Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Prescriptions and Co-Prescriptions per Cohort
3.1.1. Breast Cancer Cohort
3.1.2. Dyslipidemia Cohort
3.1.3. Hypertension Cohort
3.1.4. Warfarin Cohort
3.1.5. HIV Cohort
3.2. Selected Pharmacogenes and Their Variants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hockings, J.K.; Pasternak, A.L.; Erwin, A.L.; Mason, N.T.; Eng, C.; Hicks, J.K. Pharmacogenomics: An evolving clinical tool for precision medicine. Clevel. Clin. J. Med. 2020, 87, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Caudle, K.; Gong, L.; Whirl-Carrillo, M.; Stein, C.; Scott, S.; Lee, M.; Gage, B.; Kimmel, S.; Perera, M.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desta, Z.; Gammal, R.S.; Gong, L.; Whirl-Carrillo, M.; Gaur, A.H.; Sukasem, C.; Hockings, J.; Myers, A.; Swart, M.; Tyndale, R.F.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy. Clin. Pharmacol. Ther. 2019, 106, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Tata, B.E.; Ambele, A.M.; Pepper, S.M. Barriers to Implementing Clinical Pharmacogenetics Testing in Sub-Saharan Africa. A Critical Review. Pharmaceutics 2020, 12, 809. [Google Scholar] [CrossRef] [PubMed]
- Simkins, C. The Southern African development Community I-population. Helen Suzman Foundation. 2022. Available online: https:/hsf.org.za/publications/hsf-briefs/the-southern-african-development-community-i-population (accessed on 7 December 2022).
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet Glob Health 2019, 7, e1375–e1387. [Google Scholar] [CrossRef] [Green Version]
- Gona, P.N.; Gona, C.M.; Ballout, S.; Rao, S.R.; Kimokoti, R.; Mapoma, C.C.; Mokdad, A.H. Burden and changes in HIV/AIDS morbidity and mortality in Southern Africa Development Community Countries, 1990–2017. BMC Public Health 2020, 20, 867. [Google Scholar] [CrossRef]
- Dwyer-Lindgren, L.; Cork, M.A.; Sligar, A.; Steuben, K.M.; Wilson, K.F.; Provost, N.R.; Mayala, B.K.; VanderHeide, J.D.; Collison, M.L.; Hall, J.B.; et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature 2019, 570, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Eichmeyer, J.; Munro, C. The Building Blocks of a Pharmacogenomic Program. From Stakeholders to Services, Get the Basics for Crafting a Program in This Rising Field of Personalized Medicine. Clinical Laboratory News. 2021. Available online: https://www.aacc.org/cln/articles/2021/april/the-building-blocks-of-a-pharmacogenomic-program (accessed on 5 May 2023).
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; E Klein, T. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- Swart, M.; Ren, Y.; Smith, P.; Dandara, C. ABCB1 4036A>G and 1236C>T polymorphisms affect plasma efavirenz levels in South African HIV/AIDS patients. Front. Genet. 2012, 3, 236. [Google Scholar] [CrossRef] [Green Version]
- Swart, M.; Whitehorn, H.; Ren, Y.; Smith, P.; Ramesar, R.S.; Dandara, C. PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients. BMC Med. Genet. 2012, 13, 112. [Google Scholar] [CrossRef] [Green Version]
- Swart, M.; Skelton, M.; Wonkam, A.; Kannemeye, L.; Chin’ombe, N.; Dandara, C. CYP1A2, CYP2A6, CYP2B6, CYP3A4 and CYP3A5 Polymorphisms in Two Bantu-Speaking Populations from Cameroon and South Africa: Implications for Global Pharmacogenetics. Curr. Pharmacogenomics Pers. Med. 2012, 10, 43–53. [Google Scholar] [CrossRef]
