Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mammogram Acquisition
2.2. Mammography Case Difficulty Analysis
2.3. Image Pre-Processing
2.4. Extraction of Radiomic Features
2.5. Feature Selection and Model Construction
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qenam, B.A.; Li, T.; Frazer, H.; Brennan, P.C. Clinical performance progress of BREAST participants: The impact of test-set participation. Clin. Radiol. 2022, 77, e130–e137. [Google Scholar] [CrossRef] [PubMed]
- Qenam, B.A.; Li, T.; Ekpo, E.; Frazer, H.; Brennan, P.C. Test-set training improves the detection rates of invasive cancer in screening mammography. Clin. Radiol. 2023, 78, e260. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, W.I.; Rawashdeh, M.A.; Lewis, S.J.; McEntee, M.F.; Lee, W.; Tapia, K.; Brennan, P.C. Impact of Breast Reader Assessment Strategy on mammographic radiologists’ test reading performance. J. Med. Imaging Radiat. Oncol. 2016, 60, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Qenam, B.A.; Li, T.; Tapia, K.; Brennan, P.C. The roles of clinical audit and test sets in promoting the quality of breast screening: A scoping review. Clin. Radiol. 2020, 75, e791–e794. [Google Scholar] [CrossRef]
- Trieu, P.D.; Lewis, S.J.; Li, T.; Ho, K.; Wong, D.J.; Tran, O.T.M.; Puslednik, L.; Black, D.; Brennan, P.C. Improving radiologist’s ability in identifying particular abnormal lesions on mammograms through training test set with immediate feedback. Sci. Rep. 2021, 11, 9899. [Google Scholar] [CrossRef]
- Slanetz, P.J.; Daye, D.; Chen, P.H.; Salkowski, L.R. Artificial Intelligence and Machine Learning in Radiology Education Is Ready for Prime Time. J. Am. Coll. Radiol. 2020, 17, 1705–1707. [Google Scholar] [CrossRef]
- Chassignol, M.; Khoroshavin, A.; Klimova, A.; Bilyatdinova, A. Artificial Intelligence trends in education: A narrative overview. Procedia Comput. Sci. 2018, 136, 16–24. [Google Scholar] [CrossRef]
- Laurillard, D. E-learning in higher education. In Changing Higher Education; Routledge: Abingdon, UK, 2005; pp. 87–100. [Google Scholar]
- Barteit, S.; Guzek, D.; Jahn, A.; Bärnighausen, T.; Jorge, M.M.; Neuhann, F.J.C. Evaluation of e-learning for medical education in low-and middle-income countries: A systematic review. Comput. Educ. 2020, 145, 103726. [Google Scholar] [CrossRef]
- Regmi, K.; Jones, L.J.B.m.e. A systematic review of the factors–enablers and barriers–affecting e-learning in health sciences education. BMC Med. Educ. 2020, 20, 91. [Google Scholar] [CrossRef]
- Mazurowski, M.A.; Baker, J.A.; Barnhart, H.X.; Tourassi, G.D. Individualized computer-aided education in mammography based on user modeling: Concept and preliminary experiments. Med. Phys. 2010, 37, 1152–1160. [Google Scholar] [CrossRef]
- Mello-Thoms, C.; Dunn, S.; Nodine, C.F.; Kundel, H.L.; Weinstein, S.P. The Perception of Breast Cancer: What Differentiates Missed from Reported Cancers in Mammography? Acad. Radiol. 2002, 9, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Siviengphanom, S.; Gandomkar, Z.; Lewis, S.J.; Brennan, P.C. Mammography-Based Radiomics in Breast Cancer: A Scoping Review of Current Knowledge and Future Needs. Acad. Radiol. 2021, 29, 1228–1247. [Google Scholar] [CrossRef] [PubMed]
