Pharmacogenomics and the Management of Mood Disorders—A Review
Abstract
:1. Introduction
1.1. Potential Benefit of Pharmacogenetics in Treatment Resistant Depression
1.2. Dosing Guidelines
2. Clinical Pharmacogenomic Studies in Psychiatry
Study Design | Genotyping Method | Number of Patients | Outcome |
---|---|---|---|
Open label, prospective cohort [16] | CYP1A2, CYP2D6, CYP2C19 (Genesight) | n = 25 Genotyping guided vs. n = 26 TAU | Genotyping leads to more reduction in depression scores |
Open label, prospective cohort [17] | CYP1A2, CYP2D6 CYP2C19 (Genesight) | n = 114 Genotyping guided vs. n = 113 TAU | Genotyping leads to more reduction in depression symptoms |
RCT, double-blind [18] | CYP1A2, 2C9, 2C19, 2D6, SCL6A4, HTR2A (Genesight) | n = 26 guided vs. n = 25 TAU | Genotyping results in higher response and remission rates |
RCT, double-blind [19] | CYP2D6, CYP2C19, ABCB1, not otherwise specified | n = 74 Genotyping guided vs. n = 74 TAU | Genotyping 2.52 times more likely to remit |
RCT, double-blind [20] | CYP2D6 and others, not specified (NeuroPharmagen) | n = 155 guided vs. n = 161 TAU | Genotyping results in higher response rate and better tolerability |
RCT, double blind, both depressed and anxiety patients [21] | CYP1A2, 2C9, 2C19, 2D6, 3A4, 3A5, SCL6A4, COMT, HTR2A, MHFR (NeurolDgenetix) | n = 352 Genotyping guided vs. n = 333 TAU | Genotyping leads to higher response rates and remission rates in patients with depression or anxiety |
RCT, double blind [22] | CYP1A2, 2C9, 2C19, 2B6, 2D6, HTR2A, SCL6A4 | n= 1167 in total | Genotyping leads to higher response and remission rates in depressed patients |
RCT, double blind [23] | CYP2D6 and others, not specified (NeuroPharmagen) | n = 52 genotyping guided vs. n = 48 TAU | Genotyping leads to more reduction in depression scores and higher response rates |
RCT, double blind [24] | CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, HTR2A, and SLC6A4 (Genesight) and MC4R, CNR1, NPY, GCG, HCRTR2, NDUFS1 (in enhanced Genesight) | n = 90 genotyping guided, n = 93 enhanced genotyping guided vs. n = 93 TAU | Genotyping did not lead to a higher decrease in depressive symptoms or higher response or remission |
RCT, double blind [25] | CYP2D6 and CYP2C19 (not otherwise specified) | n = 56 Genotyping guided vs. n = 55 TAU | Pharmacogenomic testing was associated with a faster achievement of therapeutic drug concentrations and a decrease in adverse reactions, but not with a decrease in depressive symptoms |
RCT, double blind [26] | CYP2C19, CYP2D6, CYP1A2, SLC6A4, and HTR2A (TaqMan probe–PCR and mass array) | n = 31 Genotyping guided vs. n = 40 TAU | Genotyping might not considerably improve the clinical efficiency and safety |
RCT, single blind [27] | CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, HLA, 5HTTLPR, HTR2A, HTR2C, POLG, SLC6A4 and UGT1A4 (TaqMan probe–PCR and mass array) | n = 55 Genotyping guided vs. n = 47 TAU | Genotyping did not lead to significant group differences although a trend was shown |
RCT, double blind [28] | Genecept (7 CYP enzymes genes with 45 variants, 11 pharmacodynamic or other genes) | n = 151 Genotyping guided vs. n = 153 TAU | Pharmacogenomic testing was not associated with an improvement of symptoms |
Open label, prospective cohort [29] | CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, UGT1A4, UGT2B15, SLC6A4, HTR2A, HLA-B*1502 and HLA-B*1502 (Genesight) | n = 966 Genotyping guided vs. n = 978 TAU | Genotyping based medication advice reduced the number of prescribed drugs with a drug-gene interaction compared to usual care |
2.1. Side Effects
2.2. Therapeutic Drug Monitoring (TDM)
3. Evidence from the Literature: Summary
3.1. Pharmacogenetic Recommendations for Psychiatric Practice
3.2. General Recommendations for All Psychopharmaca
- When considering genotyping, inform the patient and involve the patient in order to achieve shared decision making with regard to genotype.