- Kampira, E.; Dzobo, K.; Kumwenda, J.; van Oosterhout, J.J.; Parker, M.I.; Dandara, C. Peripheral blood mitochondrial DNA/nuclear DNA (mtDNA/nDNA) ratio as a marker of mitochondrial toxicities of stavudine containing antiretroviral therapy in HIV-infected Malawian patients. OMICS 2014, 18, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Mpeta, B.; Kampira, E.; Castel, S.; Mpye, K.L.; Soko, N.D.; Wiesner, L.; Smith, P.; Skelton, M.; Lacerda, M.; Dandara, C.; et al. Differences in genetic variants in lopinavir disposition among HIV-infected Bantu Africans. Pharmacogenomics 2016, 17, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.F.; Bourgeois, S.; Chaponda, M.; Takeshita, L.Y.; Morris, A.P.; Castro, E.M.C.; Alfirevic, A.; Jones, A.R.; Rigden, D.J.; Haldenby, S.; et al. Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population. J. Antimicrob. Chemother. 2017, 72, 1152–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, D.F.; Chaponda, M.; Castro, E.M.C.; Jorgensen, A.L.; Khoo, S.; Van Oosterhout, J.J.; Dandara, C.; Kampira, E.; Ssali, F.; Munderi, P.; et al. CYP2B6 c.983T>C polymorphism is associated with nevirapine hypersensitivity in Malawian and Ugandan HIV populations. J. Antimicrob. Chemother. 2014, 69, 3329–3334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhandire, D.; Lacerda, M.; Castel, S.; Mhandire, K.; Zhou, D.; Swart, M.; Shamu, T.; Smith, P.; Musingwini, T.; Wiesner, L.; et al. Effects of CYP2B6 and CYP1A2 Genetic Variation on Nevirapine Plasma Concentration and Pharmacodynamics as Measured by CD4 Cell Count in Zimbabwean HIV-Infected Patients. OMICS 2015, 19, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Ndadza, A.; Muyambo, S.; Mntla, P.; Wonkam, A.; Chimusa, E.; Kengne, A.P.; Ntsekhe, M.; Dandara, C. Profiling of warfarin pharmacokinetics associated genetic variants: Black Africans portray unique genetic markers important for an African specific warfarin pharmacogenetics dosing algorithm. J. Thromb. Haemost. 2021, 19, 2957–2973. [Google Scholar] [CrossRef] [PubMed]
- Muyambo, S.; Ndadza, A.; Soko, N.D.; Kruger, B.; Kadzirange, G.; Chimusa, E.; Masimirembwa, C.M.; Ntsekhe, M.; Nhachi, C.F.; Dandara, C. Warfarin Pharmacogenomics for Precision Medicine in Real-Life Clinical Practice in Southern Africa: Harnessing 73 Variants in 29 Pharmacogenes. OMICS 2021, 26, 35–50. [Google Scholar] [CrossRef]
- Soko, N.; Dandara, C.; Ramesar, R.; Kadzirange, G.; Masimirembwa, C. Pharmacokinetics and Pharmacogenetics of Rosuvastatin in 30 healthy Zimbabwean individuals of African ancestry. Br. J. Clin. Pharmacol. 2016, 82, 326–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soko, N.D.; Chimusa, E.; Masimirembwa, C.; Dandara, C. An African-specific profile of pharmacogene variants for rosuvastatin plasma variability: Limited role for SLCO1B1 c.521TC and ABCG2 c.421AC. Pharmacogenomics J. 2019, 19, 240–248. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. CDC in South Africa. CDC in South Africa. Available online: https://www.cdc.gov/globalhealth/countries/southafrica/default.htm#disease (accessed on 17 November 2022).
- Centers for Disease Control and Prevention. CDC in Zimbabwe. CDC in Zimbabwe. 2019. Available online: https://www.cdc.gov/globalhealth/countries/zimbabwe/pdf/zimbabwe-factsheet.pdf (accessed on 9 December 2022).
- Centers for Disease Control and Prevention. CDC in Malawi. CDC in Malawi. 2019. Available online: https://www.cdc.gov/globalhealth/countries/malawi/pdf/Malawi_Factsheet-p.pdf (accessed on 18 January 2023).
- World Health Organization (WHO). Death from Non Communicable Diseases on the Rise in Africa. 2022. Available online: https://www.afro.who.int/news/deaths-noncommunicable-diseases-rise-africa (accessed on 18 January 2023).
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018, 129, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Bigna, J.J.; Nansseu, J.R.; Nyaga, U.F.; Balti, E.V.; Echouffo-Tcheugui, J.B.; Kengne, A.P. Prevalence of dyslipidaemia among adults in Africa: A systematic review and meta-analysis. Lancet Glob. Health 2018, 6, e998–e1007. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation. Diabetes in Africa. IDF Diabetes Atlas 10th edition. 2021. Available online: https://www.idf.org/our-network/regions-members/africa/diabetes-in-africa.html (accessed on 19 January 2023).
