Effects of Dexmedetomidine on Immunomodulation and Pain Control in Videolaparoscopic Cholecystectomies: A Randomized, Two-Arm, Double-Blinded, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Informed Consent and Trial Registration
2.2. Inclusion/Exclusion Criteria
2.3. Double-Blinded Randomization Protocol
2.4. Anesthetic Procedures
2.5. Laboratory Assay
2.6. Outcome Measures
2.7. Statistical Power & Analysis
3. Results
Study Participants
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scaletta, G.; Dinoi, G.; Capozzi, V.; Cianci, S.; Pelligra, S.; Ergasti, R.; Fagotti, A.; Scambia, G.; Fanfani, F. Comparison of minimally invasive surgery with laparotomic approach in the treatment of high risk endometrial cancer: A systematic review. Eur. J. Surg. Oncol. 2020, 46, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, E.A. Epidemiology and risk factors for gallstone disease: Has the paradigm changed in the 21st century? Curr. Gastroenterol. Rep. 2005, 7, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Mahawar, K.; Nanayakkara, K.; Madhok, B. Safety considerations in laparoscopic surgery: A narrative review. World J. Gastrointest. Endosc. 2022, 14, 1–16. [Google Scholar]
- Bablekos, G.D.; Michaelides, S.A.; Analitis, A.; Charalabopoulos, K.A. Effects of laparoscopic cholecystectomy on lung function: A systematic review. World J. Gastroenterol. 2014, 20, 17603–17617. [Google Scholar] [CrossRef]
- Curry, N.; Brohi, K. Surgery in traumatic injury and perioperative considerations. Semin. Thromb. Hemost. 2020, 46, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Thurairajah, K.; Briggs, G.D.; Balogh, Z.J. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. Eur. J. Trauma Emerg. Surg. 2018, 44, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Helander, E.; Webb, M.P.; Menard, B.; Prabhakar, A.; Helmsletter, J.; Cornett, E.M.; Urman, R.D.; Nguyen, V.H.; Kaye, A.D. Metabolic and the surgical stress response considerations to improve postoperative recovery. Curr. Pain. Headache Rep. 2019, 23, 33. [Google Scholar] [CrossRef]
- Weerink, M.A.S.; Struys, M.M.R.F.; Hannivoort, L.N.; Barends, C.R.M.; Absolom, A.R.; Colin, P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin. Pharmacokinet. 2017, 56, 893–913. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, B.E.; Sundman, E.; Terrando, N.; Eriksson, L.I.; Olofsson, P.S. Neural control of inflammation: Implications for perioperative and critical care. Anesthesiology 2016, 124, 1174–1189. [Google Scholar] [CrossRef]
- Xiang, H.; Hu, B.; Li, Z.; Li, J. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 2014, 37, 1763–1770. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, M.; Lu, Y.; Cao, Y.; Chang, Y.; Dai, Z. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis. J. Clin. Anesth. 2017, 40, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.S.; Chang, C.H.; Chang, S.C.; Lee, C.S.; Chang, C.T. A decision for predicting successful extubation of patients in intensive care unit. Biomed. Res. Int. 2018, 2018, 6820975. [Google Scholar] [CrossRef]