- Gandomkar, Z.; Lewis, S.J.; Li, T.; Ekpo, E.U.; Brennan, P.C. A machine learning model based on readers’ characteristics to predict their performances in reading screening mammograms. Breast Cancer 2022, 29, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Gandomkar, Z.; Li, T.; Reed, W.; Brennan, P. Varying Performance Levels for Diagnosing Mammographic Images Depending on Reader Nationality Have AI and Educational Implications; SPIE: Washington, DC, USA, 2022; Volume 12035. [Google Scholar]
- Keller, B.M.; Nathan, D.L.; Wang, Y.; Zheng, Y.; Gee, J.C.; Conant, E.F.; Kontos, D. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Med. Phys. 2012, 39, 4903–4917. [Google Scholar] [CrossRef] [PubMed]
- Pertuz, S.; Torres, G.F.; Tamimi, R.; Kamarainen, J. Open Framework for Mammography-based Breast Cancer Risk Assessment. In Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics, Chicago, IL, USA, 19–22 May 2019. [Google Scholar]
- Pertuz, S.; Julia, C.; Puig, D. A Novel Mammography Image Representation Framework with Application to Image Registration. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 3292–3297. [Google Scholar]
- Torres, G.F.; Pertuz, S. Automatic Detection of the Retroareolar Region in X-Ray Mammography Images. In Proceedings of the VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Colombia, 26–28 October 2016. [Google Scholar]
- Wei, J.; Chan, H.-P.; Wu, Y.-T.; Zhou, C.; Helvie, M.A.; Tsodikov, A.; Hadjiiski, L.M.; Sahiner, B. Association of computerized mammographic parenchymal pattern measure with breast cancer risk: A pilot case-control study. Radiology 2011, 260, 42–49. [Google Scholar] [CrossRef]
- Manduca, A.; Carston, M.J.; Heine, J.J.; Scott, C.G.; Pankratz, V.S.; Brandt, K.R.; Sellers, T.A.; Vachon, C.M.; Cerhan, J.R. Texture features from mammographic images and risk of breast cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 837–845. [Google Scholar] [CrossRef]
- Zheng, Y.; Keller, B.M.; Ray, S.; Wang, Y.; Conant, E.F.; Gee, J.C.; Kontos, D. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Med. Phys. 2015, 42, 4149–4160. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, J.; Gao, C.; Zeng, J.; Zhou, C.; Lai, X.; Cai, W.; Xu, M. Predicting the response to neoadjuvant chemotherapy for breast cancer: Wavelet transforming radiomics in MRI. BMC Cancer 2020, 20, 100. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Yao, Y.; Abidi, B.; Doggaz, N.; Abidi, M. Evaluation of Sharpness Measures and Search Algorithms for the Auto Focusing of High-Magnification Images; SPIE: Washington, DC, USA, 2006. [Google Scholar]
- Weszka, J.S.; Dyer, C.R.; Rosenfeld, A. A Comparative Study of Texture Measures for Terrain Classification. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 269–285. [Google Scholar] [CrossRef]
- Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274. [Google Scholar] [CrossRef]
- Wu, C.-M.; Chen, Y.-C. Statistical feature matrix for texture analysis. CVGIP: Graph. Model. Image Process. 1992, 54, 407–419. [Google Scholar] [CrossRef]
- Laws, K. Rapid Texture Identification; SPIE: Washington, DC, USA, 1980; Volume 0238. [Google Scholar]