- World Health Organization (WHO). Update of Recommendations on First- and Second-Line Antiretroviral Regimens. Geneva; 2019. Available online: https://www.who.int/publications/i/item/WHO-CDS-HIV-19.15 (accessed on 19 January 2023).
- Makoni, M. The promise of paediatric dolutegravir in Zimbabwe. Lancet HIV 2022, 9, e603–e604. [Google Scholar] [CrossRef] [PubMed]
- National Department of Health SA. ART Guidelines for the Management of HIV in Adults, Pregnancy, Adolescents, Children, Infants and Neonates. Available online: https://www.health.gov.za/wp-content/uploads/2020/11/2019-art-guideline.pdf (accessed on 19 January 2023).
- Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenet. Genom. 2012, 22, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Goswami, S.; Gong, L.; Giacomini, K.; Altman, R.B.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for SLC22A1. Pharmacogenet. Genom. 2014, 24, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Tarasova, L.; Kalnina, I.; Geldnere, K.; Bumbure, A.; Ritenberga, R.; Nikitina-Zake, L.; Fridmanis, D.; Vaivade, I.; Pirags, V.; Klovins, J. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet. Genom. 2012, 22, 659–666. [Google Scholar] [CrossRef]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and Simvastatin-Induced Myopathy: 2014 Update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef]
- Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. Organic anion transporting polypeptide 1B1: A genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 2011, 63, 157–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasanen, M.K.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genom. 2006, 16, 873–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper-DeHoff, R.M.; Niemi, M.; Ramsey, L.B.; Luzum, J.A.; Tarkiainen, E.K.; Straka, R.J.; Gong, L.; Tuteja, S.; Wilke, R.A.; Wadelius, M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and Statin-Associated Musculoskeletal Symptoms. Clin. Pharmacol. Ther. 2022, 111, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Aklillu, E.; Mugusi, S.; Ngaimisi, E.; Hoffmann, M.M.; König, S.; Ziesenitz, V.; Mikus, G.; Haefeli, W.E.; Weiss, J. Frequency of the SLCO1B1 388A>G and the 521T>C polymorphism in Tanzania genotyped by a new LightCycler-based method. Eur. J. Clin. Pharmacol. 2016, 67, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- DeGorter, M.K.; Tirona, R.G.; Schwarz, U.I.; Choi, Y.-H.; Dresser, G.K.; Suskin, N.; Myers, K.; Zou, G.; Iwuchukwu, O.; Wei, W.-Q.; et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ. Cardiovasc. Genet. 2013, 6, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Kiaco, K.; Rodrigues, A.S.; do Rosário, V.; Gil, J.P.; Lopes, D. The drug transporter ABCB1 c.3435C>T SNP influences artemether-lumefantrine treatment outcome. Malar. J. 2017, 16, 383. [Google Scholar] [CrossRef]
- Boonprasent, K.; Kosa, N.; Muhamad, P.; Cheoymang, A.; and Na-Bangchong, K. Association between ABCB1 Polymorphisms and Artesunate-Mefloquine Treatment Responses of Patients with Falciparum Malaria on the Thailand-Myanmar Border. Am. J. Trop. Med. Hyg. 2021, 104, 2152–2158. [Google Scholar] [CrossRef]
