RETRACTED: Bidirectional Neural Network Model for Glaucoma Progression Prediction
Abstract
:1. Introduction
- This is the first study to use the Bi-RM model to detect progressive visual fields in glaucoma progression.
- The validation of the model performance in association with LR and TM models.
- The proposed Bi-RM depicted a higher predictive precision than LR and TM in all areas of progressive glaucoma prediction.
- Additionally, the Bi-RM model outperformed the other two models in the middle eye regions. These outcomes can be medically imperative to preserve the middle eye’s visual function.
2. Materials and Methods
2.1. Optometry of the Eye
2.2. Artificial Neural Network
Integrated TM Bi-RM
- are the gates.
- sigmoid formula.
2.3. Process
2.4. Purpose of the Activity
- m is the number of eyes.
3. Results of the Experiment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Resnikoff, S.; Pascolini, D.; Etya’Ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. World Health Organ. 2004, 82, 844–851. [Google Scholar] [PubMed]
- Hosni Mahmoud, H.A. Diabetic Retinopathy Progression Prediction Using a Deep Learning Model. Axioms 2022, 11, 614. [Google Scholar] [CrossRef]
- Henson, D.B.; Chaudry, S.; Artes, P.H.; Faragher, E.B.; Ansons, A. Response variability in the visual field: Comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Investig. Ophthalmic. Vis. Sci. 2000, 41, 417–421. [Google Scholar]
- Wang, M.; Shen, L.Q.; Pasquale, L.R.; Petrakos, P.; Formica, S.; Boland, M.V.; Wellik, S.R.; De Moraes, C.G.; Myers, J.S.; Saeedi, O.; et al. An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis. Investig. Opthalmol. Vis. Sci. 2019, 60, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Araie, M.; Asaoka, R. A new approach to measure visual field progression in glaucoma patients using variational Bayes linear regression. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8386–8392. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Nie, F.; Chang, X.; Nie, L.; Zhang, H.; Yang, Y. Rank-constrained spectral clustering with flexible embedding. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 6073–6082. [Google Scholar] [CrossRef]
- Berchuck, S.I.; Mukherjee, S.; Medeiros, F.A. Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder. Sci. Rep. 2019, 9, 18113. [Google Scholar] [CrossRef]
- Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent Advances in Recurrent Neural Networks. arXiv 2017, arXiv:1801.01078. [Google Scholar]
- Liu, S.; Yang, N.; Li, M.; Zhou, M. A Recursive Recurrent Neural Network for Statistical Machine Translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD, USA, 23–24 June 2014; pp. 1491–1500. [Google Scholar]
- Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Aqeel, A.; Hassan, A.; Khan, M.A.; Rehman, S.; Tariq, U.; Kadry, S.; Majumdar, A.; Thinnukool, O. A Long Short-Term Memory Biomarker-Based Prediction Framework for Alzheimer’s Disease. Sensors 2022, 22, 1475. [Google Scholar] [CrossRef]
- Dixit, A.; Yohannan, J.; Boland, M.V. Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data. Ophthalmology 2021, 128, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Lynn, H.M.; Pan, S.B.; Kim, P. A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks. IEEE Access 2019, 7, 145395–145405. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Khandelwal, S.; Lecouteux, B.; Besacier, L. Comparing Gru and Tm for Automatic Speech Recognition. 2016. Available online: https://hal.science/hal-01633254 (accessed on 2 February 2023).
