Serum and Bronchoalveolar Lavage Fluid Levels of Cytokines in Patients with Lung Cancer and Chronic Lung Disease: A Prospective Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Cohort
2.3. Interventions and Definitions
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Background Analysis
3.2. Clinical Analysis
3.3. Laboratory Analysis
4. Discussion
4.1. Literature Findings
4.2. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bade, B.C.; Cruz, C.S.D. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matanic, D.; Beg-Zec, Z.; Stojanovic, D.; Matakoric, N.; Flego, V.; Milevoj-Ribic, F. Cytokines in Patients with Lung Cancer. Scand. J. Immunol. 2003, 57, 173–178. [Google Scholar] [CrossRef]
- Abolfathi, H.; Sheikhpour, M.; Shahraeini, S.S.; Khatami, S.; Nojoumi, S.A. Studies in lung cancer cytokine proteomics: A review. Expert Rev. Proteom. 2021, 18, 49–64. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Z.; Sun, S.; Yu, Y.; Lv, D.; Cao, C.; Deng, Z. TGF-β1, IL-6 and TNF-α in Bronchoalveolar Lavage Fluid: Useful Markers for Lung Cancer? Sci. Rep. 2014, 4, 05595. [Google Scholar] [CrossRef] [Green Version]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Crohns, M.; Saarelainen, S.; Laine, S.; Poussa, T.; Alho, H.; Kellokumpu-Lehtinen, P. Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy—Association of interleukin-8 and VEGF with survival. Cytokine 2010, 50, 30–36. [Google Scholar] [CrossRef]
- Demb, J.; Wei, E.K.; Izano, M.; Kritchevsky, S.; Swede, H.; Newman, A.B.; Shlipak, M.; Akinyemiju, T.; Gregorich, S.; Braithwaite, D. Chronic inflammation and risk of lung cancer in older adults in the health, aging and body composition cohort study. J. Geriatr. Oncol. 2019, 10, 265–271. [Google Scholar] [CrossRef]
- Bezel, P.; Valaperti, A.; Steiner, U.; Scholtze, D.; Wieser, S.; Vonow-Eisenring, M.; Widmer, A.; Kowalski, B.; Kohler, M.; Franzen, D.P. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol. Immunother. 2021, 70, 1867–1876. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, S.; Liu, Z.; Mao, Y.; Li, X.; Dai, L.; Zhao, X.; Wei, C.; Liu, J.; Geng, Y. Clinical Value of Cytokine Assay in Diagnosis and Severity Assessment of Lung Cancer. Evid. Based Complement. Altern. Med. 2022, 2022, 4641600. [Google Scholar] [CrossRef]
- Péus, D.; Newcomb, N.; Hofer, S. Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation. BMC Med. Inform. Decis. Mak. 2013, 13, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Caraballo, C.; Desai, N.R.; Mulder, H.; Alhanti, B.; Wilson, F.P.; Fiuzat, M.; Felker, G.M.; Piña, I.L.; O’Connor, C.M.; Lindenfeld, J.; et al. Clinical Implications of the New York Heart Association Classification. J. Am. Heart Assoc. 2019, 8, e014240. [Google Scholar] [CrossRef]
- Wahidi, M.M.; Rocha, A.T.; Hollingsworth, J.W.; Govert, J.A.; Feller-Kopman, D.; Ernst, A. Contraindications and Safety of Transbronchial Lung Biopsy via Flexible Bronchoscopy. Respiration 2005, 72, 285–295. [Google Scholar] [CrossRef]