- Tavares, L.C.; Marcatto, L.R.; Soares, R.A.G.; Krieger, J.E.; Pereira, A.C.; Santos, P.C.J.L. Association Between ABCB1 Polymorphism and Stable Warfarin Dose Requirements in Brazilian Patients. Front. Pharmacol. 2018, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Tulsyan, S.; Mittal, R.D.; Mittal, B. The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment. Pharmgenomics Pers. Med. 2016, 9, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Finta, C.; Zaphiropoulos, P.G. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene 2000, 260, 13–23. [Google Scholar] [CrossRef]
- Mpye, K.L.; Matimba, A.; Dzobo, K.; Chirikure, S.; Wonkam, A.; Dandara, C. Disease burden and the role of pharmacogenomics in African populations. Glob. Health Epidemiol. Genom. 2017, 2, e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bains, R.K.; Kovacevic, M.; Plaster, C.A.; Tarekegn, A.; Bekele, E.; Bradman, N.N.; Thomas, M.G. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genet. 2013, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.; He, Y.; Swen, J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crewe, H.K.; Notley, L.M.; Wunsch, R.M.; Lennard, M.S.; Gillam, E.M.J. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab. Dispos. 2002, 30, 869–874. [Google Scholar] [CrossRef]
- Swart, M.; Skelton, M.; Ren, Y.; Smith, P.; Takuva, S.; Dandara, C. High predictive value of CYP2B6 SNPs for steady-state plasma efavirenz levels in South African HIV/AIDS patients. Pharmacogenet Genom. 2013, 23, 415–427. [Google Scholar] [CrossRef]
- Nyakutira, C.; Röshammar, D.; Chigutsa, E.; Chonzi, P.; Ashton, M.; Nhachi, C.; Masimirembwa, C. High prevalence of the CYP2B6 516G→T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur. J. Clin. Pharmacol. 2008, 64, 357–365. [Google Scholar] [CrossRef]
- Sinxadi, P.Z.; Leger, P.D.; McIlleron, H.M.; Smith, P.J.; Dave, J.A.; Levitt, N.S.; Maartens, G.; Haas, D.W. Pharmacogenetics of plasma efavirenz exposure in HIV-infected adults and children in South Africa. Br. J. Clin. Pharmacol. 2015, 80, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Masimirembwa, C.; Persson, I.; Bertilsson, L.; Hasler, J.; Ingelman-Sundberg, M. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: Association with diminished debrisoquine hydroxylase activity. Br. J. Clin. Pharmacol. 1996, 42, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agúndez, J.A.; Grosser, T. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin. Pharmacol. Ther. 2020, 108, 191–200. [Google Scholar] [CrossRef]
- Li-Wan-Po, A.; Girard, T.; Farndon, P.; Cooley, C.; Lithgow, J. Pharmacogenetics of CYP2C19: Functional and clinical implications of a new variant CYP2C19*17. Br. J. Clin. Pharmacol. 2010, 69, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Gammal, R.S.; Court, M.H.; Haidar, C.E.; Iwuchukwu, O.F.; Gaur, A.H.; Alvarellos, M.; Guillemette, C.; Lennox, J.L.; Whirl-Carrillo, M.; Brummel, S.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin. Pharmacol. Ther. 2016, 99, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Carrato, A. Precision Medicine: UGT1A1 Genotyping to Better Manage Irinotecan-Induced Toxicity. JCO Oncol. Pract. 2022, 18, 278–280. [Google Scholar] [CrossRef] [PubMed]
Cohort | Reference | n | Study Population | Phenotype Investigated | Pharmacogenes Genotyped (Investigated) |
---|---|---|---|---|---|
1. Pharmacogenomics of antiretroviral therapy | Swart et al., 2012 [12] | 282 | Bantu-speaking South Africans | Efavirenz plasma level, neuropsychological conditions, rashes, hallucination, lack of sleep | ABCB1 |
Swart et al., 2012 [13] | 464 | Bantu-speaking South Africans | Efavirenz plasma level, neuropsychological conditions, rashes, hallucination, lack of sleep | NR1I3, NR1I2 | |
