ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical and Transcriptomic Data Acquisition and Processing
2.2. Statistical Analysis
2.3. Gene Set Enrichment Analysis (GSEA)
2.4. Protein–Protein Interaction (PPI) Network Construction
2.5. Immune Infiltration Analysis
3. Results
3.1. Low ANO4 Expression Is Correlated with Poor Clinicopathological Features in Non-Metastasized ccRCC
3.2. Low ANO4 Expression Is Associated with Poor OS, PFI, and DSS
3.3. The Independent Prognostic Value of ANO4 Expression Evaluated by Univariate and Multivariate Cox Logistic Regression Analysis
3.4. ANO4-Related Signaling Pathways Based on GSEA
3.5. The PPI Network of ANO4 Based on String Analysis
3.6. The Correlation between ANO4 Expression and Tumor Immune Infiltrate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Facts & Figures 2022. Am. Cancer Soc. 2022, 80. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (accessed on 1 October 2022).
- Petejova, N.; Martínek, A. Renal cell carcinoma: Review of etiology, pathophysiology and risk factors. Biomed. Pap. 2016, 160, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Riveros, C.; Ranganathan, S.; Xu, J.; Chang, C.; Kaushik, D.; Morgan, M.; Miles, B.J.; Muhammad, T.; Anis, M.; Aghazadeh, M.; et al. Comparative real-world survival outcomes of metastatic papillary and clear cell renal cell carcinoma treated with immunotherapy, targeted therapy, and combination therapy. Urol. Oncol. Semin. Orig. Investig. 2023. [Google Scholar] [CrossRef] [PubMed]
- Baldewijns, M.M.L.; van Vlodrop, I.J.H.; Schouten, L.J.; Soetekouw, P.M.M.B.; de Bruïne, A.P.; van Engeland, M. Genetics and epigenetics of renal cell cancer. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2008, 1785, 133–155. [Google Scholar] [CrossRef] [PubMed]
- Kase, A.M.; George, D.J.; Ramalingam, S. Clear Cell Renal Cell Carcinoma: From Biology to Treatment. Cancers 2023, 15, 665. [Google Scholar] [CrossRef]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef]
- Kovacs, G.; Akhtar, M.; Beckwith, B.J.; Bugert, P.; Cooper, C.S.; Delahunt, B.; Eble, J.N.; Fleming, S.; Ljungberg, B.; Medeiros, L.J.; et al. The Heidelberg classification of renal cell tumours. J. Pathol. 1997, 183, 131–133. [Google Scholar] [CrossRef]
- Shuch, B.; Amin, A.; Armstrong, A.J.; Eble, J.N.; Ficarra, V.; Lopez-Beltran, A.; Martignoni, G.; Rini, B.I.; Kutikov, A. Understanding Pathologic Variants of Renal Cell Carcinoma: Distilling Therapeutic Opportunities from Biologic Complexity. Eur. Urol. 2015, 67, 85–97. [Google Scholar] [CrossRef]
- John, A.; Spain, L.; Hamid, A.A. Navigating the Current Landscape of Non-Clear Cell Renal Cell Carcinoma: A Review of the Literature. Curr. Oncol. 2023, 30, 923–937. [Google Scholar] [CrossRef]
- Hahn, A.W.; Lebenthal, J.; Genovese, G.; Sircar, K.; Tannir, N.M.; Msaouel, P. The significance of sarcomatoid and rhabdoid dedifferentiation in renal cell carcinoma. Cancer Treat. Res. Commun. 2022, 33, 100640. [Google Scholar] [CrossRef]
- Nabi, S.; Kessler, E.R.; Bernard, B.; Flaig, T.W.; Lam, E.T. Renal cell carcinoma: A review of biology and pathophysiology. F1000Research 2018, 7, 307. [Google Scholar] [CrossRef] [Green Version]
