Characteristics and Treatment Outcomes of Out-of-Hospital Cardiac Arrests Occurring in Public Places: A National Population-Based Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Data Source
2.2. Study Population and Classification of Arrest Location
2.3. Variables
2.4. Outcome Measures
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, S.; Gan, Y.; Jiang, N.; Wang, R.; Chen, Y.; Luo, Z.; Zong, Q.; Chen, S.; Lv, C. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: A systematic review and meta-analysis. Crit. Care 2020, 24, 61. [Google Scholar] [CrossRef] [Green Version]
- Korea Centers for Disease Control and Prevention Sudden Cardiac Arrest Survey Statistics. Available online: https://www.kdca.go.kr/injury/biz/injury/recsroom/statsSmMain.do (accessed on 1 July 2023).
- Iwami, T.; Hiraide, A.; Nakanishi, N.; Hayashi, Y.; Nishiuchi, T.; Uejima, T.; Morita, H.; Shigemoto, T.; Ikeuchi, H.; Matsusaka, M.; et al. Outcome and characteristics of out-of-hospital cardiac arrest according to location of arrest: A report from a large-scale, population-based study in Osaka, Japan. Resuscitation 2006, 69, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, H.; Ohishi, Y.; Hazui, H.; Negoro, N.; Murai, M.; Kawakami, M.; Nishihara, I.; Fukumoto, H.; Morita, H.; Hanafusa, T. Location of out-of-hospital cardiac arrests in Takatsuki City: Where should automated external defibrillator be placed. Circ. J. 2006, 70, 827–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisfeldt, M.L.; Everson-Stewart, S.; Sitlani, C.; Rea, T.; Aufderheide, T.P.; Atkins, D.L.; Bigham, B.; Brooks, S.C.; Foerster, C.; Gray, R.; et al. Ventricular tachyarrhythmias after cardiac arrest in public versus at home. N. Engl. J. Med. 2011, 364, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Folke, F.; Gislason, G.H.; Lippert, F.K.; Nielsen, S.L.; Weeke, P.; Hansen, M.L.; Fosbøl, E.L.; Andersen, S.S.; Rasmussen, S.; Schramm, T.K.; et al. Differences between out-of-hospital cardiac arrest in residential and public locations and implications for public-access defibrillation. Circulation 2010, 122, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Iwami, T.; Kitamura, T.; Nishiyama, C.; Nishiuchi, T.; Hayashi, Y.; Kawamura, T. Outcomes of out-of-hospital cardiac arrest by public location in the public-access defibrillation era. J. Am. Heart Assoc. 2014, 3, e000533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cournoyer, A.; Grunau, B.; Cheskes, S.; Vaillancourt, C.; Segal, E.; de Montigny, L.; de Champlain, F.; Cavayas, Y.A.; Albert, M.; Potter, B.; et al. Clinical outcomes following out-of-hospital cardiac arrest: The minute-by-minute impact of bystander cardiopulmonary resuscitation. Resuscitation 2023, 185, 109693. [Google Scholar] [CrossRef]
- Pollack, R.A.; Brown, S.P.; Rea, T.; Aufderheide, T.; Barbic, D.; Buick, J.E.; Christenson, J.; Idris, A.H.; Jasti, J.; Kampp, M.; et al. Impact of Bystander Automated External Defibrillator Use on Survival and Functional Outcomes in Shockable Observed Public Cardiac Arrests. Circulation 2018, 137, 2104–2113. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, D.E.; Ryoo, H.W.; Moon, S.; Cho, J.W.; Kim, Y.J.; Kim, J.K.; Kim, J.H.; Lee, K.W.; Jin, S.C.; et al. Public awareness and willingness to use automated external defibrillators in a metropolitan city. Clin. Exp. Emerg. Med. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Lee, M.J.; Hwang, S.O.; Cha, K.C.; Cho, G.C.; Yang, H.J.; Rho, T.H. Influence of nationwide policy on citizens’ awareness and willingness to perform bystander cardiopulmonary resuscitation. Resuscitation 2013, 84, 889–894. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, C.; Park, Y.; Won, M. Comparison of out-of-hospital cardiac arrests during the COVID-19 pandemic with those before the pandemic: An updated systematic review and meta-analysis. Front. Public Health 2023, 11, 1180511. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, C.; Namgung, M. Epidemiology and Outcome of Out-of-Hospital Cardiac Arrests during the COVID-19 Pandemic in South Korea: A Systematic Review and Meta-Analyses. Yonsei Med. J. 2022, 63, 1121–1129. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Ryoo, H.W.; Cho, J.W.; Kim, J.H.; Lee, S.H.; Jang, T.C. Impact of the COVID-19 outbreak on adult out-of-hospital cardiac arrest outcomes in Daegu, South Korea: An observational study. Clin. Exp. Emerg. Med. 2021, 8, 137–144. [Google Scholar] [CrossRef] [PubMed]
- National Fire Agency. Organization of the National Fire Agency. Available online: https://www.nfa.go.kr/eng/agency/organization/organization/ (accessed on 1 July 2023).