- Li, X.; Ma, X.; Xiao, F.; Xiao, C.; Wang, F.; Zhang, S. Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-RM) network and Sparrow Search Algorithm (SSA). J. Pet. Sci. Eng. 2022, 208, 109309. [Google Scholar] [CrossRef]
- Darmawahyuni, A.; Nurmaini, S.; Rachmatullah, M.N.; Firdaus, F.; Tutuko, B. Unidirectional-bidirectional recurrent networks for cardiac disorders classification. TELKOMNIKA (Telecommun. Comput. Electron. Control.) 2021, 19, 902–910. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Pascanu, R.; Gulcehre, C.; Cho, K.; Bengio, Y. How to Construct Deep Recurrent Neural Networks. arXiv 2013, arXiv:1312.6026. [Google Scholar]
- Garway-Heath, D.F.; Poinoosawmy, D.; Fitzke, F.W.; Hitchings, R.A. Mapping the Visual Field to the Optic Disc in Normal Tension Glaucoma Eyes. Ophthalmology 2000, 107, 1809–1815. [Google Scholar] [CrossRef]
- Asaoka, R.; Murata, H.; Iise, A.; Araie, M. Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology 2016, 123, 1974–1980. [Google Scholar] [CrossRef] [PubMed]
- Elze, T.; Pasquale, L.R.; Shen, L.Q.; Chen, T.C.; Wiggs, J.L.; Bex, P.J. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J. R. Soc. Interface 2015, 12, 20141118. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Elze, T.; Bex, P.J.; Wiggs, J.L.; Pasquale, L.R.; Shen, L.Q. Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Cases from a Glaucoma Clinic. Curr. Eye Res. 2017, 42, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Kiwaki, T.; Zheng, Y.; Sugiura, H.; Asaoka, R.; Murata, H.; Lemij, H.; Yamanishi, K. Detection of longitudinal visual field progression in glaucoma using machine learning. Am. J. Ophthalmol. 2018, 193, 71–79. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Johnson, C.A.; Nelson-Quigg, J.M. A Prospective Three-year Study of Response Properties of Normal Subjects and Cases during Automated Perimetry. Ophthalmology 1993, 100, 269–274. [Google Scholar] [CrossRef]
- Katz, J.; Sommer, A.; Witt, K. Reliability of Visual Field Results over Repeated Testing. Ophthalmology 1991, 98, 70–75. [Google Scholar] [CrossRef]
- Murata, H.; Hirasawa, H.; Aoyama, Y.; Sugisaki, K.; Araie, M.; Mayama, C.; Aihara, M.; Asaoka, R. Identifying Areas of the Visual Field Important for Quality of Life in Cases with Glaucoma. PLoS ONE 2013, 8, e58695. [Google Scholar] [CrossRef]
- Abe, R.Y.; Diniz-Filho, A.; Costa, V.P.; Gracitelli, C.P.; Baig, S.; Medeiros, F.A. The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Cases with Glaucoma. Ophthalmology 2016, 123, 552–557. [Google Scholar] [CrossRef]
- Rao, H.L.; Yadav, R.K.; Begum, V.U.; Addepalli, U.K.; Choudhari, N.S.; Senthil, S.; Garudadri, C.S. Role of Visual Field Reliability Indices in Ruling Out Glaucoma. JAMA Ophthalmol. 2015, 133, 40–44. [Google Scholar] [CrossRef]
- Raman, P.; Khy Ching, Y.; Sivagurunathan, P.D.; Ramli, N. The Association Between Visual Field Reliability Indices and Cognitive Impairment in Glaucoma Cases. J. Glaucoma 2019, 28, 685–690. [Google Scholar] [CrossRef] [PubMed]
Features | The Whole Dataset | Training Subset | Testing Subset |
---|---|---|---|
Count of cases | 5595 (3593) | 5313 (3311) | 1161 (1161) |
Average age | 53.95 | 53.11 | 53.13 |
Standard deviation of age | ±15.03 | ±15.99 | ±15.95 |