- When genotype information is already available at the time of the prescription, use this information to select the right drug and the right dose for the right patient.
- Consider genotyping, when there is an indication (side effects or inefficacy of CYP2D6 and CYP2C19. Preemptive genotyping is therefore not recommended yet for psychotropic drugs.
- For some psychotropic drugs determination of CYP1A2, CYP2C9 and/or CYP3A4 can be of added value, but only determine those after consultation of a clinical pharmacologist or PharmD with pharmacogenetic expertise.
- Ensure that available genotyping results are recorded in the (electronic) patient file and that this information is shared with medication prescribers (such as the GP) as well as the pharmacy.
- Consult a clinical pharmacologist or PharmD with specific knowledge in pharmacogenetics when in doubt before adjusting the drug dosage.
- For a psychotropic drug where no dose recommendation is provided consider a switch to a different medicine form from a similar drug class, when there is a genetic variant in a CYP enzyme that is involved in the metabolization.
3.3. Specific Recommendations per Drug Class
Antidepressants
- In patients experiencing side effects or lack of efficacy after treatment with an adequate dose of an SSRI or SNRI. Genotyping should be considered especially in patients that experienced side effects or inefficacy with multiple psychotropic drugs with a similar CYP metabolism.
- In patients experiencing side effects or unexplained high or low blood drug levels in patients using TCA (tricyclic antidepressants).
- When next to above, there are side effects and/or inefficacy with other (somatic) pharmaca with similar CYP metabolism.
4. Conclusions
5. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vieta, E.; Colom, F. Therapeutic options in treatment resistant depression. Ann. Med. 2011, 43, 512–530. [Google Scholar] [CrossRef] [PubMed]
- Swedish Council on Health Technology Assessment. Treatment of Depression: A Systematic Review (Summary and conclusions) [Internet]; SBU Yellow Report No. 166/1+2+3; Swedish Council on Health Technology Assessment (SBU): Stockholm, Sweden, 2004. Available online: https://www.ncbi.nlm.nih.gov/books/NBK447957/ (accessed on 1 June 2023).
- Walker, E.; Kestler, L.; Bollini, A.; Hochman, K. Schizophrenia: Etiology and course. Annu. Rev. Psychol. 2004, 55, 410–430. [Google Scholar] [CrossRef] [PubMed]
- Altar, C.A.; Carhart, J.; Allen, J.D.; Hall-Flavin, D.; Winner, J.; Dechairo, B. Clinical Utility of Combinatorial Pharmacogenomics-Guided Antidepressant Therapy: Evidence from Three Clinical Studies. Mol. Neuropsychiatry 2015, 1, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcelli, S.; Drago, A.; Fabbri, C.; Gibiino, S.; Calati, R.; Serretti, A. Pharmacogenetics of antidepressant response. J. Psychiatry Neurosci. 2011, 36, 87–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Westrhenen, R.; Aitchison, K.J.; Ingelman-Sundberg, M.; Jukic, M.M. Pharmacogenomics of antidepressants and antipsychotic treatment: How far have we got and where are we going? Front. Psychiatry 2020, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Westrhenen, R.; van Schaik, R.H.N.; van Gelder, T.; Birkenhager, T.K.; Bakker, P.R.; Houwink, E.J.F.; Bet, P.M.; Hoogendijk, W.J.G.; van Weelden-Hulshof, M.J.M. Policy and Practice Review: A First Guideline on the Use of Pharmacogenetics in Clinical Psychiatric Practice. Front. Pharmacol. 2021, 12, 640032. [Google Scholar] [CrossRef]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; Llerena, A.; et al. Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Beunk, L.; Nijenhuis, M.; Soree, B.; de Boer-Veger, N.J.; Buunk, A.M.; Guchelaar, H.J.; Houwink, E.J.F.; Risselada, A.; Rongen, G.A.P.J.M.; van Schaik, R.H.N.; et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics. Eur. J. Hum. Genet. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Dean, L. Venlafaxine Therapy and CYP2D6 Genotype. In Medical Genetics Summaries [Internet]; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. [Google Scholar]
