Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition Protocol
2.2. Segmentation of the Lesions
2.3. Data Preparation and Experimental Setup
2.4. Radiomics-Based Classification
2.5. CNN-Based Classification
3. Results
3.1. Dataset
3.2. Classification Results
4. Discussion
4.1. Findings
4.2. Comparison with Existing Studies
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yip, C.-H.; Rhodes, A. Estrogen and progesterone receptors in breast cancer. Future Oncol. 2014, 10, 2293–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarden, Y. Biology of HER2 and Its Importance in Breast Cancer. Oncology 2001, 61 (Suppl. S2), 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.; Mahato, R.; Cheng, K. The role of HER2 in cancer therapy and targeted drug delivery. J. Control Release 2010, 146, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2020, 3, 12–24. [Google Scholar] [CrossRef]
- Du, T.; Zhu, L.; Levine, K.M.; Tasdemir, N.; Lee, A.V.; Vignali, D.A.A.; Van Houten, B.; Tseng, G.C.; Oesterreich, S. Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism. Sci. Rep. 2018, 8, 7205. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Ma, D.; Ruan, M.; Zhao, S.; Liu, X.-Y.; Jiang, Y.-Z.; Shao, Z.-M. Mixed invasive ductal and lobular carcinoma has distinct clinical features and predicts worse prognosis when stratified by estrogen receptor status. Sci. Rep. 2017, 7, 10380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, L.J.; Zhang, J.; Mazurowski, M.A. Computational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J. Magn. Reson. Imaging 2015, 42, 902–907. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, H.; Ko, E.S. Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review. Korean J. Radiol. 2020, 21, 779–792. [Google Scholar] [CrossRef]
- Ye, D.-M.; Wang, H.-T.; Yu, T. The Application of Radiomics in Breast MRI: A Review. Technol. Cancer Res. Treat. 2020, 19, 1533033820916191. [Google Scholar] [CrossRef]
- Ji, Y.; Whitney, H.M.; Li, H.; Liu, P.; Giger, M.L.; Zhang, X. Differences in Molecular Subtype Reference Standards Impact AI-based Breast Cancer Classification with Dynamic Contrast-enhanced MRI. Radiology 2023, 307, e220984. [Google Scholar] [CrossRef]
- Davey, M.G.; Davey, M.S.; Boland, M.R.; Ryan, É.J.; Lowery, A.J.; Kerin, M.J. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging—A systematic review and meta-analysis. Eur. J. Radiol. 2021, 144, 109996. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Nguyen, A.-T.; Ki, S.Y.; Lee, J.E.; Do, L.-N.; Park, M.H.; Lee, J.S.; Kim, H.J.; Park, I.; Lim, H.S. Classification of MR-Detected Additional Lesions in Patients with Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning. Front. Oncol. 2021, 11, 744460. [Google Scholar] [CrossRef] [PubMed]
- Bhooshan, N.; Giger, M.L.; Jansen, S.A.; Li, H.; Lan, L.; Newstead, G.M.; Wu, J.; Cao, G.; Sun, X.; Lee, J.; et al. Cancerous Breast Lesions on Dynamic Contrast-enhanced MR Images: Computerized Characterization for Image-based Prognostic Markers. Radiology 2010, 254, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Bhooshan, N.; Giger, M.; Edwards, D.; Yuan, Y.; Jansen, S.; Li, H.; Lan, L.; Sattar, H.; Newstead, G. Computerized three-class classification of MRI-based prognostic markers for breast cancer. Phys. Med. Biol. 2011, 56, 5995–6008. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, Y.; Chang, K.; Lee, K.E.; Wang, O.; Li, J.; Lin, Y.; Pan, Z.; Chang, P.; Chow, D.; et al. Diagnosis of Benign and Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep Learning with Consideration of Peritumor Tissue. J. Magn. Reson. Imaging 2020, 51, 798–809. [Google Scholar] [CrossRef]