- Choi, S.W.; Shin, S.D.; Ro, Y.S.; Song, K.J.; Lee, E.J.; Ahn, K.O. Effect of therapeutic hypothermia on the outcomes after out-of-hospital cardiac arrest according to initial ECG rhythm and witnessed status: A nationwide observational interaction analysis. Resuscitation 2016, 100, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.; Nadkarni, V.; Bahr, J.; Berg, R.A.; Billi, J.E.; Bossaert, L.; Cassan, P.; Coovadia, A.; D’Este, K.; Finn, J.; et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: Update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa). Resuscitation 2004, 63, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Daya, M.R.; Schmicker, R.H.; Zive, D.M.; Rea, T.D.; Nichol, G.; Buick, J.E.; Brooks, S.; Christenson, J.; MacPhee, R.; Craig, A.; et al. Out-of-hospital cardiac arrest survival improving over time: Results from the Resuscitation Outcomes Consortium (ROC). Resuscitation 2015, 91, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Ahn, C.; Namgung, M. Comparative Evaluation of the Prognosis of Septic Shock Patients from Before to After the Onset of the COVID-19 Pandemic: A Retrospective Single-Center Clinical Analysis. J. Pers. Med. 2022, 12, 103. [Google Scholar] [CrossRef]
- Wissenberg, M.; Lippert, F.K.; Folke, F.; Weeke, P.; Hansen, C.M.; Christensen, E.F.; Jans, H.; Hansen, P.A.; Lang-Jensen, T.; Olesen, J.B.; et al. Association of national initiatives to improve cardiac arrest management with rates of bystander intervention and patient survival after out-of-hospital cardiac arrest. JAMA 2013, 310, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Perkins, G.D.; Handley, A.J.; Koster, R.W.; Castrén, M.; Smyth, M.A.; Olasveengen, T.; Monsieurs, K.G.; Raffay, V.; Gräsner, J.T.; Wenzel, V.; et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation. Resuscitation 2015, 95, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Bylow, H.; Rawshani, A.; Claesson, A.; Lepp, M.; Herlitz, J. Characteristics and outcome after out-of-hospital cardiac arrest with the emphasis on workplaces: An observational study from the Swedish Registry of Cardiopulmonary Resuscitation. Resusc. Plus 2021, 5, 100090. [Google Scholar] [CrossRef]
- Gantzel Nielsen, C.; Andelius, L.C.; Hansen, C.M.; Blomberg, S.N.F.; Christensen, H.C.; Kjølbye, J.S.; Tofte Gregers, M.C.; Ringgren, K.B.; Folke, F. Bystander interventions and survival following out-of-hospital cardiac arrest at Copenhagen International Airport. Resuscitation 2021, 162, 381–387. [Google Scholar] [CrossRef]