- Wu, C.M.; Chen, Y.C.; Hsieh, K.S. Texture features for classification of ultrasonic liver images. IEEE Trans. Med. Imaging 1992, 11, 141–152. [Google Scholar] [CrossRef]
- Fogel, I.; Sagi, D. Gabor filters as texture discriminator. Biol. Cybern. 1989, 61, 103–113. [Google Scholar] [CrossRef]
- Litimco, C.E.O.; Villanueva, M.G.A.; Yecla, N.G.; Soriano, M.; Naval, P. Coral Identification Information System. In Proceedings of the 2013 IEEE International Underwater Technology Symposium (UT), Tokyo, Japan, 5–8 March 2013; pp. 1–6. [Google Scholar]
- Saeys, Y.; Abeel, T.; Van de Peer, Y. Robust Feature Selection Using Ensemble Feature Selection Techniques. In Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, 15–19 September 2008; Volume 5212, pp. 313–325. [Google Scholar]
- Pillai, P.S.; Holmes, D.R., III; Carter, R.; Inoue, A.; Cook, D.A.; Karwoski, R.; Fidler, J.L.; Fletcher, J.G.; Leng, S.; Yu, L.; et al. Individualized and generalized models for predicting observer performance on liver metastasis detection using CT. J. Med. Imaging 2022, 9, 055501. [Google Scholar] [CrossRef]
- Ekpo, E.U.; Alakhras, M.; Brennan, P. Errors in Mammography Cannot be Solved Through Technology Alone. Asian Pac. J. Cancer Prev. 2018, 19, 291–301. [Google Scholar] [CrossRef]
- Zhang, J.; Lo, J.Y.; Kuzmiak, C.M.; Ghate, S.V.; Yoon, S.C.; Mazurowski, M.A. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents. Med. Phys. 2014, 41, 091907. [Google Scholar] [CrossRef]
- Li, T.; Gandomkar, Z.; Trieu, P.D.; Lewis, S.J.; Brennan, P.C. Differences in lesion interpretation between radiologists in two countries: Lessons from a digital breast tomosynthesis training test set. Asia-Pac. J. Clin. Oncol. 2022, 18, 441–447. [Google Scholar] [CrossRef]
- Mohd Norsuddin, N.; Mello-Thoms, C.; Reed, W.; Rickard, M.; Lewis, S. An investigation into the mammographic appearances of missed breast cancers when recall rates are reduced. Br. J. Radiol. 2017, 90, 20170048. [Google Scholar] [CrossRef] [PubMed]
- Brennan, P.C.; Gandomkar, Z.; Ekpo, E.U.; Tapia, K.; Trieu, P.D.; Lewis, S.J.; Wolfe, J.M.; Evans, K.K. Radiologists can detect the ‘gist’ of breast cancer before any overt signs of cancer appear. Sci. Rep. 2018, 8, 8717. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.K.; Georgian-Smith, D.; Tambouret, R.; Birdwell, R.L.; Wolfe, J.M. The gist of the abnormal: Above-chance medical decision making in the blink of an eye. Psychon. Bull. Rev. 2013, 20, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Gandomkar, Z.; Siviengphanom, S.; Ekpo, E.U.; Suleiman, M.a.; Li, T.; Xu, D.; Evans, K.K.; Lewis, S.J.; Wolfe, J.M.; Brennan, P.C. Global processing provides malignancy evidence complementary to the information captured by humans or machines following detailed mammogram inspection. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Haga, A.; Takahashi, W.; Aoki, S.; Nawa, K.; Yamashita, H.; Abe, O.; Nakagawa, K. Standardization of imaging features for radiomics analysis. J. Med. Investig. 2019, 66, 35–37. [Google Scholar] [CrossRef]
Factors | Non-Cancer Cases (n = 40) | Cancer Cases (n = 20) |
---|---|---|
Breast density | ||
BI-RADS A | 0 | 0 |
BI-RADS B | 2 | 0 |
BI-RADS C | 30 | 15 |
BI-RADS D | 8 | 5 |