- Chou, S.-H.S.; Gombos, E.C.; Chikarmane, S.A.; Giess, C.S.; Jayender, J. Computer-aided heterogeneity analysis in breast MR imaging assessment of ductal carcinoma in situ: Correlating histologic grade and receptor status. J. Magn. Reson. Imaging 2017, 46, 1748–1759. [Google Scholar] [CrossRef]
- Tan, H.; Wu, Y.; Bao, F.; Zhou, J.; Wan, J.; Tian, J.; Lin, Y.; Wang, M. Mammography-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in breast cancer. Br. J. Radiol. 2020, 93, 20191019. [Google Scholar] [CrossRef]
- Guo, W.; Li, H.; Zhu, Y.; Lan, L.; Yang, S.; Drukker, K.; Morris, E.; Burnside, E.; Whitman, G.; Giger, M.L.; et al. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J. Med. Imaging 2015, 2, 041007. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.-H.; Wang, J.-X.; Ye, X.-H.; Deng, J.; Hang, J.; Yang, B. Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer. Eur. J. Radiol. 2019, 119, 108658. [Google Scholar] [CrossRef]
- Lee, S.E.; Sim, Y.; Kim, S.; Kim, E.-K. Predictive performance of ultrasonography-based radiomics for axillary lymph node metastasis in the preoperative evaluation of breast cancer. Ultrasonography 2021, 40, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Truhn, D.; Schrading, S.; Haarburger, C.; Schneider, H.; Merhof, D.; Kuhl, C. Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI. Radiology 2019, 290, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, G.; Bian, W.; Bai, Y.; He, S.; Liu, Y.; Liu, H.; Liu, J. Value of genomics- and radiomics-based machine learning models in the identification of breast cancer molecular subtypes: A systematic review and meta-analysis. Ann. Transl. Med. 2022, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Caballo, M.; Sanderink, W.B.G.; Han, L.; Gao, Y.; Athanasiou, A.; Mann, R.M. Four-Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast-Enhanced MRI. J. Magn. Reson. Imaging 2023, 57, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tan, T.; Han, L.; Appelman, L.; Veltman, J.; Wessels, R.; Duvivier, K.M.; Loo, C.; Gao, Y.; Wang, X.; et al. Predicting breast cancer types on and beyond molecular level in a multi-modal fashion. NPJ Breast Cancer 2023, 9, 16. [Google Scholar] [CrossRef]
- Lafcı, O.; Celepli, P.; Öztekin, P.S.; Koşar, P.N. DCE-MRI Radiomics Analysis in Differentiating Luminal A and Luminal B Breast Cancer Molecular Subtypes. Acad. Radiol. 2023, 30, 22–29. [Google Scholar] [CrossRef]
- Huang, T.; Fan, B.; Qiu, Y.; Zhang, R.; Wang, X.; Wang, C.; Lin, H.; Yan, T.; Dong, W. Application of DCE-MRI radiomics signature analysis in differentiating molecular subtypes of luminal and non-luminal breast cancer. Front. Med. 2023, 10, 1140514. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Qu, J.; Zhang, R.; Zhou, X.; Li, L.; Sun, K.; Tang, Z.; Jiang, H.; Li, H.; et al. Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study. Clin. Cancer Res. 2019, 25, 3538–3547. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Gan, L.; Jiang, Y.; Qin, N.; Li, C.; Zhang, Y.; Wang, X. Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer. Comput. Math. Methods Med. 2021, 2021, 2140465. [Google Scholar] [CrossRef]