- Brugarolas, J. Molecular Genetics of Clear-Cell Renal Cell Carcinoma. J. Clin. Oncol. 2014, 32, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.J.; Dhanasekaran, S.M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; da Veiga Leprevost, F.; Reva, B.; Lih, T.-S.M.; Chang, H.-Y.; et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019, 179, 964–983.e31. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, A.A.; Pham, C.G.; Hsieh, J.J. A clear picture of renal cell carcinoma. Nat. Genet. 2013, 45, 849–850. [Google Scholar] [CrossRef] [PubMed]
- Kapur, P.; Peña-Llopis, S.; Christie, A.; Zhrebker, L.; Pavía-Jiménez, A.; Rathmell, W.K.; Xie, X.-J.; Brugarolas, J. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: A retrospective analysis with independent validation. Lancet Oncol. 2013, 14, 159–167. [Google Scholar] [CrossRef]
- Blanco, A.I.; Teh, B.S.; Amato, R.J. Role of Radiation Therapy in the Management of Renal Cell Cancer. Cancers 2011, 3, 4010–4023. [Google Scholar] [CrossRef]
- Diamond, E.; Molina, A.; Carbonaro, M.; Akhtar, N.; Giannakakou, P.; Tagawa, S.; Nanus, D. Cytotoxic chemotherapy in the treatment of advanced renal cell carcinoma in the era of targeted therapy. Crit. Rev. Oncol. 2015, 96, 518–526. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Le, V.H.; Oyama, T.; Ricketts, C.J.; Ho, T.H.; Cheng, E.H. Chromosome 3p Loss-Orchestrated VHL, HIF, and Epigenetic Deregulation in Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2018, 36, 3533–3539. [Google Scholar] [CrossRef]
- Linehan, W.M.; Ricketts, C.J. The Cancer Genome Atlas of renal cell carcinoma: Findings and clinical implications. Nat. Rev. Urol. 2019, 16, 539–552. [Google Scholar] [CrossRef]
- Benarroch, E.E. Anoctamins (TMEM16 proteins). Neurology 2017, 89, 722–729. [Google Scholar] [CrossRef]
- Picollo, A.; Malvezzi, M.; Accardi, A. TMEM16 Proteins: Unknown Structure and Confusing Functions. J. Mol. Biol. 2015, 427, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Brunner, J.D.; Lim, N.K.; Schenck, S.; Duerst, A.; Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 2014, 516, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Pedemonte, N.; Galietta, L.J. Structure and Function of TMEM16 Proteins (Anoctamins). Physiol. Rev. 2014, 94, 419–459. [Google Scholar] [CrossRef] [PubMed]
- Le, S.C.; Liang, P.; Lowry, A.J.; Yang, H. Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases. Front. Physiol. 2021, 12, 787773. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Camp, R.L.; Dolled-Filhart, M.; Rimm, D.L. X-Tile: A New Bio-Informatics Tool for Biomarker Assessment and Outcome-Based Cut-Point Optimization. Clin. Cancer Res. 2004, 10, 7252–7259. [Google Scholar] [CrossRef]
- Tang, F.; Lu, Z.; He, C.; Zhang, H.; Wu, W.; He, Z. 53 years old is a reasonable cut-off value to define young and old patients in clear cell renal cell carcinoma: A study based on TCGA and SEER database. BMC Cancer 2021, 21, 638. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613. [Google Scholar] [CrossRef]
- Aran, D.; Hu, Z.; Butte, A.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017, 18, 220. [Google Scholar] [CrossRef]