- Lee, J.M.; Han, H.J.; Choi, W.K.; Yoo, S.; Baek, S.; Lee, J. Immunomodulatory effects of intraoperative dexmedetomidine on T helper 1, T helper 2, T helper 17 and regulatory T cells cytokine levels and their balance: A prospective, randomised, double-blind, dose-response clinical study. BMC Anesth. 2018, 18, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Li, Y.; Titan, S.; Wang, H.; Wu, H.; Zhang, A.; Gao, C. Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: A meta-analysis. Sci. Rep. 2015, 5, 12342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, A.D.; Chernobylsky, D.J.; Thakur, P.; Siddaiah, H.; Kaye, R.J.; Eng, L.K.; Harbell, M.W.; Lajaunie, J.; Cornett, E.M. Dexmedetomidine in enhanced recovery after surgery (ERAS) protocols for postoperative pain. Curr. Pain. Headache Rep. 2020, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kawasaki, C.; Ueki, M.; Hamada, K.; Habe, K.; Sata, T. Dexmedetomidine suppresses proinflammatory mediator production in human whole blood in vitro. J. Trauma. Acute Care Surg. 2013, 74, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.F.; Rocco, P.R.M.; Pelosi, P. Anti-inflammatory properties of anesthetic agents. Crit. Care 2017, 21, 67. [Google Scholar] [CrossRef] [Green Version]
- Alazawi, W.; Pirmadjid, N.; Lahiri, R.; Bhattacharya, S. Inflammatory and immune responses to surgery and their clinical impact. Ann. Surg. 2016, 264, 73–80. [Google Scholar] [CrossRef]
- Watt, D.G.; Horgan, P.G.; Mcmillan, D.C. Routine clinical markers of the magnitude of the systemic inflammatory response after elective operation: A systematic review. Surgery 2015, 157, 362–380. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, J.; Shen, Y.; Kang, S.; Zong, Y. Effects of dexmedetomidine on CD42a+/CD14+, HLADR+/CD14+ and inflammatory cytokine levels in patients undergoing multilevel spinal fusion. Clin. Neurol. Neurosurg. 2017, 160, 54–58. [Google Scholar] [CrossRef]
- Yeh, C.H.; Hsieh, L.P.; Lin, M.C.; Wei, T.S.; Lin, H.C.; Chang, C.C.; Hsing, C.H. Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia. PLoS ONE 2018, 13, e0191070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghomeishi, A.; Mohtadi, A.R.; Behaen, K.; Nesioonpour, S.; Bakhtiari, N.; Fahlyani, F.K. Comparison of the Effect of Propofol and Dexmedetomidine on Hemodynamic Parameters and Stress Response Hormones During Laparoscopic Cholecystectomy Surgery. Anesthesiol. Pain Med. 2021, 11, e119446. [Google Scholar] [CrossRef] [PubMed]
- Hadipourzadeh, F.; Mousavi, S.; Heydarpur, A.; Sadeghi, A.; Ferasat-Kish, R. Evaluation of the Adding Paracetamol to Dexmedetomidine in Pain Management After Adult Cardiac Surgery. Anesthesiol. Pain Med. 2021, 11, e110274. [Google Scholar] [CrossRef]
- Imani, F.; Zaman, B.; De Negri, P. Postoperative pain management: Role of dexmedetomidine as an adjuvant. Anesthesiol. Pain Med. 2021, 10, e112176. [Google Scholar] [CrossRef]
- Yang, A.; Gao, F. Effect of dexmedetomidine combined with propofol on stress response, hemodynamics, and postoperative complications in patients undergoing laparoscopic cholecystectomy. Am. J. Transl. Res. 2021, 13, 11824–11832. [Google Scholar] [PubMed]
- Bao, N.; Dai, D. Dexmedetomidine protects against ischemia and reperfusion-induced kidney injury in rats. Mediat. Inflamm. 2020, 2020, 2120971. [Google Scholar] [CrossRef] [Green Version]
- Milosavljevic, S.B.; Pavlovic, A.P.; Trpkovic, S.V.; Ilic, A.N.; Sekulic, A.D. Influence of spinal and general anesthesia on the metabolic, hormonal, and hemodynamic response in elective surgical patients. Med. Sci. Monit. 2014, 20, 1833–1840. [Google Scholar]
- Lattermann, R.; Belohlavek, G.; Wittmann, S.; Füchtmeier, B.; Gruber, M. The anticatabolic effect of neuraxial blockade after hip surgery. Anesth. Analg. 2005, 101, 1202–1208. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J. Physiol. 2016, 594, 5781–5790. [Google Scholar] [CrossRef] [Green Version]