- Xie, T.; Wang, Z.; Zhao, Q.; Bai, Q.; Zhou, X.; Gu, Y.; Peng, W. Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer. Front. Oncol. 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Tan, H.; Li, W.; Liu, Z.; Wu, Y.; Bai, Y.; Fu, F.; Jia, X.; Feng, A.; Liu, H.; et al. Radiomics Signatures Based on Multiparametric MRI for the Preoperative Prediction of the HER2 Status of Patients with Breast Cancer. Acad. Radiol. 2020, 28, 1352–1360. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Burnside, E.S.; Huang, E.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Zuley, M.; Net, J.M.; et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2016, 2, 16012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Xie, H.; Yang, Y.; Zhang, C.; Zhang, Y.; Li, Y.; Yang, Q.; Wang, D.; Luo, Y.; Mai, Z.; et al. Radiomic Signatures for Predicting Receptor Status in Breast Cancer Brain Metastases. Front. Oncol. 2022, 12, 878388. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-J.; Ramanathan, A.; Alamudun, F.; Tourassi, G. Deep radiogenomics for predicting clinical phenotypes in invasive breast cancer. In Proceedings of the 14th International Workshop on Breast Imaging (IWBI 2018), Atlanta, GA, USA, 8–11 July 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10718, pp. 391–396. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, F.; Wang, Z.; Zhou, M.; Li, C.; Yin, J. Multiregional Radiomic Signatures Based on Functional Parametric Maps from DCE-MRI for Preoperative Identification of Estrogen Receptor and Progesterone Receptor Status in Breast Cancer. Diagnostics 2022, 12, 2558. [Google Scholar] [CrossRef] [PubMed]
- Mouabbi, J.A.; Hassan, A.; Lim, B.; Hortobagyi, G.N.; Tripathy, D.; Layman, R.M. Invasive lobular carcinoma: An understudied emergent subtype of breast cancer. Breast Cancer Res. Treat. 2022, 193, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, J.; Li, S.; Lv, M.; Shen, Y.; Wang, B.; Li, P.; Yi, M.; Zhao, X.; Zhang, L.; et al. Invasive lobular carcinoma of the breast: A special histological type compared with invasive ductal carcinoma. PLoS ONE 2017, 12, e0182397. [Google Scholar] [CrossRef]
- Holli, K.; Lääperi, A.-L.; Harrison, L.; Luukkaala, T.; Toivonen, T.; Ryymin, P.; Dastidar, P.; Soimakallio, S.; Eskola, H. Characterization of Breast Cancer Types by Texture Analysis of Magnetic Resonance Images. Acad. Radiol. 2010, 17, 135–141. [Google Scholar] [CrossRef]
- Waugh, S.A.; Purdie, C.A.; Jordan, L.B.; Vinnicombe, S.; Lerski, R.A.; Martin, P.; Thompson, A.M. Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur. Radiol. 2015, 26, 322–330. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [Green Version]
- Avants, B.B.; Tustison, N.J.; Stauffer, M.; Song, G.; Wu, B.; Gee, J.C. The Insight ToolKit image registration framework. Front. Neuroinform. 2014, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, P.; Onishi, N.; Sadinski, M.; Gallagher, K.M.; Hughes, M.; Martinez, D.F.; Morris, E.A.; Sutton, E.J. Characterization of Sub-1 cm Breast Lesions Using Radiomics Analysis. J. Magn. Reson. Imaging 2019, 50, 1468–1477. [Google Scholar] [CrossRef]
- Bouhamama, A.; Leporq, B.; Khaled, W.; Nemeth, A.; Brahmi, M.; Dufau, J.; Marec-Bérard, P.; Drapé, J.-L.; Gouin, F.; Bertrand-Vasseur, A.; et al. Prediction of Histologic Neoadjuvant Chemotherapy Response in Osteosarcoma Using Pretherapeutic MRI Radiomics. Radiol. Imaging Cancer 2022, 4, 210107. [Google Scholar] [CrossRef] [PubMed]
- Kononenko, I. Estimating Attributes: Analysis and Extensions of RELIEF. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 1994; pp. 171–182. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, S.; Tian, Y.; Lui, H.; Zeng, H.; Wu, Y.; Chen, G. Dense-UNet: A novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant. Imaging Med. Surg. 2020, 10, 1275–1285. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), New York, NY, USA, 7 February 2020; Volume 34, pp. 12993–13000. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning, San Diego, CA, USA, 7–9 May 2015; Available online: https://arxiv.org/abs/1412.6980 (accessed on 26 May 2023).