Lesion type * | ||
Stellate | 9 | |
Architectural distortion | 2 | |
Calcification | 2 | |
Discrete mass | 5 | |
Non-specific density | 3 | |
Manufacturer | ||
GE Medical Systems | 14 | 7 |
Philips Digital Mammography Sweden AB | 8 | 5 |
Sectra Imtec AB | 11 | 6 |
KODAK | 0 | 1 |
Unknown | 7 | 1 |
Normalized Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cohort A | Cohort B | ||||||||
Sensitivity | Specificity | Accuracy | AUC | Sensitivity | Specificity | Accuracy | AUC | ||
False positive error | square | 0.867 | 0.800 | 0.833 | 0.882 (0.724–0.996) | 0.526 | 0.579 | 0.553 | 0.651 (0.457–0.817) |
RA | 0.800 | 0.933 | 0.867 | 0.920 (0.809–1.000) | 0.842 | 0.632 | 0.737 | 0.787 (0.627–0.925) | |
whole | 0.867 | 0.867 | 0.867 | 0.911 (0.773–1.000) | 0.842 | 0.632 | 0.737 | 0.780 (0.618–0.913) | |
False negative error | square | 0.625 | 0.375 | 0.500 | 0.523 (0.234–0.813) | 0.800 | 0.600 | 0.700 | 0.720 (0.450–0.930) |
RA | 0.875 | 0.500 | 0.688 | 0.695 (0.398–0.953) | 0.800 | 0.700 | 0.750 | 0.755 (0.490–0.960) | |
whole | 0.500 | 0.375 | 0.438 | 0.375 (0.328–0.891) | 0.800 | 0.600 | 0.700 | 0.710 (0.450–0.930) | |
False lesion location | square | 0.571 | 0.429 | 0.500 | 0.469 (0.225–0.837) | 0.556 | 0.222 | 0.389 | 0.556 (0.247–0.864) |
RA | 0.714 | 0.571 | 0.643 | 0.714 (0.388–0.959) | 0.778 | 0.667 | 0.722 | 0.741 (0.457–0.963) | |
whole | 0.714 | 0.429 | 0.571 | 0.367 (0.286–0.898) | 0.778 | 0.444 | 0.611 | 0.654 (0.370–0.901) | |
Non-normalized dataset | |||||||||
False positive error | square | 0.867 | 0.800 | 0.833 | 0.933 (0.822–1.000) | 0.895 | 0.632 | 0.763 | 0.774 (0.598–0.917) |
RA | 0.733 | 0.667 | 0.700 | 0.813 (0.640–0.951) | 0.895 | 0.789 | 0.842 | 0.831 (0.676–0.958) | |
whole | 0.800 | 0.933 | 0.867 | 0.933 (0.813–1.000) | 0.579 | 0.737 | 0.658 | 0.702 (0.526–0.862) | |
False negative error | square | 0.750 | 0.625 | 0.688 | 0.812 (0.563–1.000) | 0.800 | 0.700 | 0.750 | 0.750 (0.500–0.950) |
RA | 0.875 | 0.500 | 0.688 | 0.688 (0.359–0.922) | 0.900 | 0.500 | 0.700 | 0.695 (0.450–0.910) | |
whole | 0.875 | 0.750 | 0.813 | 0.867 (0.625–1.000) | 0.700 | 0.600 | 0.650 | 0.745 (0.500–0.935) | |
False lesion location | square | 0.429 | 0.286 | 0.357 | 0.347 (0.347–0.959) | 0.556 | 0.556 | 0.556 | 0.611 (0.346–0.864) |
RA | 0.571 | 0.429 | 0.500 | 0.367 (0.286–0.898) | 0.556 | 0.222 | 0.389 | 0.494 (0.198–0.778) | |
whole | 0.714 | 0.286 | 0.500 | 0.418 (0.122–0.735) | 0.556 | 0.333 | 0.444 | 0.531 (0.198–0.741) |
Error Types | Normalization | ROIs | p-Values |
---|---|---|---|
False positives | Yes | square | 0.042 |
RA | 0.144 | ||
whole | 0.195 | ||
No | square | 0.101 | |
RA | 0.869 | ||
whole | 0.023 | ||
False negatives | Yes | square | 0.323 |
RA | 0.746 | ||
whole | 0.653 | ||
No | square | 0.702 | |
RA | 0.968 | ||
whole | 0.420 | ||
False location | Yes | square | 0.812 |
RA | 0.892 | ||
whole | 0.920 | ||
No | square | 0.839 | |
RA | 0.534 | ||
whole | 0.599 |
Error Types | Radiologists | Normalization | ROIs | p-Values | 95%CI |
---|---|---|---|---|---|
False positives | Cohort A | Yes | square vs. RA | 0.493 | −0.146~0.070 |
RA vs. whole | 0.903 | −0.135~0.152 | |||
square vs. whole | 0.594 | −0.135~0.077 | |||