- Fujii, T.; Mashimo, M.; Moriwaki, Y.; Misawa, H.; Ono, S.; Horiguchi, K.; Kawashima, K. Physiological functions of the cholinergic system in immune cells. J. Pharmacol. Sci. 2017, 134, 1–21. [Google Scholar] [CrossRef]
- Poree, L.R.; Guo, T.Z.; Kingery, W.S.; Maze, M. The Analgesic Potency of Dexmedetomidine Is Enhanced After Nerve Injury: A Possible Role for Peripheral alpha 2-Adrenoceptors. Anesth. Analg. 1998, 87, 941–948. [Google Scholar] [PubMed]
- Zhang, Y.-Z.; Zhou, Z.-C.; Song, C.-Y.; Chen, X. The protective effect and mechanism of dexmedetomidine on diabetic peripheral neuropathy in rats. Front. Pharmacol. 2020, 11, 1139. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Tadrous, M.; Mamdani, M.M. The Burden of Opioid-Related Mortality in the United States. JAMA Netw. Open 2018, 1, e180217. [Google Scholar] [CrossRef]
- Bellon, M.; Bot, A.L.; Michelet, D.; Hilly, J.; Maesani, M.; Brasher, C.; Dahmani, S. Efficacy of intraoperative dexmedetomidine compared with placebo for postoperative pain management: A meta-analysis of published studies. Pain. Ther. 2016, 5, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Tsaousi, G.G.; Pourzitaki, C.; Aloisio, S.; Bilotta, F. Dexmedetomidine as a sedative and analgesic adjuvant in spine surgery: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol. 2018, 74, 1377–1389. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liang, F.; Liu, Z.; Shao, X.; Jiang, N.; Gan, X. Dexmedetomidine reduces perioperative opioid consumption and postoperative pain intensity in neurosurgery: A meta-analysis. J. Neurosurg. Anesthesiol. 2018, 30, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, N.; Chen, J.; Xu, Z.; Wang, F.; Ding, C. Effect of intravenous dexmedetomidine during general anesthesia on acute postoperative pain in adults. Clin. J. Pain 2018, 34, 1180–1191. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X. The Value of Combined Application of Oxycodone Hydrochloride Injection and Dexmedetomidine in Anesthesia for LC for Patients with Gallbladder Lesions. J. Healthc. Eng. 2021, 2021, 1290650. [Google Scholar] [CrossRef]
- Vorobeichik, L.; Brull, R.; Abdallah, F.W. Evidence basis for using perineural dexmedetomidine to enhance the quality of brachial plexus nerve blocks: A systematic review and meta-analysis of randomized controlled trials. Br. J. Anaesth. 2017, 118, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.A.; Wagemakers, M.; Absalom, A.R. Anaesthesia for awake craniotomy. Br. J. Anaesth. 2016, 116, 740–744. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Ji, Q.; Sun, Q.; Gao, T.; Liu, K.; Li, L. The opioid-sparing effect of intraoperative dexmedetomidine infusion after craniotomy. J. Neurosurg. Anesthesiol. 2016, 28, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Min, K.T.; Lee, J.R.; Ha, S.H.; Lee, W.K.; Seo, J.H.; Choi, S.H. Comparison of dexmedetomidine and remifentanil on airway reflex and hemodynamic changes during recovery after craniotomy. Yonsei Med. J. 2016, 57, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Cioccari, L.; Luethi, N.; Bailey, M.; Shehabi, Y.; Howe, B.; Messmer, A.S.; Proimos, H.K.; Peck, L.; Young, H.; Eastwood, G.M.; et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: A subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit. Care 2020, 24, 441. [Google Scholar] [CrossRef]
- Lee, S. Dexmedetomidine: Present and future directions. Korean J. Anesthesiol. 2019, 72, 323–330. [Google Scholar] [CrossRef] [PubMed]
Control (n = 26) | Intervention (n = 26) | p-Value | |
---|---|---|---|
Sex (Male/Female) | 8/18 | 6/20 | 0.7546 * |