- Hwang, K.-T.; Kim, J.; Jung, J.; Chang, J.H.; Chai, Y.J.; Oh, S.W.; Oh, S.; Kim, Y.A.; Park, S.B.; Hwang, K.R. Impact of Breast Cancer Subtypes on Prognosis of Women with Operable Invasive Breast Cancer: A Population-based Study Using seer databasebreast cancer subtype and prognosis. Clin. Cancer Res. 2019, 25, 1970–1979. [Google Scholar] [CrossRef] [Green Version]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, D.; Yin, X.; Zhang, X.; Huang, J.; Wu, Y.; Wang, M.; Yi, Z.; Li, H.; Li, H.; et al. Clinicopathological Characteristics and Breast Cancer–Specific Survival of Patients with Single Hormone Receptor–Positive Breast Cancer. JAMA Netw. Open 2020, 3, e1918160. [Google Scholar] [CrossRef] [Green Version]
- Bobholz, S.A.; Lowman, A.K.; Barrington, A.; Brehler, M.; McGarry, S.; Cochran, E.J.; Connelly, J.; Mueller, W.M.; Agarwal, M.; O’Neill, D.; et al. Radiomic Features of Multiparametric MRI Present Stable Associations with Analogous Histological Features in Patients with Brain Cancer. Tomography 2020, 6, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Cattell, R.; Chen, S.; Huang, C. Robustness of radiomic features in magnetic resonance imaging: Review and a phantom study. Vis. Comput. Ind. Biomed. Art 2019, 2, 19. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, L.; Hu, Y.; Shao, N.; Lin, Y.; He, S.; Shi, H.; Zhang, X.; Lin, Y. Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer. Front. Oncol. 2021, 11, 706733. [Google Scholar] [CrossRef]
- Doran, S.J.; Kumar, S.; Orton, M.; D’arcy, J.; Kwaks, F.; O’flynn, E.; Ahmed, Z.; Downey, K.; Dowsett, M.; Turner, N.; et al. “Real-world” radiomics from multi-vendor MRI: An original retrospective study on the prediction of nodal status and disease survival in breast cancer, as an exemplar to promote discussion of the wider issues. Cancer Imaging 2021, 21, 37. [Google Scholar] [CrossRef]
Classification Task | Methodology | Mono-Contrast (Val. Data AUC) | Multi-Contrast (Val. Data AUC) | |||||
---|---|---|---|---|---|---|---|---|
DCE | Sub | T2 | DCE + Sub | DCE + T2 | Sub + T2 | DCE + Sub + T2 | ||
HER2+ vs. HER2− | ReliefF + FCNN | 0.61 | 0.66 | 0.69 | 0.65 | 0.65 | 0.61 | 0.57 |
ReliefF + SVM | 0.61 | 0.62 | 0.60 | 0.59 | 0.60 | 0.59 | 0.61 | |
LASSO + FCNN | 0.61 | 0.60 | 0.64 | 0.67 | 0.59 | 0.64 | 0.65 | |
LASSO + SVM | 0.63 | 0.70 | 0.63 | 0.61 | 0.59 | 0.65 | 0.61 | |
ER+ vs. ER− | ReliefF + FCNN | 0.80 | 0.78 | 0.81 | 0.77 | 0.81 | 0.87 | 0.87 |
ReliefF + SVM | 0.77 | 0.73 | 0.78 | 0.80 | 0.83 | 0.76 | 0.80 | |
LASSO + FCNN | 0.85 | 0.87 | 0.85 | 0.90 | 0.88 | 0.91 | 0.93 | |
LASSO + SVM | 0.86 | 0.84 | 0.85 | 0.88 | 0.89 | 0.91 | 0.95 | |
PR+ Vs. PR− | ReliefF + FCNN | 0.59 | 0.67 | 0.65 | 0.69 | 0.69 | 0.68 | 0.58 |