- Mohan, A.; Madan, K.; Hadda, V.; Tiwari, P.; Mittal, S.; Guleria, R.; Khilnani, G.; Luhadia, S.; Solanki, R.; Gupta, K.; et al. Guidelines for diagnostic flexible bronchoscopy in adults: Joint Indian Chest Society/National College of chest physicians (I)/Indian association for bronchology recommendations. Lung India 2019, 36 (Suppl. S2), S37–S89. [Google Scholar] [CrossRef]
- Qanash, S.; Hakami, O.A.; Al-Husayni, F.; Gari, A.G. Flexible Fiberoptic Bronchoscopy: Indications, Diagnostic Yield and Complications. Cureus 2020, 12, e11122. [Google Scholar] [CrossRef]
- Colella, S.; Vilmann, P.; Konge, L.; Clementsen, P. Endoscopic ultrasound in the diagnosis and staging of lung cancer. Endosc. Ultrasound 2014, 3, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Pine, S.R.; Mechanic, L.E.; Enewold, L.; Chaturvedi, A.K.; Katki, H.A.; Zheng, Y.-L.; Bowman, E.D.; Engels, E.A.; Caporaso, N.E.; Harris, C.C. Increased levels of circulating interleukin 6, interleukin 8, c-reactive protein, and risk of lung cancer. J. Natl. Cancer Inst. 2011, 103, 1112–1122. [Google Scholar] [CrossRef]
- Pine, S.R.; Mechanic, L.E.; Enewold, L.; Bowman, E.D.; Ryan, B.M.; Cote, M.L.; Wenzlaff, A.S.; Loffredo, C.A.; Olivo-Marston, S.; Chaturvedi, A.; et al. Differential Serum Cytokine Levels and Risk of Lung Cancer between African and European Americans. Cancer Epidemiol. Biomark. Prev. 2016, 25, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Manser, R.; Lethaby, A.; Irving, L.B.; Stone, C.; Byrnes, G.; Abramson, M.J.; Campbell, D. Screening for lung cancer. Cochrane Database Syst. Rev. 2013, 6. Available online: www.cochranelibrary.com (accessed on 4 April 2023). [CrossRef] [PubMed]
- Wood, D.E.; Eapen, G.A.; Ettinger, D.S.; Hou, L.; Jackman, D.; Kazerooni, E.; Klippenstein, D.; Lackner, R.P.; Leard, L.; Leung, A.N.C.; et al. Lung Cancer Screening. J. Natl. Compr. Cancer Netw. 2012, 10, 240–265. [Google Scholar] [CrossRef] [PubMed]
- Ballaz, S.; Mulshine, J.L. The Potential Contributions of Chronic Inflammation to Lung Carcinogenesis. Clin. Lung Cancer 2003, 5, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Sethi, G.; Shanmugam, M.K.; Ramachandran, L.; Kumar, A.P.; Tergaonkar, V. Multifaceted link between cancer and inflammation. Biosci. Rep. 2012, 32, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.; Teixeira, A.L.; Coelho, A.; Araújo, A.; Medeiros, R. The Role of Inflammation in Lung Cancer. Inflamm. Cancer 2014, 816, 1–23. [Google Scholar]
- Ishihara, K.; Hirano, T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002, 13, 357–368. [Google Scholar] [CrossRef]
- Lin, W.-W.; Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Investig. 2007, 117, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Garon, E.B.; Yang, J.C.-H.; Dubinett, S.M. The Role of Interleukin 1β in the Pathogenesis of Lung Cancer. JTO Clin. Res. Rep. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Idris, A.; Ghazali, N.B.; Koh, D. Interleukin 1β—A Potential Salivary Biomarker for Cancer Progression? Bioinform. Biomark. 2015, 7, BIC.S25375. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowska-Lacka, A.; Matecka-Nowak, M.; Adamiak, E.; Lacki, J.K.; Cerkaska-Gluszak, B. Serum levels of interleukin-10 and interleukin-6 in patients with lung cancer. Neoplasma 1996, 43, 155–158. [Google Scholar]