- Duran, C.; Hartzell, H.C. Physiological roles and diseases of tmem16/anoctamin proteins: Are they all chloride channels? Acta Pharmacol. Sin. 2011, 32, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.D.; Cho, H.; Koo, J.Y.; Tak, M.H.; Cho, Y.; Shim, W.-S.; Park, S.P.; Lee, J.; Lee, B.; Kim, B.-M.; et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008, 455, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Duran, C.; Qu, Z.; Osunkoya, A.O.; Cui, Y.; Hartzell, H.C. ANOs 3–7 in the anoctamin/Tmem16 Cl−Channel family are intracellular proteins. Am. J. Physiol.-Cell Physiol. 2011, 302, C482–C493. [Google Scholar] [CrossRef] [PubMed]
- Oh, U.; Jung, J. Cellular functions of TMEM16/anoctamin. Pflügers Arch.—Eur. J. Physiol. 2016, 468, 443–453. [Google Scholar] [CrossRef]
- Cho, H.; Oh, U. Anoctamin 1 Mediates Thermal Pain as a Heat Sensor. Curr. Neuropharmacol. 2013, 11, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, H.; Wu, M.; Yang, H.; Kudo, M.; Peters, C.J.; Woodruff, P.G.; Solberg, O.D.; Donne, M.L.; Huang, X.; et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. USA 2012, 109, 16354–16359. [Google Scholar] [CrossRef]
- Sun, W.; Guo, S.; Li, Y.; Li, J.; Liu, C.; Chen, Y.; Wang, X.; Tan, Y.; Tian, H.; Wang, C.; et al. Anoctamin 1 controls bone resorption by coupling Cl−Channel activation with RANKL-RANK signaling transduction. Nat. Commun. 2022, 13, 2899. [Google Scholar] [CrossRef]
- Hyuga, S.; Parry, R.C.; Danielsson, J.; Vink, J.; Fu, X.W.; Wu, A.; Dan, W.; Yim, P.D.; Gallos, G. Anoctamin 1 antagonism potentiates conventional tocolytic-mediated relaxation of pregnant human uterine smooth muscle. J. Physiol. Sci. 2021, 71, 7. [Google Scholar] [CrossRef] [PubMed]
- Wanitchakool, P.; Wolf, L.; Koehl, G.E.; Sirianant, L.; Schreiber, R.; Kulkarni, S.; Duvvuri, U.; Kunzelmann, K. Role of anoctamins in cancer and apoptosis. Philos. Trans. R. Soc. B: Biol. Sci. 2014, 369, 20130096. [Google Scholar] [CrossRef]
- Stephan, A.B.; Shum, E.Y.; Hirsh, S.; Cygnar, K.D.; Reisert, J.; Zhao, H. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. USA 2009, 106, 11776–11781. [Google Scholar] [CrossRef]
- Mizuta, K.; Tsutsumi, S.; Inoue, H.; Sakamoto, Y.; Miyatake, K.; Miyawaki, K.; Noji, S.; Kamata, N.; Itakura, M. Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem. Biophys. Res. Commun. 2007, 357, 126–132. [Google Scholar] [CrossRef]
- Fernández, D.I.; Kuijpers, M.J.E.; Heemskerk, J.W.M. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets 2020, 32, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; Fujii, T.; Imao, T.; Ishihara, K.; Kuba, H.; Nagata, S. Calcium-dependent Phospholipid Scramblase Activity of TMEM16 Protein Family Members *. J. Biol. Chem. 2013, 288, 13305–13316. [Google Scholar] [CrossRef] [PubMed]
- Dixit, R.; Kemp, C.; Kulich, S.; Seethala, R.; Chiosea, S.; Ling, S.; Ha, P.K.; Duvvuri, U. TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation. Sci. Rep. 2015, 5, 16657. [Google Scholar] [CrossRef] [PubMed]
- Duvvuri, U.; Shiwarski, D.J.; Xiao, D.; Bertrand, C.; Huang, X.; Edinger, R.S.; Rock, J.R.; Harfe, B.D.; Henson, B.J.; Kunzelmann, K.; et al. TMEM16A Induces MAPK and Contributes Directly to Tumorigenesis and Cancer Progression. Cancer Res. 2012, 72, 3270–3281. [Google Scholar] [CrossRef]