ReliefF + SVM | 0.63 | 0.61 | 0.64 | 0.58 | 0.67 | 0.64 | 0.66 | |
LASSO + FCNN | 0.42 | 0.61 | 0.71 | 0.55 | 0.57 | 0.63 | 0.59 | |
LASSO + SVM | 0.63 | 0.68 | 0.55 | 0.56 | 0.65 | 0.59 | 0.64 | |
IDC vs. ILC | ReliefF + FCNN | 0.78 | 0.80 | 0.82 | 0.79 | 0.79 | 0.80 | 0.83 |
ReliefF + SVM | 0.74 | 0.73 | 0.80 | 0.80 | 0.85 | 0.84 | 0.81 | |
LASSO + FCNN | 0.79 | 0.74 | 0.87 | 0.80 | 0.85 | 0.83 | 0.80 | |
LASSO + SVM | 0.78 | 0.86 | 0.83 | 0.76 | 0.85 | 0.78 | 0.82 |
Classification Task | Methodology | Mono-Contrast (Test Data AUC) | Multi-Contrast (Test Data AUC) | |||||
---|---|---|---|---|---|---|---|---|
DCE | Sub | T2 | DCE +Sub | DCE + T2 | Sub + T2 | DCE + Sub + T2 | ||
HER2+ vs. HER2− | ReliefF + FCNN | 0.57 | 0.51 | 0.53 | 0.48 | 0.51 | 0.49 | 0.53 |
ReliefF + SVM | 0.57 | 0.58 | 0.53 | 0.50 | 0.53 | 0.49 | 0.53 | |
LASSO + FCNN | 0.53 | 0.53 | 0.50 | 0.49 | 0.52 | 0.53 | 0.56 | |
LASSO + SVM | 0.52 | 0.53 | 0.50 | 0.50 | 0.49 | 0.56 | 0.53 | |
Faster R-CNN | 0.51 | 0.53 | 0.45 | |||||
ER+ vs. ER− | ReliefF + FCNN | 0.68 | 0.66 | 0.71 | 0.67 | 0.74 | 0.72 | 0.64 |
ReliefF + SVM | 0.60 | 0.61 | 0.55 | 0.66 | 0.65 | 0.68 | 0.66 | |
LASSO + FCNN | 0.67 | 0.68 | 0.64 | 0.70 | 0.66 | 0.73 | 0.78 | |
LASSO + SVM | 0.73 | 0.70 | 0.72 | 0.74 | 0.74 | 0.74 | 0.73 | |
Faster R-CNN | 0.70 | 0.68 | 0.72 | |||||
PR+ vs. PR− | ReliefF + FCNN | 0.52 | 0.53 | 0.49 | 0.57 | 0.50 | 0.58 | 0.55 |
ReliefF + SVM | 0.49 | 0.58 | 0.52 | 0.51 | 0.50 | 0.53 | 0.55 | |
LASSO + FCNN | 0.50 | 0.49 | 0.53 | 0.52 | 0.54 | 0.51 | 0.49 | |
LASSO + SVM | 0.51 | 0.49 | 0.52 | 0.48 | 0.47 | 0.55 | 0.51 | |
Faster R-CNN | 0.54 | 0.53 | 0.49 | |||||
IDC vs. ILC | ReliefF + FCNN | 0.64 | 0.67 | 0.73 | 0.67 | 0.67 | 0.70 | 0.68 |
ReliefF + SVM | 0.64 | 0.66 | 0.70 | 0.68 | 0.73 | 0.71 | 0.70 | |
LASSO + FCNN | 0.61 | 0.68 | 0.64 | 0.64 | 0.68 | 0.67 | 0.68 | |
LASSO + SVM | 0.62 | 0.65 | 0.69 | 0.69 | 0.63 | 0.64 | 0.69 | |
Faster R-CNN | 0.58 | 0.51 | 0.56 |
Classification Task | Methodology | Mono-Contrast (Test Data AUC) | Multi-Contrast (Test Data AUC) | |||||
---|---|---|---|---|---|---|---|---|
DCE | Sub | T2 | DCE + Sub | DCE + T2 | Sub + T2 | DCE + Sub + T2 | ||
HER2+ vs. HER2− | ReliefF + FCNN | 0.58 | 0.61 | 0.57 | 0.55 | 0.55 | 0.59 | 0.55 |
ReliefF + SVM | 0.56 | 0.55 | 0.64 | 0.57 | 0.58 | 0.62 | 0.55 | |
LASSO + FCNN | 0.48 | 0.56 | 0.51 | 0.57 | 0.53 | 0.58 | 0.52 | |
LASSO + SVM | 0.55 | 0.55 | 0.59 | 0.58 | 0.56 | 0.58 | 0.53 | |
ER+ vs. ER− | ReliefF + FCNN | 0.69 | 0.65 | 0.79 | 0.69 | 0.68 | 0.72 | 0.74 |
ReliefF + SVM | 0.73 | 0.70 | 0.8 | 0.64 | 0.77 | 0.75 | 0.73 | |
LASSO + FCNN | 0.70 | 0.60 | 0.73 | 0.64 | 0.69 | 0.73 | 0.64 | |