- Suwanpairoj, C.; Wongsombut, T.; Maisawat, K.; Torod, N.; Jaengkrajan, A.; Sritharo, N.; Atthapreyangkul, N.; Wittayachamnankul, B. Outcome of basic life support training among primary school students in Southeast Asia. Clin. Exp. Emerg. Med. 2020, 7, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Issleib, M.; Daubmann, A.; Zöllner, C. Peer education for BLS-training in schools? Results of a randomized-controlled, noninferiority trial. Resuscitation 2015, 94, 85–90. [Google Scholar] [CrossRef]
- Karlsson, L.; Malta Hansen, C.; Wissenberg, M.; Møller Hansen, S.; Lippert, F.K.; Rajan, S.; Kragholm, K.; Møller, S.G.; Bach Søndergaard, K.; Gislason, G.H.; et al. Automated external defibrillator accessibility is crucial for bystander defibrillation and survival: A registry-based study. Resuscitation 2019, 136, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Caffrey, S.L.; Willoughby, P.J.; Pepe, P.E.; Becker, L.B. Public use of automated external defibrillators. N. Engl. J. Med. 2002, 347, 1242–1247. [Google Scholar] [CrossRef]
- Leung, K.H.B.; Alam, R.; Brooks, S.C.; Chan, T.C.Y. Public defibrillator accessibility and mobility trends during the COVID-19 pandemic in Canada. Resuscitation 2021, 162, 329–333. [Google Scholar] [CrossRef]
- Sasaki, M.; Iwami, T.; Kitamura, T.; Nomoto, S.; Nishiyama, C.; Sakai, T.; Tanigawa, K.; Kajino, K.; Irisawa, T.; Nishiuchi, T.; et al. Incidence and outcome of out-of-hospital cardiac arrest with public-access defibrillation. A descriptive epidemiological study in a large urban community. Circ. J. 2011, 75, 2821–2826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, L.W.; Holmberg, M.J.; Granfeldt, A.; Løfgren, B.; Vellano, K.; McNally, B.F.; Siegerink, B.; Kurth, T.; Donnino, M.W. Neighborhood characteristics, bystander automated external defibrillator use, and patient outcomes in public out-of-hospital cardiac arrest. Resuscitation 2018, 126, 72–79. [Google Scholar] [CrossRef]
- Hawkes, C.; Booth, S.; Ji, C.; Brace-McDonnell, S.J.; Whittington, A.; Mapstone, J.; Cooke, M.W.; Deakin, C.D.; Gale, C.P.; Fothergill, R.; et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation 2017, 110, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.Y.; Jung, Y.-k.; Yoon, S.H.; Kim, S.J.; Cha, K.-c.; Jung, W.J.; Roh, Y.I.; Kim, S.; Kim, S.H.; Kang, D.R.; et al. Trends in maintenance status and usability of public automated external defibrillators during a 5-year on-site inspection. Sci. Rep. 2022, 12, 10738. [Google Scholar] [CrossRef]
- Hubert, H.; Tazarourte, K.; Wiel, E.; Zitouni, D.; Vilhelm, C.; Escutnaire, J.; Cassan, P.; Gueugniaud, P.Y. Rationale, methodology, implementation, and first results of the French out-of-hospital cardiac arrest registry. Prehosp. Emerg. Care 2014, 18, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Karam, N.; Marijon, E.; Dumas, F.; Offredo, L.; Beganton, F.; Bougouin, W.; Jost, D.; Lamhaut, L.; Empana, J.P.; Cariou, A.; et