- Brouwer, J.M.J.L.; Nijenhuis, M.; Soree, B.; Guchelaar, H.J.; Swen, J.J.; van Schaik, R.H.N.; Weide, J.V.; Rongen, G.A.P.J.M.; Buunk, A.M.; de Boer-Veger, N.J.; et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs. Eur. J. Hum. Genet. 2022, 30, 1114–1120. [Google Scholar] [CrossRef]
- Zhou, Y.; Lauschke, V.M. The genetic landscape of major drug metabolizing cytochrome P450 genes—An updated analysis of population-scale sequencing data. Pharmacogenomics J. 2022, 22, 284–293. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M.; Persson, A.; Jukic, M.M. Polymorphic expression of CYP2C19 and 2D6 in the developing and adult human brain causing variables in cognition, risk for depression and suicide: The search for endogenous substrates. Pharmacogenomics 2014, 15, 1841–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zackrinsson, A.L.; Lindblom, B.; Ahler, J. High frequency of occurrence of CYP2D6 gene duplication/multiduplication in indicating ultrarapid metabolism among suicide cases. Clin. Pharmacol. Ther. 2011, 3, 354–359. [Google Scholar]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Decker, J.; Domschke, K.; Eckermann, G.; Egberts, G.; Gerlach, M.; Greiner, C.; et al. Consensus guidelines for therapeutic Drug monitoring in neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar]
- Hall-Flavin, D.K.; Winner, J.G.; Allen, J.D.; Jordan, J.J.; Nesheim, R.S.; A Snyder, K.; Drews, M.S.; Eisterhold, L.L.; Biernacka, J.M.; Mrazek, D.A. Using a pharmacogenomic algorithm to guide the treatment of depression. Transl. Psychiatry 2012, 2, e172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall-Flavin, D.K.; Winner, J.G.; Allen, J.D.; Carhart, J.M.; Proctor, B.; Snyder, K.A.; Drews, M.S.; Eisterhold, L.L.; Geske, J.; Mrazek, D.A. Utility of integrated pharmacogenomic testing to support the treatment of major depressive disorder in a psychiatric outpatient setting. Pharmacogenet. Genom. 2013, 23, 535–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winner, J.G.; Carhart, J.M.; Altar, C.A.; Allen, J.D.; DeChairo, B.M. A prospective, randomized, double-blind study assessing the clinical impact of integrated pharmacogenomic testing for major depressive disorder. Discov. Med. 2013, 16, 219–227. [Google Scholar]
- Singh, A.B. Improved Antidepressant Remission in Major Depression via a Pharmacokinetic Pathway Polygene Pharmacogenetic Report. Clin. Psychopharmacol. Neurosci. 2015, 13, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Perez, V.; Salavert, A.; Espadaler, J.; Tuson, M.; Saiz-Ruiz, J.; Saez-Navarro, C.; Babes, J.; Baca-Garcia, E.; Vieta, E.; Olivares, J.M.; et al. Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: Results of a randomized, double-blind clinical trial. BMC Psychiatry 2017, 14, 250. [Google Scholar] [CrossRef] [Green Version]
- Bradley, P.J.; Shiekh, M.; Mehra, V.; Vrbivky, K.; Layle, S.; Olson, M.C.; Maciel, A.; Cullors, A.; Garces, J.A.; Lukowiak, A.A. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: Randomized clinical trial demonstrating clinical utility. J. Psychiatr. Res. 2018, 96, 100–107. [Google Scholar] [CrossRef]
- Greden, J.F.; Parikh, S.V.; Rothschild, A.J.; Thase, M.E.; Dunlop, B.W.; De Battista, C.; Conway, C.R.; Forester, B.P.; Mondimore, F.M.; Shelton, R.C.; et al. Impact of pharmacogenomics in major depressive disorder in the GUIDED trial: A large, patient-and rater-blinded, randomized, controlled study. J. Psychiatr. Res. 2019, 111, 59–67. [Google Scholar] [CrossRef]