- Gaur, P.; Bhattacharya, S.; Kant, S.; Kushwaha, R.A.; Garg, R.; Singh, G.; Pandey, S.; Sharma, S. Association of inflammatory biomarkers with lung cancer in North Indian population. Afr. Health Sci. 2019, 19, 2147–2155. [Google Scholar] [CrossRef] [Green Version]
- Meaney, C.L.; Zingone, A.; Brown, D.; Yu, Y.; Cao, L.; Ryan, B.M. Identification of serum inflammatory markers as classifiers of lung cancer mortality for stage I adenocarcinoma. Oncotarget 2017, 8, 40946–40957. [Google Scholar] [CrossRef] [Green Version]
- Tas, F.; Duranyildiz, D.; Argon, A.; Oğuz, H.; Çamlica, H.; Yasasever, V.; Topuz, E. Serum Levels of Leptin and Proinflammatory Cytokines in Advanced-Stage Non-Small Cell Lung Cancer. Med. Oncol. 2005, 22, 353–358. [Google Scholar] [CrossRef]
- Kaminska, J.; Kowalska, M.; Kotowicz, B.; Fuksiewicz, M.; Glogowski, M.; Wojcik, E.; Chechlinska, M.; Steffen, J. Pretreatment serum levels of cytokines and cytokine receptors in patients with non-small cell lung cancer, and correlations with clinicopathological features and prognosis: M-CSF—An independent prognostic factor. Oncology 2006, 70, 115–125. [Google Scholar] [CrossRef]
- Chang, C.H.; Hsiao, C.F.; Yeh, Y.M.; Chang, G.C.; Tsai, Y.H.; Chen, Y.M.; Huang, M.S.; Chen, H.L.; Li, Y.J.; Yang, P.C.; et al. Circulating interleukin-6 level is a prognostic marker for survival in advanced non-small cell lung cancer patients treated with chemotherapy. Int. J. Cancer 2013, 132, 1977–1985. [Google Scholar] [CrossRef]
- Cao, C.; Sun, S.F.; Lv, D.; Chen, Z.B.; Ding, Q.L.; Deng, Z.C. Utility of VEGF and sVEGFR-1 in bronchoalveolar lavage fluid for differential diagnosis of primary lung cancer. Asian Pac. J. Cancer Prev. 2013, 14, 2443–2446. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Chen, Z.-B.; Sun, S.-F.; Yu, Y.-M.; Ding, Q.-L.; Deng, Z.-C. Evaluation of VEGF-C and Tumor Markers in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis. Sci. Rep. 2013, 3, 3473. [Google Scholar] [CrossRef] [Green Version]
- Domagała-Kulawik, J.; Hoser, G.; Safianowska, A.; Grubek-Jaworska, H.; Chazan, R. Elevated TGF-β1 concentration in bronchoalveolar lavage fluid from patients with primary lung cancer. Arch. Immunol. Ther. Exp. 2006, 54, 143–147. [Google Scholar] [CrossRef]
- Yamada, D.; Kobayashi, S.; Wada, H.; Kawamoto, K.; Marubashi, S.; Eguchi, H.; Ishii, H.; Nagano, H.; Doki, Y.; Mori, M. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Eur. J. Cancer 2013, 49, 1725–1740. [Google Scholar] [CrossRef]
- Wang, Y.-s.; Miao, L.-y.; Liu, L.; Cai, H.-r.; Ding, J.-j.; Ren, S.-x.; Zhou, C.-c.; Schmid-Bindert, G. Serum cytokine levels in patients with advanced non-small cell lung cancer: Correlation with clinical outcome of erlotinib treatment. Chin. Med. J. (Engl.) 2013, 126, 3931–3935. [Google Scholar]
- van Horssen, R.; Ten Hagen, T.L.; Eggermont, A.M. TNF-alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist 2006, 11, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Dalaveris, E.; Kerenidi, T.; Katsabeki-Katsafli, A.; Kiropoulos, T.; Tanou, K.; Gourgoulianis, K.I.; Kostikas, K. VEGF, TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer 2009, 64, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Healy, Z.R.; Weinhold, K.J.; Murdoch, D.M. Transcriptional Profiling of CD8+ CMV-Specific T Cell Functional Subsets Obtained Using a Modified Method for Isolating High-Quality RNA From Fixed and Permeabilized Cells. Front. Immunol. 2020, 11, 1859. [Google Scholar] [CrossRef] [PubMed]