al. Characteristics and outcomes of out-of-hospital sudden cardiac arrest according to the time of occurrence. Resuscitation 2017, 116, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Kiyohara, K.; Sakai, T.; Matsuyama, T.; Hatakeyama, T.; Shimamoto, T.; Izawa, J.; Fujii, T.; Nishiyama, C.; Kawamura, T.; et al. Public-Access Defibrillation and Out-of-Hospital Cardiac Arrest in Japan. N. Engl. J. Med. 2016, 375, 1649–1659. [Google Scholar] [CrossRef] [Green Version]
- Kwon, P.; Lee, Y.; Yu, K.; Lee, W.H. A Study of optimal location and allocation to improve accessibility of automated external defibrillator. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 263–271. [Google Scholar]
- Lim, Z.J.; Ponnapa Reddy, M.; Afroz, A.; Billah, B.; Shekar, K.; Subramaniam, A. Incidence and outcome of out-of-hospital cardiac arrests in the COVID-19 era: A systematic review and meta-analysis. Resuscitation 2020, 157, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.; Nehme, Z.; Bernard, S.; Stub, D.; Stephenson, M.; Smith, K. Collateral damage: Hidden impact of the COVID-19 pandemic on the out-of-hospital cardiac arrest system-of-care. Resuscitation 2020, 156, 157–163. [Google Scholar] [CrossRef]
Variable | 2016 (N = 5410) | 2017 (N = 5539) | 2018 (N = 5587) | 2019 (N = 5379) | 2020 (N = 5178) | 2021 (N = 5044) | p Value |
---|---|---|---|---|---|---|---|
Sex, Male | 4225 (78.1%) | 4359 (78.7%) | 4321 (77.3%) | 4206 (78.2%) | 4117 (79.5%) | 4017 (79.6%) | 0.030 |
Age | 57.7 ± 17.7 | 58.8 ± 17.5 | 59.2 ± 17.5 | 60.2 ± 17.2 | 60.1 ± 17.2 | 60.1 ± 17.5 | <0.001 |
Witnessed arrest | 2654 (58.3%) | 3185 (63.8%) | 2769 (56.6%) | 2327 (53.2%) | 2605 (56.1%) | 2733 (57.7%) | <0.001 |
Bystander CPR | 996 (18.8%) | 1189 (22.2%) | 1332 (24.8%) | 1358 (26.7%) | 1302 (26.0%) | 1431 (29.2%) | <0.001 |
Bystander AED use | 16 (1.6%) | 24 (2.0%) | 28 (2.1%) | 53 (3.9%) | 25 (1.9%) | 39 (2.7%) | 0.002 |
Cause, disease | 2636 (48.7%) | 2818 (50.9%) | 2857 (51.1%) | 2984 (55.5%) | 2851 (55.1%) | 2812 (55.7%) | <0.001 |
Cause, cardiac origin | 2498 (46.2%) | 2705 (48.8%) | 2686 (48.1%) | 2848 (52.9%) | 2741 (52.9%) | 2673 (53.0%) | 0.001 |
Shockable rhythm | 1065 (20.6%) | 1056 (19.7%) | 1079 (20.0%) | 1099 (20.8%) | 1025 (20.3%) | 949 (19.1%) | 0.260 |
Pre-hospital ROSC | 508 (9.4%) | 574 (10.4%) | 585 (10.5%) | 571 (10.6%) | 499 (9.6%) | 497 (9.9%) | 0.194 |
Underlying disease | |||||||
Hypertension | 795 (14.7%) | 860 (15.5%) | 938 (16.8%) | 967 (18.0%) | 896 (17.3%) | 1002 (19.9%) | <0.001 |
Diabetes mellitus | 493 (9.1%) | 564 (10.2%) | 575 (10.3%) | 599 (11.1%) | 582 (11.2%) | 639 (12.7%) | <0.001 |
Heart disease | 423 (7.8%) | 488 (8.8%) | 521 (9.3%) | 564 (10.5%) | 489 (9.4%) | 512 (10.2%) | <0.001 |