- Ayoub, C.; Wasylyk, C.; Li, Y.; Thomas, E.; Marisa, L.; Robé, A.; Roux, M.; Abecassis, J.; de Reyniès, A.; Wasylyk, B. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br. J. Cancer 2010, 103, 715–726. [Google Scholar] [CrossRef]
- Ruiz, C.; Martins, J.R.; Rudin, F.; Schneider, S.; Dietsche, T.; Fischer, C.A.; Tornillo, L.; Terracciano, L.M.; Schreiber, R.; Bubendorf, L.; et al. Enhanced Expression of ANO1 in Head and Neck Squamous Cell Carcinoma Causes Cell Migration and Correlates with Poor Prognosis. PLoS ONE 2012, 7, e43265. [Google Scholar] [CrossRef]
- Jia, L.; Liu, W.; Guan, L.; Lu, M.; Wang, K. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer. PLoS ONE 2015, 10, e0136584. [Google Scholar] [CrossRef]
- Wu, H.; Guan, S.; Sun, M.; Yu, Z.; Zhao, L.; He, M.; Zhao, H.; Yao, W.; Wang, E.; Jin, F.; et al. Ano1/TMEM16A Overexpression Is Associated with Good Prognosis in PR-Positive or HER2-Negative Breast Cancer Patients following Tamoxifen Treatment. PLoS ONE 2015, 10, e0126128. [Google Scholar] [CrossRef]
- Britschgi, A.; Bill, A.; Brinkhaus, H.; Rothwell, C.; Clay, I.; Duss, S.; Rebhan, M.; Raman, P.; Guy, C.T.; Wetzel, K.; et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc. Natl. Acad. Sci. USA 2013, 110, E1026–E1034. [Google Scholar] [CrossRef]
- Sui, Y.; Sun, M.; Wu, F.; Yang, L.; Di, W.; Zhang, G.; Zhong, L.; Ma, Z.; Zheng, J.; Fang, X.; et al. Inhibition of TMEM16A Expression Suppresses Growth and Invasion in Human Colorectal Cancer Cells. PLoS ONE 2014, 9, e115443. [Google Scholar] [CrossRef]
- Sauter, D.R.P.; Novak, I.; Pedersen, S.F.; Larsen, E.H.; Hoffmann, E.K. ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflügers Arch.-Eur. J. Physiol. 2015, 467, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Akpalo, H.; Lange, C.; Zustin, J. Discovered on gastrointestinal stromal tumour 1 (DOG1): A useful immunohistochemical marker for diagnosing chondroblastoma. Histopathology 2012, 60, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Chênevert, J.; Duvvuri, U.; Chiosea, S.; Dacic, S.; Cieply, K.; Kim, J.; Shiwarski, D.; Seethala, R.R. DOG1: A novel marker of salivary acinar and intercalated duct differentiation. Mod. Pathol. 2012, 25, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, M.; Marimuthu, A.; Kishore, C.J.H.; Peri, S.; Keerthikumar, S.; Prasad, T.S.K.; Mahmood, R.; Rao, S.; Ranganathan, P.; Sanjeeviah, R.C.; et al. Genomewide mRNA profiling of esophageal squamous cell carcinoma for identification of cancer biomarkers. Cancer Biol. Ther. 2009, 8, 36–46. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Shang, L.; Jiang, Y.-Y.; Hao, J.-J.; Zhang, Y.; Zhang, T.-T.; Lin, D.-C.; Liu, S.-G.; Wang, B.-S.; Gong, T.; et al. Consistent and Differential Genetic Aberrations between Esophageal Dysplasia and Squamous Cell Carcinoma Detected By Array Comparative Genomic Hybridization. Clin. Cancer Res. 2013, 19, 5867–5878. [Google Scholar] [CrossRef]
- Huang, X.; Gollin, S.M.; Raja, S.; Godfrey, T.E. High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells. Proc. Natl. Acad. Sci. USA 2002, 99, 11369–11374. [Google Scholar] [CrossRef]
- Aloi, M.; Lionetti, P.; Barabino, A.; Guariso, G.; Costa, S.; Fontana, M.; Romano, C.; Lombardi, G.; Miele, E.; Alvisi, P.; et al. Phenotype and Disease Course of Early-onset Pediatric Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2014, 20, 597–605. [Google Scholar] [CrossRef]