- Han, C.; Wang, S.M.; Bahk, W.M.; Lee, S.J.; Patkar, A.A.; Masand, P.S.; Mandelli, L.; Pae, C.-U.; Serretti, A. A pharmacogenomic-based antidepressant treatment for patients with major depressive disorder: Results from an 8-week, randomized, Single-blinded Clinical Trial. Clin. Psychopharm. Neurosci. 2018, 16, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K.; Zai, C.C.; Altar, C.A.; Tanner, J.-A.; Davies, P.E.; Traxler, P.; Li, J.; Cogan, E.S.; Kucera, M.T.; Gugila, A.; et al. Clinical utility of combinatorial pharmacogenomic testing in depression: A Canadian patient- and rater-blinded, randomized, controlled trial. Transl. Psychiatry 2022, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Vos, C.F.; Ter Hark, S.E.; Schellekens, A.F.A.; Spijker, J.; van der Meij, A.; Grotenhuis, A.J.; Mihaescu, R.; Kievit, W.; Donders, R.; Aarnoutse, R.E.; et al. Effectiveness of Genotype-Specific Tricyclic Antidepressant Dosing in Patients with Major Depressive Disorder: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2312443. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhao, W.; Qiu, Y.; Wu, H.; Chen, J.; Fang, Y.; Guo, W.; Li, L. Preliminary Clinical Investigation of Combinatorial Pharmacogenomic Testing for the Optimized Treatment of Depression: A Randomized Single-Blind Study. Front. Neurosci. 2019, 13, 960. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Chen, Y.; Demodena, A.; Leckband, S.G.; Fischer, E.; Golshan, S.; Suppes, T.; Kelsoe, J.R. A prospective study to determine the clinical utility of pharmacogenetic testing of veterans with treatment-resistant depression. J. Psychopharmacol. 2021, 35, 992–1002. [Google Scholar] [CrossRef]
- Perlis, R.H.; Dowd, D.; Fava, M.; Lencz, T.; Krause, D.S. Randomized, controlled, participant- and rater-blind trial of pharmacogenomic test-guided treatment versus treatment as usual for major depressive disorder. Depress. Anxiety 2020, 37, 834–841. [Google Scholar] [CrossRef]
- Oslin, D.W.; Lynch, K.G.; Shih, M.C.; Ingram, E.P.; Wray, L.O.; Chapman, S.R.; Kranzler, H.R.; Gelernter, J.; Pyne, J.M.; Stone, A.; et al. Effect of Pharmacogenomic Testing for Drug-Gene Interactions on Medication Selection and Remission of Symptoms in Major Depressive Disorder: The PRIME Care Randomized Clinical Trial. JAMA 2022, 328, 151–161. [Google Scholar] [CrossRef]
- Jürgens, G.; Jacobsen, C.B.; Rasmussen, H.B.; Werge, T.; Nordentoft, M.; Andersen, S.E. Utility and adoption of CYP2D6 and CYP2C19 genotyping and its translation into psychiatric clinical practice. Acta Psychiatr. Scand. 2012, 125, 228–237. [Google Scholar] [CrossRef]
- McInnes, G.; Lavertu, A.; Sangkuhl, K.; Klein, T.E.; Whirl-Carrillo, M.; Altman, R.B. Pharmacogenetics at Scale: An Analysis of the UK Biobank. Clin. Pharmacol. Ther. 2021, 109, 1528–1537. [Google Scholar] [CrossRef]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Bohringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: An open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleine Schaars, K.; van Westrhenen, R. Pharmacogenomics and the Management of Mood Disorders—A Review. J. Pers. Med. 2023, 13, 1183. https://doi.org/10.3390/jpm13071183
Kleine Schaars K, van Westrhenen R. Pharmacogenomics and the Management of Mood Disorders—A Review. Journal of Personalized Medicine. 2023; 13(7):1183. https://doi.org/10.3390/jpm13071183
Chicago/Turabian StyleKleine Schaars, Kristian, and Roos van Westrhenen. 2023. "Pharmacogenomics and the Management of Mood Disorders—A Review" Journal of Personalized Medicine 13, no. 7: 1183. https://doi.org/10.3390/jpm13071183
APA StyleKleine Schaars, K., & van Westrhenen, R. (2023). Pharmacogenomics and the Management of Mood Disorders—A Review. Journal of Personalized Medicine, 13(7), 1183. https://doi.org/10.3390/jpm13071183