Renal disease | 85 (1.6%) | 86 (1.6%) | 77 (1.4%) | 110 (2.0%) | 113 (2.2%) | 134 (2.7%) | <0.001 |
Respiratory disease | 88 (1.6%) | 109 (2.0%) | 112 (2.0%) | 125 (2.3%) | 108 (2.1%) | 138 (2.7%) | 0.003 |
Stroke | 117 (2.2%) | 145 (2.6%) | 156 (2.8%) | 176 (3.3%) | 159 (3.1%) | 169 (3.4%) | 0.003 |
Hyperlipidemia | 60 (1.1%) | 93 (1.7%) | 104 (1.9%) | 128 (2.4%) | 128 (2.5%) | 165 (3.3%) | <0.001 |
PCI | 180 (3.3%) | 229 (4.1%) | 278 (5.0%) | 270 (5.0%) | 241 (4.7%) | 271 (5.4%) | <0.001 |
TTM | 113 (2.1%) | 159 (2.9%) | 220 (3.9%) | 200 (3.7%) | 178 (3.4%) | 179 (3.5%) | <0.001 |
Mechanical CPR | 163 (3.0%) | 250 (4.5%) | 411 (7.4%) | 429 (8.0%) | 734 (14.2%) | 920 (18.2%) | <0.001 |
ECMO CPR | 36 (0.7%) | 76 (1.4%) | 81 (1.4%) | 73 (1.4%) | 71 (1.4%) | 76 (1.5%) | 0.001 |
ROSC | 1662 (30.7%) | 1754 (31.7%) | 1883 (33.7%) | 1821 (33.9%) | 1660 (32.1%) | 1653 (32.8%) | 0.003 |
Survival to discharge | 755 (14.0%) | 778 (14.0%) | 811 (14.5%) | 826 (15.4%) | 675 (13.0%) | 663 (13.1%) | 0.006 |
Favorable neurological outcome * | 365 (6.7%) | 482 (8.7%) | 473 (8.5%) | 483 (9.0%) | 382 (7.4%) | 401 (8.0%) | <0.001 |
Variable | Roads or Highways (N = 12,673) | Public Buildings (N = 741) | Leisure Facilities (N = 1086) | Industrial Facilities (N = 3544) | Commercial Facilities (N = 8496) | Terminals (N = 837) | Other Public Places (N = 4760) | p Value |
---|---|---|---|---|---|---|---|---|
Sex, male | 9471 (74.7%) | 564 (76.1%) | 872 (80.3%) | 3420 (96.5%) | 6879 (81.0%) | 702 (83.9%) | 3337 (70.1%) | <0.001 |
Age | 56.6 ± 18.8 | 57.3 ± 21.1 | 58.7 ± 17.2 | 53.9 ± 11.6 | 62.0 ± 16.5 | 63.5 ± 15.3 | 65.6 ± 16.2 | <0.001 |
Witnessed arrest | 6768 (70.7%) | 474 (65.7%) | 616 (57.9%) | 1979 (61.2%) | 3700 (45.0%) | 469 (58.6%) | 2267 (49.5%) | <0.001 |
Bystander CPR | 1465 (11.6%) | 297 (40.1%) | 451 (41.5%) | 890 (25.1%) | 2892 (34.0%) | 330 (39.4%) | 1283 (27.0%) | <0.001 |
Bystander AED use | 5 (0.3%) | 21 (7.1%) | 28 (6.2%) | 20 (2.2%) | 53 (1.8%) | 35 (10.6%) | 23 (1.8%) | <0.001 |
Cause, disease | 2152 (17.0%) | 593 (80.0%) | 813 (74.9%) | 1362 (38.4%) | 7298 (85.9%) | 701 (83.8%) | 4039 (84.9%) | <0.001 |
Cause, cardiac origin | 2053 (16.2%) | 562 (75.8%) | 787 (72.5%) | 1302 (36.7%) | 6912 (81.4%) | 671 (80.2%) | 3864 (81.2%) | 0.070 |
Shockable rhythm | 1073 (8.9%) | 298 (40.8%) | 450 (42.5%) | 793 (23.3%) | 1984 (23.6%) | 277 (33.5%) | 1398 (29.7%) | <0.001 |
Pre-hospital ROCS | 490 (3.9%) | 183 (24.7%) | 299 (27.5%) | 362 (10.2%) | 1106 (13.0%) | 148 (17.7%) | 646 (13.6%) | <0.001 |
ROSC | 2607 (20.6%) | 355 (47.9%) | 558 (51.4%) | 1005 (28.4%) | 3433 (40.4%) | 370 (44.2%) | 2105 (44.2%) | <0.001 |