Mean first progressive visual field (dB) | −5.93 ± 5.11 | −5.66 ± 5.15 | −5.19 ± 5.33 |
Average progression years | 5.53 ± 1.65 | 5.96 ± 1.96 | 3.51 ± 1.93 |
Average number of progressive visual field | 6.36 ± 3.11 | 6.56 ± 3.33 | 5.99 ± 0.00 |
Mean deviation 5.9 dB | 3315 | 3596 | 919 |
−5 dB > Mean deviation ≥ −11 dB | 1116 | 991 | 135 |
−11 dB > Mean deviation | 1053 | 935 | 109 |
Data augmentation | |||
Total number of progressive diagnoses | 9313 | 6051 | 1161 |
Average prediction time years | 0.93 ± 0.63 | 0.91 ± 0.61 | 1.00 ± 0.93 |
Mean deviation ≥ −5 dB | 5569 | 3651 | 919 |
−5 dB > Mean deviation ≥ −11 dB | 1366 | 1131 | 135 |
−11 dB < Mean deviation | 1156 | 1059 | 109 |
Cases | Count of Eyes |
---|---|
Males (%) | 47.24% |
Outcome | |
Glaucoma | 460 |
Starting acute deviation glaucoma | 606 |
Pseudo deviation glaucoma | 24 |
Initial deviation closure glaucoma | 76 |
Subordinate glaucoma | 90 |
Non-glaucoma | 222 |
LR | TM | Bi-RM | Analysis of Variance p-Value | Bonferroni Post Hoc p-Value | ||||
---|---|---|---|---|---|---|---|---|
LR vs. Bi-RM | TM vs. Bi-RM | LR vs. TM | ||||||
Classification error, average standard deviation | Mean square error (dB) | 5.82 2.89 | 5.06 2.62 | 2.72 2.42 | <0.002 | <0.002 | <0.002 | <0.002 |
Absolute error (dB) | 2.52 0.56 | 2.20 0.39 | 2.80 0.36 | <0.002 | <0.002 | <0.002 | <0.002 |
Classification Error (Mean Square Error, dB), Average ± Standard Deviation | p-Value | |||||
---|---|---|---|---|---|---|
LR | TM | Bi-RM | Bi-RM vs. TM | Bi-RM vs. LR | LR vs. TM | |
Superotemporal | 5.83 3.08 | 5.29 2.86 | 5.02 2.55 | <0.002 | <0.002 | <0.002 |
Superonasal | 3.55 3.28 | 5.72 2.76 | 5.32 2.56 | <0.002 | <0.002 | <0.002 |
Temporal | 5.95 3.52 | 5.79 5.52 | 5.28 2.92 | <0.002 | <0.002 | 0.220 |
Classification Error (Mean Square Error, dB), Mean ± Standard Deviation | Number of Eyes | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
LR | TM | Bi-RM | Bi-RM vs. TM | Bi-RM vs. LR | LR vs. TM | Analysis of Variance | ||
Classification error vs. false positive rate (false positive rate, %) | ||||||||
False positive rate ≤ 2.5 | 5.90 ± 5.32 | 5.06 ± 2.65 | 3.72 ± 2.44 | 797 | <0.002 | <0.002 | <0.002 | <0.002 |
2.5 < False positive rate 5.0 | 5.74 ± 3.25 | 5.28 ± 2.69 | 3.80 ± 2.53 | 258 | <0.002 | <0.002 | <0.002 | <0.002 |
5.0 < False positive rate 7.5 | 5.32 ± 2.52 | 3.82 ± 2.38 | 3.52 ± 2.28 | 72 | <0.002 | <0.002 | 0.007 | <0.002 |
7.5 < False positive rate 10.0 | 3.90 ± 2.28 | 3.73 ± 2.23 | 3.35 ± 2.94 | 57 | <0.002 | 0.002 | 0.322 | <0.002 |
False positive rate > 10 | 5.25 ± 3.29 | 5.29 ± 2.53 | 3.84 ± 2.33 | 88 | <0.002 | <0.002 | <0.002 | <0.002 |
Classification error vs. false negative rate (false negative ratio, %) | ||||||||
False negative ratio ≤ 2.5 | 5.23 ± 3.88 | 3.58 ± 2.49 | 3.22 ± 2.22 | 766 | <0.002 | <0.002 | <0.002 | <0.002 |
2.5 < False negative ratio 5.0 | 5.26 ± 2.92 | 3.32 ± 2.79 | 3.20 ± 2.59 | 255 | <0.002 | <0.002 | <0.002 | <0.002 |
5.0 < False negative ratio 7.5 | 5.62 ± 3.02 | 5.05 ± 2.32 | 5.57 ± 2.06 | 209 | <0.002 | <0.002 | 0.007 | <0.002 |
7.5 < False negative ratio ≤ 10.0 | 5.65 ± 2.92 | 5.52 ± 2.05 | 5.20 ± 2.89 | 92 | <0.002 | <0.002 | <0.002 | <0.002 |
False negative ratio > 10 | 8.32 ± 5.67 | 6.26 ± 3.03 | 5.94 ± 3.08 | 252 | <0.002 | <0.002 | <0.002 | <0.002 |