Variables | Cases (n = 33) | Controls (n = 33) | p-Value |
---|---|---|---|
Age (mean ± SD) | 62.7 ± 8.7 | 58.2 ± 13.6 | 0.114 |
Age range | 48–75 | 37–73 | - |
BMI (mean ± SD) | 23.5 ± 4.1 | 27.3 ± 5.8 | 0.003 |
BMI categories | 0.030 | ||
18.5–24.9 (kg/m2) | 2 (6.1%) | 6 (18.2%) | |
25–29.9 (kg/m2) | 18 (54.5%) | 8 (24.2%) | |
>30 (kg/m2) | 13 (39.4%) | 19 (57.6%) | |
Gender (male, %) | 21 (63.6%) | 14 (42.4%) | 0.084 |
Smoker/Ex-smoker (yes, %) | 20 (60.6%) | 16 (48.5%) | 0.322 |
Pack-year smoking (median, IQR) | 34.0 (22.5–41.0) | 18.5 (12.0–29.5) | <0.001 |
Exposure to respiratory hazards (yes, %) | 14 (42.4%) | 17 (51.5%) | 0.459 |
Benign lung pathology | |||
Asthma | - | 4 (12.1%) | - |
Chronic bronchitis | - | 9 (27.3%) | - |
Emphysema | - | 4 (12.1%) | - |
ILD | - | 8 (24.2%) | - |
HP | - | 6 (18.2%) | - |
Others | - | 2 (6.1%) | - |
Malignant lung pathology | |||
SCLC | 14 (42.4%) | - | - |
NSCLC | 19 (57.6%) | - | - |
Signs and Symptoms | Cases (n = 33) | Controls (n = 33) | p-Value |
---|---|---|---|
Cough (n, %) | 29 (87.9%) | 26 (78.8%) | 0.321 |
Type of cough (dry, %) | 20 (69.0%) | 17 (65.4%) | 0.777 |
Thoracic pain (n, %) | 10 (30.3%) | 2 (6.1%) | 0.010 |
Hemoptysis (n, %) | 6 (18.2%) | 3 (9.1%) | 0.281 |
Fever (n, %) | 1 (3.0%) | 3 (9.1%) | 0.302 |
Weight loss (n, %) | 23 (69.7%) | 2 (6.1%) | <0.001 |
Dyspnea (n, %) | 28 (84.8%) | 25 (75.8%) | 0.353 |
mMRC dyspnea (3–4) | 9 (32.1%) | 10 (40.0%) | 0.551 |
Anorexia (n, %) | 0 (0.0%) | 18 (54.5%) | <0.001 |
Fatigue (n, %) | 30 (90.9%) | 26 (78.8%) | 0.969 |
Wheezing and stridor (n, %) | 5 (15.2%) | 17 (51.5%) | 0.002 |
Pulmonary auscultation (normal, %) | 18 (54.5%) | 11 (33.3%) | 0.083 |
Symptom onset, months (mean ± SD) | 5.6±3.7 | 15.2 ± 10.4 | <0.001 |
Lung cancer staging | |||
IB | 6 (18.2%) | – | |
IIA | 14 (42.4%) | – | |
IIB | 9 (27.3%) | – | |
IIIA | 4 (12.1%) | – | |
CCI > 2 | 21 (63.6%) | 12 (36.4%) | 0.026 |
Variables | Cases (n = 33) | Controls (n = 33) | p-Value |
---|---|---|---|
Spirometry | <0.001 | ||
Normal | 5 (15.2%) | 9 (27.3%) | |
Obstructive pattern | 11 (33.3%) | 6 (18.2%) | |
Restrictive pattern | 3 (9.1%) | 15 (45.5%) | |
Mixt pattern | 14 (42.4%) | 3 (9.1%) | |
Degree of respiratory dysfunction (FEV1) | 0.173 | ||
Mild (≥80) | 13 (39.4%) | 18 (54.5%) | |
Moderate (50–79) | 15 (45.5%) | 14 (42.4%) | |
Severe (30–49) | 5 (15.2%) | 1 (3.0%) |
Serum Markers | Normal Range | Cases (n = 33) | Controls (n = 33) | p-Value |
---|---|---|---|---|
Initial evaluation | ||||
CRP | 0–5 mg/L | 76.6 ± 54.4 | 8.5 ± 6.8 | <0.001 |
ESR | 3–10 mm/h | 63.8 ± 34.3 | 22.5 ± 14.1 | <0.001 |
Leucocytes | 4–10 × 103 | 11.4 ± 4.8 | 7.5 ± 2.3 | <0.001 |
Neutrophils | 55–65% | 74.0 ± 8.8 | 60.9 ± 8.3 | <0.001 |
IL-1 | 0–5 pg/mL | 29.3 ± 18.4 | 7.2 ± 4.8 | <0.001 |
IL-6 | 0–7 pg/mL | 31.6 ± 20.9 | 5.8 ± 3.9 | <0.001 |