Swart et al., 2013 [14] | 464 | Bantu-speaking South Africans | Efavirenz plasma level, neuropsychological conditions, rashes, hallucination, lack of sleep | CYP1A2, CYP2A6, CYP2B6, CYP3A4, CYP3A5 | |
Kampira et al., 2014 [15] | 203 | Bantu-speaking Malawians | 21% peripheral neuropathy 18% lipodystrophy 17% elevated lactate (>2.5 mMol/L) | mtDNA:nDNA ratio | |
Mpeta et al.; 2016 [16] | 86 | Bantu-speaking South Africans | Lopinavir plasma concentration | CYP3A4 | |
Carr et al., 2017 [17] | 151 | Bantu-speaking Malawians | Nevirapine hypersensitivity | GWAS | |
Carr et al., 2014 [18] | 209 | Bantu-speaking Malawians | Nevirapine hypersensitivity | CYP2B6 | |
Mhandire et al., 2015 [19] | 118 | Bantu-speaking Zimbabweans | Nevirapine hypersensitivity CD4 cell count | CYP2B6, CYP1A2 | |
2. Atrial fibrillation and mechanical valves (warfarin) | Ndadza et al., 2021 [20] | 503 | Black and mixed-ancestry South Africans and Zimbabweans | Warfarin maintenance dose | VKORC1, ABACB1, CYP2C9, CYP2C8, CYP1A2, CYP3A4 |
Muyambo et al., 2022 [21] | 503 | Black and mixed-ancestry South Africans and Zimbabweans | No phenotype investigated | 29 pharmacogenes and 73 variants | |
3. Pharmacogenetics of tamoxifen | Unpublished data | 282 | Black, European and mixed-ancestry South Africans | Adverse drug reactions reported include hot flushes, pain, blood clots, depression, leg cramps, pins and needles, body aches, stroke, endometrial thickening, endometrial cancer, visual problems and recurrence | CYP2D6, CYP3A4, CYP3A5, CYP2C9, CYP2C19, CYP2B6, SULT1A1, SULT1E1, SULT2A1, UGT1A4, UGT1A8, UGT1A10, UGT2B7, UGT2B15 |
4. PRECODE—hypertension arm | Unpublished data | 1613 | Black and Mixed ancestry South Africans | Resistant hypertension, diabetes, | ABCB1, CYP3A5, NEDD4L, SCNN1B, CES1, NR3C2, ADRB1 |
5. PRECODE—dyslipidemia arm | Unpublished data | 834 | Black and Mixed ancestry South Africans | Statin associated myopathy, diabetes, hypertension | ABCB1, ABCG2, CYP3A4, CYP3A5, SLCO1B1 |
Soko et al., 2016 [22] | 30 | Bantu speaking Zimbabweans | Rosuvastatin plasma levels | ABCG2, SLCO1B1 | |
Soko et al., 2018 [23] | 30 | Bantu speaking Zimbabweans | Rosuvastatin plasma levels | Whole exomes |
Drug | Pharmacogene |
---|---|
Amlodipine | CYP3A4 CYP3A5 CACNAIC ABCB1 ACE |
Hydrochlorothiazide | ADD1 NEDD4L KCNJ1 WNK1 ACE |
Enalapril | CES1 ACE VEGFA ABO ADRB2 |
Atenolol | ADRB2 ADRB1 AGT GNB3 GRK4 |
Simvastatin | SLCO1B1 ABCB1 CYP3A4 CYP3A5 CYP2C9 ABCG2 |
Atorvastatin | SLCO1B1 ABCB1 CYP3A5 APOE CYP3A4 ABCG2 |
Metformin | SLC22A1 SLC47A1 SLC47A2 SLC22A2 ATM |
Furosemide | NPPA-ASI ACE ADD1 SCNN1G SLC12A3 |
Warfarin | CYP2C9 VKORC1 CYP4F2 GGCX CYP2C19 |
Spironolactone | ACE CYP4A11 ADRB1 ADRB2 ADD1 |
Doxazosin | ADRA1B ADRA2A KCNH2 |
Efavirenz | CYP2B6 NRI13 NRI12 UGT2B7 CYP2A6 ABCB1 |
Insulin | G6PD SCNN1B SLC30A8 |
Lamivudine | SLC22A1 OCT2 |
Gliclazide | KCNJ11 CYP2C9 ABCC8 KCNQ1 |
Nevirapine | CYP3A4 CYP2D6 CY2B6 ABCB1 |
Stavudine | Discontinued |
Tamoxifen | CYP2D6 CYP2C19 CYP3A5 ABCC2 CYP2B6 |
Tramadol | CYP2D6 ABCB1 OPRM1 COMT SLC22A1 |
Panado | SULT1A1 SULT1A3 UGT1A1 |
Dolutegravir | CYP3A4 ABCG2 ABCB1 UGT1A1 UGT1A3 UGT1A9 SLC22A2 |
The following polymorphism frequencies were obtained from Muyambo et al. [21] | ||||||||
---|---|---|---|---|---|---|---|---|
Variant Allele Frequencies | ||||||||
Gene | dbSNP | Africans (Southern Africa) | Mixed Ancestry (Southern Africa) | West African (YRI) | East African (LWK) | African Americans | East Africans | Europeans |