No | square vs. RA | 0.206 | −0.066~0.306 | ||
RA vs. whole | 0.191 | −0.300~0.060 | |||
square vs. whole | 1.000 | −0.150~0.150 | |||
Cohort B | Yes | square vs. RA | 0.175 | −0.332~0.060 | |
RA vs. whole | 0.940 | −0.173~0.187 | |||
square vs. whole | 0.272 | −0.359~0.101 | |||
No | square vs. RA | 0.474 | −0.212~0.099 | ||
RA vs. whole | 0.264 | −0.097~0.355 | |||
square vs. whole | 0.529 | −0.152~0.296 | |||
False negatives | Cohort A | Yes | square vs. RA | 0.341 | −0.526~0.182 |
RA vs. whole | 0.779 | −0.420~0.561 | |||
square vs. whole | 0.726 | −0.669~0.465 | |||
No | square vs. RA | 0.445 | −0.196~0.446 | ||
RA vs. whole | 0.225 | −0.470~0.110 | |||
square vs. whole | 0.717 | −0.350~0.241 | |||
Cohort B | Yes | square vs. RA | 0.818 | −0.332~0.262 | |
RA vs. whole | 0.743 | −0.224~0.314 | |||
square vs. whole | 0.948 | −0.292~0.312 | |||
No | square vs. RA | 0.606 | −0.154~0.264 | ||
RA vs. whole | 0.553 | −0.215~0.115 | |||
square vs. whole | 0.961 | −0.196~0.206 | |||
False location | Cohort A | Yes | square vs. RA | 0.295 | −0.703~0.213 |
RA vs. whole | 0.119 | −0.089~0.783 | |||
square vs. whole | 0.546 | −0.229~0.433 | |||
No | square vs. RA | 0.905 | −0.354~0.313 | ||
RA vs. whole | 0.671 | −0.287~0.184 | |||
square vs. whole | 0.743 | −0.499~0.356 | |||
Cohort B | Yes | square vs. RA | 0.357 | −0.579~0.209 | |
RA vs. whole | 0.601 | −0.237~0.410 | |||
square vs. whole | 0.642 | −0.516~0.318 | |||
No | square vs. RA | 0.465 | −0.198~0.432 | ||
RA vs. whole | 0.862 | −0.456~0.382 | |||
square vs. whole | 0.606 | −0.225~0.385 |
Error Types | Radiologists | ROIs | p-Values | 95%CI |
---|---|---|---|---|
False positives | Cohort A | square | 0.554 | −0.220~0.118 |
RA | 0.267 | −0.082~0.295 | ||
whole | 0.745 | −0.156~0.112 | ||
Cohort B | square | 0.304 | −0.358~0.112 | |
RA | 0.676 | −0.252~0.163 | ||
whole | 0.464 | −0.130~0.285 | ||
False negatives | Cohort A | square | 0.105 | −0.639~0.060 |
RA | 0.967 | −0.360~0.376 | ||
whole | 0.264 | −0.667~0.183 | ||
Cohort B | square | 0.869 | −0.387~0.327 | |
RA | 0.636 | −0.189~0.309 | ||
whole | 0.726 | −0.231~0.161 | ||
False location | Cohort A | square | 0.518 | −0.248~0.493 |
RA | 0.119 | −0.089~0.783 | ||
whole | 0.699 | −0.309~0.207 | ||
Cohort B | square | 0.776 | −0.438~0.327 | |
RA | 0.213 | −0.142~0.635 | ||
whole | 0.429 | −0.182~0.429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, X.; Gandomkar, Z.; Li, T.; Brennan, P.C.; Reed, W. Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study. J. Pers. Med. 2023, 13, 888. https://doi.org/10.3390/jpm13060888
Tao X, Gandomkar Z, Li T, Brennan PC, Reed W. Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study. Journal of Personalized Medicine. 2023; 13(6):888. https://doi.org/10.3390/jpm13060888
Chicago/Turabian StyleTao, Xuetong, Ziba Gandomkar, Tong Li, Patrick C. Brennan, and Warren Reed. 2023. "Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study" Journal of Personalized Medicine 13, no. 6: 888. https://doi.org/10.3390/jpm13060888
APA StyleTao, X., Gandomkar, Z., Li, T., Brennan, P. C., & Reed, W. (2023). Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study. Journal of Personalized Medicine, 13(6), 888. https://doi.org/10.3390/jpm13060888