Ferritin | 30–400 ug/L | 504.7 ± 265.1 | 215.4 ± 132.1 | <0.001 |
1 month after treatment | ||||
CRP | 0–5 mg/L | 51.4 ± 35.9 | 6.6 ± 4.1 | <0.001 |
ESR | 3–10 mm/h | 42.8 ± 25.2 | 14.9 ± 8.3 | <0.001 |
Leucocytes | 4–10 × 103 | 8.8 ± 3.6 | 6.4 ± 2.2 | 0.002 |
Neutrophils | 55–65% | 63.5 ± 7.1 | 59.3 ± 8.4 | <0.001 |
IL-1 | 0–5 pg/mL | 15.4 ± 13.8 | 6.3 ± 3.3 | <0.001 |
IL-6 | 0–7 pg/mL | 12.9 ± 11.6 | 5.7 ± 3.5 | <0.001 |
Ferritin | 30–400 ug/L | 421 ± 247.3 | 226.3 ± 142.8 | <0.001 |
Inflammatory Markers | Normal Range * | Cases (n = 33) | Controls (n = 33) | p-Value |
---|---|---|---|---|
Initial evaluation | ||||
IFN-γ (3rd gen.) | <2 pg/mL | 69.7 ± 30.6 | 124.3 ± 58.1 | <0.001 |
IL-1β | <12 pg/mL | 98.8 ± 33.1 | 24.7 ± 11.5 | <0.001 |
IL-2 | <5 pg/mL | 32.4 ± 15.7 | 26.1 ± 9.6 | 0.053 |
IL-4 | <5 pg/mL | 53.5 ± 20.1 | 38.0 ± 15.2 | 0.008 |
IL-6 (2nd gen.) | 5–15 pg/mL | 126.2 ± 61.8 | 44.3 ± 28.9 | <0.001 |
IL-10 | <5 pg/mL | 42.7 ± 22.5 | 25.8 ± 13.9 | 0.005 |
IL-12p70 | <3 pg/mL | 106.2 ± 67.3 | 72.0 ± 42.1 | 0.016 |
TNF-α | <16 pg/mL | 45.6 ± 15.9 | 85.3 ± 33.7 | <0.001 |
1 month after treatment | ||||
IFN-γ (3rd gen.) | <2 pg/mL | 57.2 ± 26.8 | 68.8 ± 32.9 | 0.121 |
IL-1β | <12 pg/mL | 69.6 ± 29.3 | 15.2 ± 9.7 | <0.001 |
IL-2 | <5 pg/mL | 28.2 ± 13.7 | 13.9 ± 8.5 | <0.001 |
IL-4 | <5 pg/mL | 44.0 ± 21.6 | 28.4 ± 18.2 | 0.002 |
IL-6 (2nd gen.) | 5–15 pg/mL | 97.3 ± 50.9 | 39.2 ± 30.8 | <0.001 |
IL-10 | <5 pg/mL | 38.5 ± 19.3 | 19.8 ± 11.7 | <0.001 |
IL-12p70 | <3 pg/mL | 81.1 ± 42.0 | 52.3 ± 29.1 | <0.001 |
TNF-α | <16 pg/mL | 34.9 ± 16.5 | 47.1 ± 22.4 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hogea, P.; Tudorache, E.; Fira-Mladinescu, O.; Marc, M.; Velescu, D.; Manolescu, D.; Bratosin, F.; Rosca, O.; Mavrea, A.; Oancea, C. Serum and Bronchoalveolar Lavage Fluid Levels of Cytokines in Patients with Lung Cancer and Chronic Lung Disease: A Prospective Comparative Study. J. Pers. Med. 2023, 13, 998. https://doi.org/10.3390/jpm13060998
Hogea P, Tudorache E, Fira-Mladinescu O, Marc M, Velescu D, Manolescu D, Bratosin F, Rosca O, Mavrea A, Oancea C. Serum and Bronchoalveolar Lavage Fluid Levels of Cytokines in Patients with Lung Cancer and Chronic Lung Disease: A Prospective Comparative Study. Journal of Personalized Medicine. 2023; 13(6):998. https://doi.org/10.3390/jpm13060998
Chicago/Turabian StyleHogea, Patricia, Emanuela Tudorache, Ovidiu Fira-Mladinescu, Monica Marc, Diana Velescu, Diana Manolescu, Felix Bratosin, Ovidiu Rosca, Adelina Mavrea, and Cristian Oancea. 2023. "Serum and Bronchoalveolar Lavage Fluid Levels of Cytokines in Patients with Lung Cancer and Chronic Lung Disease: A Prospective Comparative Study" Journal of Personalized Medicine 13, no. 6: 998. https://doi.org/10.3390/jpm13060998
APA StyleHogea, P., Tudorache, E., Fira-Mladinescu, O., Marc, M., Velescu, D., Manolescu, D., Bratosin, F., Rosca, O., Mavrea, A., & Oancea, C. (2023). Serum and Bronchoalveolar Lavage Fluid Levels of Cytokines in Patients with Lung Cancer and Chronic Lung Disease: A Prospective Comparative Study. Journal of Personalized Medicine, 13(6), 998. https://doi.org/10.3390/jpm13060998