ABCB1 | rs1045642 | 0.09 | 0.40 | 0.13 | 0.14 | 0.23 | 0.40 | 0.52 |
CYP2B6 | rs28399499 | 0.10 | 0.03 | 0.12 | 0.06 | 0.07 | 0.00 | 0.00 |
rs3745274 (c.516G>T) | 0.35 | 0.32 | 0.40 | 0.36 | 0.35 | 0.22 | 0.24 | |
CYP2C9 | rs1799853 (*2) | 0.01 | 0.04 | 0.00 | 0.00 | 0.07 | 0.001 | 0.12 |
rs1057910 (*3) | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.03 | 0.07 | |
rs7900194 (*8) | 0.11 | 0.02 | 0.05 | 0.07 | 0.02 | 0.00 | 0.02 | |
rs2256871 (*9) | 0.58 | ----- | 0.09 | 0.15 | 0.07 | 0.00 | 0.001 | |
CYP2C19 | rs12248560 (*17) | 0.14 | 0.13 | 0.25 | 0.18 | 0.22 | 0.02 | 0.22 |
rs4244285(*2) | 0.17 | 0.22 | 0.17 | 0.21 | 0.18 | 0.31 | 0.15 | |
rs28399504(*3) | 1.00 | 0.00 | ||||||
CYP2D6 | rs1065852 (*10) | 0.07 | 0.10 | 0.11 | 0.04 | 0.19 | 0.57 | 0.20 |
rs72549357 (*15) | 0.05 | 0.03 | ----- | ----- | ----- | ----- | ----- | |
rs28371706 (*82) | 0.19 | 0.04 | 0.26 | 0.19 | 0.14 | 0.00 | 0.00 | |
rs59421388 (*29) | 0.15 | 0.006 | 0.11 | 0.17 | 0.07 | 0.00 | 0.00 | |
rs3892097 (*4) | 0.02 | 0.11 | 0.06 | 0.03 | 0.15 | 0.00 | 0.19 | |
rs28371725 (*41) | 0.03 | 0.05 | 0.09 | 0.03 | 0.09 | 0.04 | 0.09 | |
rs16947 (*34) | 0.12 | 0.23 | 0.56 | 0.65 | 0.46 | 0.14 | 0.34 | |
CYP3A4 | rs35599367(*22) | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.005 |
CYP3A5 | rs776746 (*3) | 0.15 | 0.58 | 0.17 | 0.12 | 0.31 | 0.71 | 0.95 |
rs10264272 (*6) | 0.24 | 0.05 | 0.17 | 0.24 | 0.12 | 0.00 | 0.0003 | |
rs41303343 (*7) | 0.14 | 0.04 | 0.12 | 0.12 | 0.04 | 0.00 | 0.00 | |
SLCO1B1 | rs4149056 | 0.005 | 0.08 | 0.009 | 0.02 | 0.04 | 0.12 | 0.16 |
The following polymorphism frequencies were obtained from 1000 Genomes [24] | ||||||||
Gene | Variant ID | African | East Asian | European | South Asian | American | ||
CYP2B6 | rs4803419 | 0.08 | 0.44 | 0.32 | 0.34 | 0.35 | ||
rs12208357 | 0.004 | 0.00 | 0.06 | 0.02 | 0.02 | |||
rs34130495 | 0.003 | 0.00 | 0.02 | 0.01 | 0.07 | |||
SLC22A1 | rs72552763 | 0.05 | 0.005 | 0.18 | 0.15 | 0.29 | ||
rs34059508 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 | |||
rs628031 | 0.73 | 0.74 | 0.59 | 0.61 | 0.78 | |||
SLC22A2 | rs316019 | 0.19 | 0.14 | 0.11 | 0.13 | 0.09 | ||
UGT1A1 | rs4148323 (*6) | 0.001 | 0.14 | 0.001 | 0.002 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soko, N.D.; Muyambo, S.; Dandara, M.T.L.; Kampira, E.; Blom, D.; Jones, E.S.W.; Rayner, B.; Shamley, D.; Sinxadi, P.; Dandara, C. Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases. J. Pers. Med. 2023, 13, 1185. https://doi.org/10.3390/jpm13081185
Soko ND, Muyambo S, Dandara MTL, Kampira E, Blom D, Jones ESW, Rayner B, Shamley D, Sinxadi P, Dandara C. Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases. Journal of Personalized Medicine. 2023; 13(8):1185. https://doi.org/10.3390/jpm13081185
Chicago/Turabian StyleSoko, Nyarai Desiree, Sarudzai Muyambo, Michelle T. L. Dandara, Elizabeth Kampira, Dirk Blom, Erika S. W. Jones, Brian Rayner, Delva Shamley, Phumla Sinxadi, and Collet Dandara. 2023. "Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases" Journal of Personalized Medicine 13, no. 8: 1185. https://doi.org/10.3390/jpm13081185
APA StyleSoko, N. D., Muyambo, S., Dandara, M. T. L., Kampira, E., Blom, D., Jones, E. S. W., Rayner, B., Shamley, D., Sinxadi, P., & Dandara, C. (2023). Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases. Journal of Personalized Medicine, 13(8), 1185. https://doi.org/10.3390/jpm13081185