | 163 | |
Male | 1 | 2 | 3 | |
Age (years) | 62.4 ± 14.2 | 61.8 ± 14.6 | 62.1 ± 14.4 | 0.82 |
BMI (Kg/m2) | 26.3 ± 3.1 | 25.6 ± 3.4 | 26 ± 3.3 | 0.34 |
ASA | 0.62 | |||
I | 23 | 28 | 51 | |
II | 42 | 46 | 88 | |
III | 10 | 17 | 27 | |
Menopausal status | 0.79 | |||
Premenopausal | 29 | 37 | 66 | |
Postmenopausal | 46 | 54 | 100 | |
Tumour size (mm) | 20.5 ± 7.3 | 22.1 ± 8 | 21.5 ± 7.7 | 0.24 |
Histological type | 0.98 | |||
NST | 44 | 54 | 98 | |
Lobular | 13 | 16 | 29 | |
DCIS | 4 | 6 | 10 | |
Others | 13 | 16 | 29 | |
mucinous | 7 | 10 | 17 | |
ductal-lobular | 3 | 4 | 7 | |
clear-cell | 3 | 2 | 5 |
Phase 1 | Phase 2 | p | |||
---|---|---|---|---|---|
n. | % | n. | % | ||
OSNA procedures | 75 | 91 | |||
Negative | 40 | 53.3 | 35 | 38.5 | <0.001 |
Positives | 35 | 46.7 | 56 | 61.5 | <0.001 |
Metastasis 1 < 2 LNs | 18 | 24.0 | 16 | 17.6 | 0.95 |
Macrometastasis > 2 LNs | 17 | 22.7 | 40 | 44.0 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anedda, G.; Cappellacci, F.; Canu, G.L.; Farris, S.; Calò, P.G.; Dessena, M.; Medas, F. Axillary Treatment Management in Breast Cancer during COVID-19 Pandemic (Association between ACOSOG Z0011 Criteria and OSNA Test). J. Pers. Med. 2023, 13, 241. https://doi.org/10.3390/jpm13020241
Anedda G, Cappellacci F, Canu GL, Farris S, Calò PG, Dessena M, Medas F. Axillary Treatment Management in Breast Cancer during COVID-19 Pandemic (Association between ACOSOG Z0011 Criteria and OSNA Test). Journal of Personalized Medicine. 2023; 13(2):241. https://doi.org/10.3390/jpm13020241
Chicago/Turabian StyleAnedda, Giacomo, Federico Cappellacci, Gian Luigi Canu, Stefania Farris, Pietro Giorgio Calò, Massimo Dessena, and Fabio Medas. 2023. "Axillary Treatment Management in Breast Cancer during COVID-19 Pandemic (Association between ACOSOG Z0011 Criteria and OSNA Test)" Journal of Personalized Medicine 13, no. 2: 241. https://doi.org/10.3390/jpm13020241
APA StyleAnedda, G., Cappellacci, F., Canu, G. L., Farris, S., Calò, P. G., Dessena, M., & Medas, F. (2023). Axillary Treatment Management in Breast Cancer during COVID-19 Pandemic (Association between ACOSOG Z0011 Criteria and OSNA Test). Journal of Personalized Medicine, 13(2), 241. https://doi.org/10.3390/jpm13020241