Age (years) | 53.23 (43.3–63) | 48 (42.3–60) | 0.3598 ** |
Height (cm) | 162.5 (159–170.2) | 164.5 (160.3–169.8) | 0.6535 ** |
Weight (kg) | 71.5 (65.8–79.8) | 76 (68–90) | 0.3993 ** |
BMI | 26.6 (25.5–29.4) | 29.9 (24.1–31.6) | 0.6049 ** |
ASA Status (I/II) | 8/18 | 7/19 | 1.0 * |
Surgical Indication (Biliary Polyposis/Biliary Lithiasis) | 2/24 | 1/25 | 1.0 * |
Dose of Dexmedetomidine (mcg) | 0 | 120.5 (93–159) | - |
Inflammatory Biomarkers | |||
Control (n = 26) | Intervention (n = 26) | p-Value | |
Mean (95% CI) | Mean (95% CI) | ||
IL-6 | |||
0 h | 6.37 (2.33–15.07) | 4.09 (2.39–5.79) | 0.2090 ** |
4 h | 97.43 (53.63–141.22) | 54.76 (27.15–82.37) | 0.0425 ** |
24 h | 37.86 (19.13–56.58) | 43.03 (14.81–71.25) | 0.9149 ** |
Cortisol | |||
0 h | 11.16 (8.85–13.53) | 11.77 (9.16–14.38) | 0.8489 ** |
4 h | 22.92 (18.15–27.69) | 22.12 (16.98–27.26) | 0.6565 ** |
24 h | 12.52 (8.53–16.51) | 11.58 (9.03–14.14) | 0.8852 ** |
C Reactive Protein | |||
0 h | 2.91 (1.74–4.08) | 7.28 (4.45–10.11) | 0.0067 ** |
4 h | 4.61 (2.89–6.32) | 9.41 (6.58–12.24) | 0.0075 ** |
24 h | 39.48 (29.86–49.09) | 44.21 (33.21–55.21) | 0.6481 ** |
Glycemia | |||
0 h | 91.19 (83.42–98.96) | 83.46 (74.52–92.40) | 0.0255 ** |
4 h | 111.19 (101.54–120.84) | 111.07 (103.70–118.45) | 1.0 ** |
24 h | 110.29 (101.06–119.52) | 113.38 (100.08–126.68) | 0.9535 ** |
Perioperative Outcome | |||
Control (n = 26) | Intervention (n = 26) | p-Value | |
Mean (95% CI) | Mean (95% CI) | ||
Opioide (yes/no) | 18/8 | 2/24 | <0.0001 * |
Postoperative Pain (No pain/Slight/Moderate/Severe) | |||
1 h | 2/4/10/10 | 18/5/3/0 | <0.0001 * |
4 h | 7/12/7/0 | 9/13/3/1 | 0.4089 * |
24 h | 11/14/1/0 | 14/11/1/0 | 0.6977 * |
Spontaneous Ventilation Return | |||
Control (n = 26) | Intervention (n = 26) | p-Value | |
Mean (95% CI) | Mean (95% CI) | ||
RR | 13.96 (13.18–14.74) | 15.62 (14.47–16.62) | 0.0361 ** |
TV(ML) | 400.04 (381.89–418.19) | 372.85 (348.92–396.77) | 0.1325 ** |
EFCO2 | 40.42 (38.67–42.17) | 41.04 (39.49–42.59) | 0.5361 ** |
SpO2 | 0.97 (0.97–0.98) | 0.98 (0.98–0.99) | 0.0002 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.N.; Brandão, V.G.; Perez, M.V.; Lewandrowski, K.-U.; Fiorelli, R.K.A. Effects of Dexmedetomidine on Immunomodulation and Pain Control in Videolaparoscopic Cholecystectomies: A Randomized, Two-Arm, Double-Blinded, Placebo-Controlled Trial. J. Pers. Med. 2023, 13, 622. https://doi.org/10.3390/jpm13040622
Silva GN, Brandão VG, Perez MV, Lewandrowski K-U, Fiorelli RKA. Effects of Dexmedetomidine on Immunomodulation and Pain Control in Videolaparoscopic Cholecystectomies: A Randomized, Two-Arm, Double-Blinded, Placebo-Controlled Trial. Journal of Personalized Medicine. 2023; 13(4):622. https://doi.org/10.3390/jpm13040622
Chicago/Turabian StyleSilva, Gustavo Nascimento, Virna Guedes Brandão, Marcelo Vaz Perez, Kai-Uwe Lewandrowski, and Rossano Kepler Alvim Fiorelli. 2023. "Effects of Dexmedetomidine on Immunomodulation and Pain Control in Videolaparoscopic Cholecystectomies: A Randomized, Two-Arm, Double-Blinded, Placebo-Controlled Trial" Journal of Personalized Medicine 13, no. 4: 622. https://doi.org/10.3390/jpm13040622
APA StyleSilva, G. N., Brandão, V. G., Perez, M. V., Lewandrowski, K. -U., & Fiorelli, R. K. A. (2023). Effects of Dexmedetomidine on Immunomodulation and Pain Control in Videolaparoscopic Cholecystectomies: A Randomized, Two-Arm, Double-Blinded, Placebo-Controlled Trial. Journal of Personalized Medicine, 13(4), 622. https://doi.org/10.3390/jpm13040622