Survival to discharge | 890 (7.0%) | 225 (30.4%) | 356 (32.8%) | 506 (14.3%) | 1503 (17.7%) | 168 (20.1%) | 860 (18.1%) | <0.001 |
Favorable neurological outcome * | 336 (1.6%) | 157 (13.9%) | 276 (16.9%) | 296 (5.5%) | 897 (6.7%) | 119 (9.2%) | 505 (6.5%) | <0.001 |
Variable | Pre-Pandemic (N = 22,897) | Pandemic (N = 9240) | p Value |
---|---|---|---|
Sex, male | 5024 (21.9%) | 1868 (20.2%) | 0.001 |
Age | 59.1 ± 17.5 | 60.0 ± 17.3 | <0.001 |
Witnessed arrest | 11,410 (58.0%) | 4863 (57.1%) | 0.170 |
Bystander CPR | 5090 (22.2%) | 2518 (27.3%) | <0.001 |
Bystander AED use | 124 (2.4%) | 61 (2.4%) | 1.000 |
Cause, disease | 11864 (51.8%) | 5094 (55.1%) | <0.001 |
Cause, cardiac origin | 11287 (49.3%) | 4864 (52.6%) | 0.349 |
Shockable rhythm | 4493 (20.3%) | 1780 (19.6%) | 0.212 |
Prehospital ROCS | 2328 (10.2%) | 906 (9.8%) | 0.339 |
ROSC | 7442 (32.5%) | 2991 (32.4%) | 0.829 |
Survival to discharge | 3300 (14.4%) | 1208 (13.1%) | 0.002 |
Favorable neurological outcome | 1874 (8.2%) | 712 (7.7%) | <0.001 |
Factor | Univariate OR (95% CI) | p Value | Adjusted OR | p Value |
---|---|---|---|---|
Sex, male | 0.84 (0.77–0.91) | <0.001 | - | |
Age | 0.99 (0.99–0.99) | <0.001 | 0.98 (0.98–0.98) * | <0.001 |
Witnessed arrest | 2.70 (2.50–2.91) | <0.001 | 2.62 (2.25–3.07) * | <0.001 |
Bystander CPR | 1.05 (1.03–1.07) | <0.001 | - | |
Bystander AED use | 2.24 (1.66–3.01) | <0.001 | 2.00 (1.37–2.90) * | <0.001 |
Shockable rhythm | 10.79 (10.06–11.57) | <0.001 | 10.12 (8.85–11.59) * | <0.001 |
Cause of arrest, disease | 4.76 (4.40–5.16) | <0.001 | 2.11 (1.87–2.38) * | <0.001 |
Period relative to the pandemic | 0.89 (0.83–0.96) | 0.002 | 0.78 (0.68–0.90) * | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, Y.T.; Ahn, C. Characteristics and Treatment Outcomes of Out-of-Hospital Cardiac Arrests Occurring in Public Places: A National Population-Based Observational Study. J. Pers. Med. 2023, 13, 1191. https://doi.org/10.3390/jpm13081191
Oh YT, Ahn C. Characteristics and Treatment Outcomes of Out-of-Hospital Cardiac Arrests Occurring in Public Places: A National Population-Based Observational Study. Journal of Personalized Medicine. 2023; 13(8):1191. https://doi.org/10.3390/jpm13081191
Chicago/Turabian StyleOh, Young Taeck, and Chiwon Ahn. 2023. "Characteristics and Treatment Outcomes of Out-of-Hospital Cardiac Arrests Occurring in Public Places: A National Population-Based Observational Study" Journal of Personalized Medicine 13, no. 8: 1191. https://doi.org/10.3390/jpm13081191
APA StyleOh, Y. T., & Ahn, C. (2023). Characteristics and Treatment Outcomes of Out-of-Hospital Cardiac Arrests Occurring in Public Places: A National Population-Based Observational Study. Journal of Personalized Medicine, 13(8), 1191. https://doi.org/10.3390/jpm13081191