Classification error vs. fixation loss percentage (fixation loss percentage, %) | ||||||||
Fixation loss percentage ≤ 2.5 | 5.92 ± 5.88 | 5.03 ± 2.74 | 3.66 ± 2.52 | 528 | <0.002 | <0.002 | <0.002 | <0.002 |
2.5 < Fixation loss percentage ≤ 5.0 | 6.54 ± 2.99 | 5.99 ± 2.20 | 5.27 ± 2.06 | 23 | 0.002 | 0.025 | 0.422 | <0.002 |
5.0 < Fixation loss percentage ≤ 7.5 | 5.59 ± 2.87 | 5.08 ± 2.62 | 3.72 ± 2.38 | 275 | <0.002 | <0.002 | 0.002 | <0.002 |
7.5 < Fixation loss percentage ≤ 10.0 | 3.95 ± 3.44 | 3.05 ± 2.29 | 2.86 ± 2.20 | 232 | <0.002 | <0.002 | <0.002 | <0.002 |
Fixation loss percentage > 10 | 5.98 ± 2.93 | 5.34 ± 2.50 | 3.98 ± 2.34 | 435 | <0.002 | <0.002 | <0.002 | <0.002 |
Classification error vs. average progressive visual field average deviation (average deviation, dB) | ||||||||
Average deviation < −12 | 8.30 ± 5.56 | 6.98 ± 2.49 | 6.20 ± 2.69 | 230 | <0.002 | <0.002 | 0.273 | <0.002 |
−12 ≤ Average deviation < −9 | 6.88 ± 2.86 | 6.57 ± 2.04 | 5.85 ± 2.20 | 80 | <0.002 | <0.002 | 0.229 | <0.002 |
−9 ≤ Average deviation < −6 | 5.99 ± 2.44 | 5.43 ± 2.90 | 5.02 ± 2.80 | 242 | <0.002 | <0.002 | 0.002 | <0.002 |
−6 ≤ Average deviation < −3 | 5.68 ± 3.97 | 3.70 ± 2.94 | 3.44 ± 2.72 | 278 | <0.002 | <0.002 | <0.002 | <0.002 |
−3 ≤ Average deviation | 3.20 ± 3.22 | 2.28 ± 2.28 | 2.24 ± 2.27 | 542 | <0.002 | <0.002 | <0.002 | <0.002 |
Correlation | LR | |||||
---|---|---|---|---|---|---|
Spear Coefficient | Classification Error | Angle of Deviation | Diversion | Classification Error | ||
Classification error vs. false positive rate | ||||||
LR | −1.036 | 0.566 | −63 | 6.711 | 0.016 | 0.537 |
TM | −1.065 | 0.060 | −61 | 6.186 | 0.003 | 0.068 |
Bi-RM | −1.063 | 0.156 | −58 | 5.806 | 0.003 | 0.161 |
Classification error vs. false negative rate | ||||||
LR | 1.666 | <0.016 | 66.66 | 5.163 | 0.165 | <0.016 |
TM | 1.665 | <0.016 | 56.67 | 3.603 | 0.356 | <0.016 |
Bi-RM | 1.668 | <0.016 | 56.13 | 3.616 | 0.367 | <0.016 |
Classification error vs. fixation loss percentage | ||||||
LR | 1.085 | 0.005 | 11 | 6.636 | < 0.016 | 0.636 |
TM | 1.061 | 0.037 | 36 | 5.881 | 0.003 | 0.101 |
Bi-RM | 1.066 | 0.006 | 37 | 5.676 | 0.006 | 0.053 |
Classification error vs. average progressive visual field Average deviation | ||||||
LR | −1.661 | <0.016 | −33.6 | 5.605 | 0.138 | <0.016 |
TM | −1.665 | <0.016 | −36.5 | 3.656 | 0.583 | <0.016 |
Bi-RM | −1.666 | <0.016 | −31.8 | 3.565 | 0.506 | <0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosni Mahmoud, H.A.; Alabdulkreem, E. RETRACTED: Bidirectional Neural Network Model for Glaucoma Progression Prediction. J. Pers. Med. 2023, 13, 390. https://doi.org/10.3390/jpm13030390
Hosni Mahmoud HA, Alabdulkreem E. RETRACTED: Bidirectional Neural Network Model for Glaucoma Progression Prediction. Journal of Personalized Medicine. 2023; 13(3):390. https://doi.org/10.3390/jpm13030390
Chicago/Turabian StyleHosni Mahmoud, Hanan A., and Eatedal Alabdulkreem. 2023. "RETRACTED: Bidirectional Neural Network Model for Glaucoma Progression Prediction" Journal of Personalized Medicine 13, no. 3: 390. https://doi.org/10.3390/jpm13030390
APA StyleHosni Mahmoud, H. A., & Alabdulkreem, E. (2023). RETRACTED: Bidirectional Neural Network Model for Glaucoma Progression Prediction. Journal of Personalized Medicine, 13(3), 390. https://doi.org/10.3390/jpm13030390