- Sah, S.P.; McCluggage, W.G. DOG1 immunoreactivity in uterine leiomyosarcomas. J. Clin. Pathol. 2012, 66, 40–43. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Ren, Y.; Kang, L.; Zhang, L. Transmembrane protein with unknown function 16A overexpression promotes glioma formation through the nuclear factor-κB signaling pathway. Mol. Med. Rep. 2014, 9, 1068–1074. [Google Scholar] [CrossRef]
- Liu, W.; Lu, M.; Liu, B.; Huang, Y.; Wang, K. Inhibition of Ca2+-activated Cl− channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett. 2012, 326, 41–51. [Google Scholar] [CrossRef]
- Cuddapah, V.A.; Sontheimer, H. Ion channels and tranporters in cancer. 2. Ion channels and the control of cancer cell migration. Am. J. Physiol. Physiol. 2011, 301, C541–C549. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.R.; Lopez, M.C.; Baker, H.; Harfe, B.D. Identification of genes expressed in the mouse limb using a novel ZPA microarray approach. Gene Expr. Patterns 2007, 8, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Youn, H.Y.; Choi, J.; Baek, S.K.; Kwon, S.Y.; Eun, B.K.; Park, J.-Y.; Oh, K.H. Anoctamin-1 affects the migration and invasion of anaplastic thyroid carcinoma cells. Anim. Cells Syst. 2019, 23, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Fukami, T.; Shiozaki, A.; Kosuga, T.; Kudou, M.; Shimizu, H.; Ohashi, T.; Arita, T.; Konishi, H.; Komatsu, S.; Kubota, T.; et al. Anoctamin 5 regulates the cell cycle and affects prognosis in gastric cancer. World J. Gastroenterol. 2022, 28, 4649–4667. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Lu, Q.; Ren, C.; Li, H.; Zeng, F.; Tian, X.; Chen, H. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging 2021, 13, 17316–17327. [Google Scholar] [CrossRef]
- Song, H.-Y.; Zhou, L.; Hou, X.-F.; Lian, H. Anoctamin 5 regulates cell proliferation and migration in pancreatic cancer. Int. J. Clin. Exp. Pathol. 2019, 12, 4263–4270. [Google Scholar]
- Marx, A.; Koopmann, L.; Höflmayer, D.; Büscheck, F.; Hube-Magg, C.; Steurer, S.; Eichenauer, T.; Clauditz, T.S.; Wilczak, W.; Simon, R.; et al. Reduced anoctamin 7 (ANO7) expression is a strong and independent predictor of poor prognosis in prostate cancer. Cancer Biol. Med. 2021, 18, 245–255. [Google Scholar] [CrossRef]
- Reichhart, N.; Schöberl, S.; Keckeis, S.; Alfaar, A.S.; Roubeix, C.; Cordes, M.; Crespo-Garcia, S.; Haeckel, A.; Kociok, N.; Föckler, R.; et al. Anoctamin-4 is a bona fide Ca2+-dependent non-selective cation channel. Sci. Rep. 2019, 9, 2257. [Google Scholar] [CrossRef]
- Hendrickx, D.A.E.; van Scheppingen, J.; van der Poel, M.; Bossers, K.; Schuurman, K.G.; van Eden, C.G.; Hol, E.M.; Hamann, J.; Huitinga, I. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions. Front. Immunol. 2017, 8, 1810. [Google Scholar] [CrossRef]
- Sherva, R.; Tripodis, Y.; Bennett, D.A.; Chibnik, L.B.; Crane, P.K.; de Jager, P.L.; Farrer, L.A.; Saykin, A.J.; Shulman, J.M.; Naj, A. Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimers Dement 2014, 10, 45–52. [Google Scholar] [CrossRef]