LASSO + SVM | 0.71 | 0.71 | 0.74 | 0.71 | 0.75 | 0.69 | 0.74 | |
PR+ vs. PR− | ReliefF + FCNN | 0.53 | 0.49 | 0.56 | 0.51 | 0.59 | 0.53 | 0.53 |
ReliefF + SVM | 0.52 | 0.54 | 0.60 | 0.59 | 0.59 | 0.52 | 0.57 | |
LASSO + FCNN | 0.54 | 0.55 | 0.55 | 0.46 | 0.53 | 0.51 | 0.49 | |
LASSO + SVM | 0.48 | 0.56 | 0.53 | 0.41 | 0.53 | 0.51 | 0.51 | |
IDC vs. ILC | ReliefF + FCNN | 0.68 | 0.62 | 0.70 | 0.64 | 0.65 | 0.67 | 0.74 |
ReliefF + SVM | 0.70 | 0.63 | 0.68 | 0.65 | 0.70 | 0.70 | 0.70 | |
LASSO + FCNN | 0.67 | 0.62 | 0.69 | 0.66 | 0.67 | 0.70 | 0.75 | |
LASSO + SVM | 0.69 | 0.64 | 0.69 | 0.70 | 0.69 | 0.65 | 0.71 |
Classification Task | Number of Reduced Radiomic Features by Categories | |
---|---|---|
Size and Shape | Texture | |
HER2+ Vs. HER2− | Conventional measurements and features: n = 10 Moments: n = 5 | Descriptor-based features: n = 2; Gray level co-occurrence matrix; (GLCM) features: n = 15 |
ER+ vs. ER− | Conventional measurements and features: n = 3 Transforms: n = 1 | Descriptor-based feature: n = 2; Gabor filter responses: n = 3; Other frequency-based features: n = 17; GLCM features: n = 6 |
PR+ vs. PR− | Conventional measurements and features: n = 3 Moments: n = 4 Transforms: n = 1 | Descriptor-based features: n = 3; Gabor filter responses: n = 4; Other frequency-based features: n = 4; GLCM features: n = 11; Neighboring gray tone difference matrix (NGTDM) features: n = 1; Gray level run length matrix (GLRLM) features: n = 1 |
IDC vs. ILC | Conventional measurements and features: n = 2 | GLCM features: n = 19; GLRLM features: n = 1; NGTDM features: n = 5; Gray level size zone matrix; (GLSZM) features: n = 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraz, K.; Dauce, G.; Bouhamama, A.; Leporq, B.; Sasaki, H.; Bito, Y.; Beuf, O.; Pilleul, F. Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches. J. Pers. Med. 2023, 13, 1062. https://doi.org/10.3390/jpm13071062
Faraz K, Dauce G, Bouhamama A, Leporq B, Sasaki H, Bito Y, Beuf O, Pilleul F. Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches. Journal of Personalized Medicine. 2023; 13(7):1062. https://doi.org/10.3390/jpm13071062
Chicago/Turabian StyleFaraz, Khuram, Grégoire Dauce, Amine Bouhamama, Benjamin Leporq, Hajime Sasaki, Yoshitaka Bito, Olivier Beuf, and Frank Pilleul. 2023. "Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches" Journal of Personalized Medicine 13, no. 7: 1062. https://doi.org/10.3390/jpm13071062
APA StyleFaraz, K., Dauce, G., Bouhamama, A., Leporq, B., Sasaki, H., Bito, Y., Beuf, O., & Pilleul, F. (2023). Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches. Journal of Personalized Medicine, 13(7), 1062. https://doi.org/10.3390/jpm13071062