- Webb, B.T.; Guo, A.-Y.; Maher, B.S.; Zhao, Z.; van den Oord, E.J.; Kendler, K.S.; Riley, B.P.; Gillespie, N.A.; Prescott, C.A.; Middeldorp, C.M.; et al. Meta-analyses of genome-wide linkage scans of anxiety-related phenotypes. Eur. J. Hum. Genet. 2012, 20, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, A.; Sanna, S.; Uda, M.; Deiana, B.; Usala, G.; Busonero, F.; Maschio, A.; Scally, M.; Patriciu, N.; Chen, W.-M.; et al. Genome-wide association scan for five major dimensions of personality. Mol. Psychiatry 2008, 15, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Athanasiu, L.; Mattingsdal, M.; Kähler, A.K.; Brown, A.; Gustafsson, O.; Agartz, I.; Giegling, I.; Muglia, P.; Cichon, S.; Rietschel, M.; et al. Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. J. Psychiatr. Res. 2010, 44, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Leitzke, S.; Seidel, J.; Ahrens, B.; Schreiber, R.; Kunzelmann, K.; Sperrhacke, M.; Bhakdi, S.; Reiss, K. Influence of Anoctamin-4 and-9 on ADAM10 and ADAM17 Sheddase Function. Membranes 2022, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Maniero, C.; Scudieri, P.; Shaikh, L.H.; Zhao, W.; Gurnell, M.; Galietta, L.J.; Brown, M.J. ANO4 (Anoctamin 4) Is a Novel Marker of Zona Glomerulosa That Regulates Stimulated Aldosterone Secretion. Hypertension 2019, 74, 1152–1159. [Google Scholar] [CrossRef]
- Maniero, C.; Zhou, J.; Shaikh, L.H.; Azizan, E.A.B.; McFarlane, I.; Neogi, S.; Scudieri, P.; Galietta, L.J.; Brown, M.J. Role of ANO4 in regulation of aldosterone secretion in the zona glomerulosa of the human adrenal gland. Lancet 2015, 385, S62. [Google Scholar] [CrossRef]
Characteristic | Data |
---|---|
Age | 61 (51–71) |
Gender | |
Male | 275 (65.2) |
Female | 147 (34.8) |
Stage | |
1 | 243 (57.6) |
2 | 54 (12.8) |
3 | 121 (28.7) |
4 | 4 (0.9) |
Grade | |
1 | 10 (2.4) |
2 | 204 (48.3) |
3 | 162 (38.4) |
4 | 39 (9.2) |
Unknown | 7 (1.7) |
pT | |
T1 | 245 (58.1) |
T2 | 55 (13.0) |
T3 | 119 (28.3) |
T4 | 3 (0.7) |
pN | |
N0 | 200 (47.4) |
N1 | 10 (2.4) |
NX | 212 (50.2) |
Characteristics | Low Expression (n = 126) | High Expression (n = 296) | χ2 | p-Value |
---|---|---|---|---|
Age | ||||
≤ 53 | 30 (7.1) | 100 (23.7) | 4.125 | 0.042 |
> 53 | 96 (22.7) | 196 (46.4) | ||
Gender | ||||
Male | 95 (22.5) | 180 (42.7) | 8.283 | 0.004 |
Female | 31 (7.3) | 116 (27.5) | ||
Grade | ||||
G1 + G2 | 55 (13.3) | 159 (38.3) | 3.682 | 0.055 |
G3 + G4 | 69 (16.6) | 132 (31.8) | ||
Stage | ||||
1 + 2 | 77 (18.2) | 220 (52.1) | 7.402 | 0.007 |
3 + 4 | 49 (11.6) | 76 (18.0) | ||
pT stage | ||||
T1 + T2 | 79 (18.7) | 221 (52.4) | 6.155 | 0.013 |
T3 + T4 | 47 (11.1) | 75 (17.8) | ||
pN stage | ||||
N0 | 65 (15.4) | 135 (32.0) | 1.267 | 0.260 |
N1 + NX | 61 (14.5) | 161 (38.2) |
Covariates * | Univariate Cox Logistic Regression | Multivariate Cox Logistic Regression | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
OS | ||||||
Age (≤53 vs. >53) | 0.418 | 0.225–0.686 | 0.001 | 0.510 | 0.305–0.852 | 0.010 |
Gender (Female vs. Male) | 1.111 | 0.754–1.636 | 0.596 | 1.116 | 0.738–1.688 | 0.602 |
Grade (G1 + G2 vs. G3 + G4) | 0.559 | 0.378–0.827 | 0.004 | 0.689 | 0.453–1.048 | 0.082 |
Stage (1 + 2 vs. 3 + 4) | 0.388 | 0.266–0.566 | <0.001 | 0.596 | 0.078–4.529 | 0.617 |
pT (T1 + T2 vs. T3 + T4) | 0.386 | 0.265–0.564 | <0.001 | 0.891 | 0.116–6.870 | 0.912 |
pN (N0 vs. N1 + NX) | 1.198 | 0.821–1.749 | 0.349 | 1.090 | 0.738–1.610 | 0.665 |
ANO4 expression (Low vs. High) | 2.099 | 1.434–3.073 | <0.001 | 1.686 | 1.120–2.540 | 0.012 |
PFI | ||||||
Age (≤53 vs. >53) | 0.588 | 0.360–0.960 | 0.034 | 0.655 | 0.388–1.107 | 0.114 |
Gender (Female vs. Male) | 0.621 | 0.388–0.992 | 0.046 | 0.627 | 0.381–1.030 | 0.065 |
Grade (G1 + G2 vs. G3 + G4) | 0.444 | 0.284–0.693 | <0.001 | 0.628 | 0.392–1.007 | 0.054 |
Stage (1 + 2 vs. 3 + 4) | 0.249 | 0.163–0.379 | <0.001 | 0.129 | 0.092–0.579 | 0.008 |
pT (T1 + T2 vs. T3 + T4) | 0.264 | 0.174–0.402 | <0.001 | 2.472 | 0.545–11.215 | 0.214 |
pN (N0 vs. N1 + NX) | 1.112 | 0.733–1.687 | 0.617 | 1.117 | 0.727–1.718 | 0.613 |
ANO4 expression (Low vs. High) | 2.521 | 1.654–3.840 | <0.001 | 1.727 | 1.103–2.704 | 0.017 |
DSS | ||||||
Age (≤53 vs. >53) | 0.097 | 0.248–0.995 | 0.048 | 0.681 | 0.325–1.423 | 0.307 |
Gender (Female vs. Male) | 0.729 | 0.392–1.357 | 0.319 | 0.839 | 0.436–1.615 | 0.599 |
Grade (G1 + G2 vs. G3 + G4) | 0.328 | 0.174–0.619 | 0.001 | 0.519 | 0.260–1.035 | 0.063 |
Stage (1 + 2 vs. 3 + 4) | 0.201 | 0.112–0.359 | <0.001 | 0.217 | 0.026–1.827 | 0.160 |
pT (T1 + T2 vs. T3 + T4) | 0.210 | 0.118–0.374 | <0.001 | 1.415 | 0.166–12.101 | 0.751 |
pN (N0 vs. N1 + NX) | 1.297 | 0.738–2.278 | 0.366 | 1.146 | 0.639–2.005 | 0.648 |
ANO4 expression (Low vs. High) | 3.894 | 2.201–6.889 | <0.001 | 2.688 | 1.465–4.934 | 0.001 |
DFI | ||||||
Age (≤53 vs. >53) | 1.494 | 0.534–4.177 | 0.444 | 1.933 | 0.619–6.024 | 0.257 |
Gender (Female vs. Male) | 0.485 | 0.154–1.526 | 0.216 | 0.650 | 0.183–2.307 | 0.505 |
Grade (G1 + G2 vs. G3 + G4) | 0.552 | 0.182–1.674 | 0.293 | 0.984 | 0.277–3.496 | 0.980 |
Stage (1 + 2 vs. 3 + 4) | 0.311 | 0.112–0.865 | 0.025 | 0.258 | 0.079–0.848 | 0.026 |
pT (T1 + T2 vs. T3 + T4) | 0.311 | 0.112–0.865 | 0.025 | - | – | - |
pN (N0 vs. N1 + NX) | 0.768 | 0.271–2.177 | 0.620 | 1.102 | 0.346–3.506 | 0.869 |
ANO4 expression (Low vs. High) | 1.438 | 0.482–4.293 | 0.515 | 1.543 | 0.471–5.059 | 0.474 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Sharie, A.H.; Al Zu’bi, Y.O.; El-Elimat, T.; Al-Kammash, K.; Abu Lil, A.; Isawi, I.H.; Al Sharie, S.; Abu Mousa, B.M.; Al Malkawi, A.A.; Alali, F.Q. ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma. J. Pers. Med. 2023, 13, 295. https://doi.org/10.3390/jpm13020295
Al Sharie AH, Al Zu’bi YO, El-Elimat T, Al-Kammash K, Abu Lil A, Isawi IH, Al Sharie S, Abu Mousa BM, Al Malkawi AA, Alali FQ. ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma. Journal of Personalized Medicine. 2023; 13(2):295. https://doi.org/10.3390/jpm13020295
Chicago/Turabian StyleAl Sharie, Ahmed H., Yazan O. Al Zu’bi, Tamam El-Elimat, Kinda Al-Kammash, Alma Abu Lil, Israa H. Isawi, Sarah Al Sharie, Balqis M. Abu Mousa, Abubaker A. Al Malkawi, and Feras Q. Alali. 2023. "ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma" Journal of Personalized Medicine 13, no. 2: 295. https://doi.org/10.3390/jpm13020295
APA StyleAl Sharie, A. H., Al Zu’bi, Y. O., El-Elimat, T., Al-Kammash, K., Abu Lil, A., Isawi, I. H., Al Sharie, S., Abu Mousa, B. M., Al Malkawi, A. A., & Alali, F. Q. (2023). ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma. Journal of Personalized Medicine, 13(2), 295. https://doi.org/10.3390/jpm13020295