Phenotype-Specific Outcome and Treatment Response in Heart Failure with Preserved Ejection Fraction with Comorbid Hypertension and Diabetes: A 12-Month Multicentered Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
- •
- Outpatient individuals, ≥18 years old;
- •
- Previously diagnosed with or currently treated for type 2 diabetes mellitus;
- •
- Previously diagnosed with or currently treated for primary hypertension;
- •
- Preexisting or newly diagnosed with heart failure with preserved ejection fraction using the 2016 European Society of Cardiology’s guideline on heart failure, including [27]:
- ○
- Signs and symptoms of heart failure:
- ▪
- Symptoms: dyspnea, orthopnea, paroxysmal nocturnal dyspnea, ankle swelling, reduced exercise capacity;
- ▪
- Signs: elevated jugular venous pressure, hepatojugular reflux, third heart sound, and laterally displaced point of maximal impulse.
- ○
- N-terminal pro-brain natriuretic peptide (NT-proBNP) ≥ 300 pg/mL in acute setting or ≥125 pg/mL in chronic setting;
- ○
- Echocardiography with left ventricular ejection fraction (LVEF) ≥ 50% and at least one of these following criteria:
- ▪
- Structural changes indicated by either left ventricle (LV) hypertrophy (any of the following: LV mass index ≥ 115 g/m2 in male or ≥95 g/m2 in female) or left atrium enlargement (LAE) (left atrial volume index ≥ 34 mL/m2);
- ▪
- Diastolic dysfunction (E/e’ > 13 or e’ average < 9 cm/s).
- •
- Agree to participate in the study and report outcomes for a 12-month period.
- Hospitalization due to cardiovascular disease in the preceding 30 days;
- Having a co-existing disease with a life expectancy < 1 year, as per the investigator’s judgement;
- Listed for a heart transplant;
- Primary stage D valvular heart disease requiring surgery/intervention or having a prosthetic/mechanical valve;
- Severe, unrepaired pericardiac disease;
- Complex, unrepaired congenital heart disease;
- Takotsubo disease, peripartum cardiomyopathy, chemotherapy-induced cardiomyopathy, cardiac sarcoidosis/amyloidosis;
- End-stage renal dysfunction, defined as persistent estimated glomerular filtration rate for at least 3 months (eGFR) < 15 mL/min (CKD-EPI Chronic Kidney Disease Epidemiology Collaboration Equation) or requiring renal replacement therapy;
- Child–Pugh–Turcotte C;
- Chronic obstructive pulmonary disease or any severe pulmonary disease requiring home oxygen;
- Pregnancy or lactation;
- Concurrent enrolment in another interventional device or drug trial;
- Refuse to participate in the study and report primary endpoints periodically for 12 months.
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, S.J.; Borlaug, B.A.; Kitzman, D.W.; McCulloch, A.D.; Blaxall, B.C.; Agarwal, R.; Chirinos, J.A.; Collins, S.; Deo, R.C.; Gladwin, M.T.; et al. Research Priorities f.or Heart Failure with Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020, 141, 1001–1026. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.S.; Xu, H.; Matsouaka, R.A.; Bhatt, D.L.; Heidenreich, P.A.; Hernandez, A.F.; Devore, A.D.; Yancy, C.W.; Fonarow, G.C. Heart failure with Preserved, Borderline and Reduced Ejection Fraction: 5-year outcomes. J. Am. Coll. Cardiol. 2017, 70, 2476–2486. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empaglifozin in heart failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Solomon, S.D.; Claggett, B.; Lewis, E.F.; Desai, A.; Anand, I.; Sweitzer, N.K.; O’Meara, E.; Shah, S.J.; McKinlay, S.; Fleg, J.L.; et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur. Heart J. 2016, 37, 455–462. [Google Scholar] [CrossRef] [Green Version]
- McMurray, J.J.V.; Jackson, A.M.; Lam, C.S.P.; Redfield, M.M.; Anand, I.S.; Ge, J.; Lefkowitz, M.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; et al. Effects of Sacubitril-Valsartan Versus Valsartan in Women Compared with Men with Heart Failure and Preserved Ejection Fraction. Insights from PARAGON-HF. Circulation 2020, 141, 338–351. [Google Scholar] [CrossRef]
- Lam, C.S.P.; Voors, A.A.; de Boer, R.A.; Solomon, S.D.; van Veldhuisen, D.J. Heart failure with preserved ejection fraction: From mechanisms to therapies. Eur. Heart J. 2018, 39, 2780–2792. [Google Scholar] [CrossRef]
- Cohen, J.B.; Schrauben, S.J.; Zhao, L.; Basso, M.D.; Cvijic, M.E.; Li, Z.; Yarde, M.; Wang, Z.; Bhattacharya, P.T.; Chirinos, D.A.; et al. Clinical Phenogroups in Heart Failure with Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to Spironolactone. JACC Heart Fail. 2020, 8, 172–184. [Google Scholar] [CrossRef]
- Choy, M.; Liang, W.; He, J.; Fu, M.; Dong, Y.; He, X.; Liu, C. Phenotypes of heart failure with preserved ejection fraction and effect of spironolactone treatment. ESC Heart Fail. 2022, 9, 2567–2575. [Google Scholar] [CrossRef]
- Sotomi, Y.; Hikoso, S.; Nakatani, D.; Okada, K.; Dohi, T.; Sunaga, A.; Kida, H.; Sato, T.; Matsuoka, Y.; Kitamura, T.; et al. Medications for specific phenotypes of heart failure with preserved ejection fraction classified by a machine learning-based clustering model. Heart 2023, 1–10, online ahead of print. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.J.; Kitzman, D.W.; Borlaug, B.A.; Heerebeek, L.v.; Zile, M.R.; Kass, D.A.; Paulus, W.J. Phenotype-Specific Treatment of Heart Failure with Preserved Ejection Fraction. A Multiorgan Roadmap. Circulation 2016, 134, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Silverman, D.N.; Shah, S.J. Treatment of Heart Failure with Preserved Ejection Fraction (HFpEF): The Phenotype-Guided Approach. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 20. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Sung, H.-Y.; Chen, Y.-J.; Yeh, H.-I.; Hou, C.J.-Y.; Tsai, C.-T.; Hung, C.-L. Personalized Management for Heart Failure with Preserved Ejection Fraction. J. Pers. Med. 2023, 13, 746. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Panjrath, G.S.; Amancherla, K.; Davis, L.L.; Deswal, A.; Dixon, D.L.; Januzzi, J.L.; Yancy, C.W. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure with Preserved Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee Expert Consensus Decision Pathway. J. Am. Coll. Cardiol. 2023, 81, 1835–1878. [Google Scholar] [CrossRef]
- Shah, S.J.; Katz, D.H.; Deo, R.C. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail. Clin. 2014, 10, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Kao, D.P.; Lewsey, J.D.; Anand, I.S.; Massie, B.M.; Zile, M.R.; Carson, P.E.; McKelvie, R.S.; Komajda, M.; McMurray, J.J.; Lindenfeld, J. Characterization of Subgroups of Heart Failure Patients with Preserved Ejection Fraction with Possible Implications for Prognosis and Treatment Response. Eur. J. Heart Fail. 2015, 17, 925–935. [Google Scholar] [CrossRef] [Green Version]
- Gevaert, A.B.; Kataria, R.; Zannad, F.; Sauer, A.J.; Damman, K.; Sharma, K.; Shah, S.J.; Spall, H.G.C.V. Heart failure with preserved ejection fraction: Recent concepts in diagnosis, mechanisms and management. Heart 2022, 108, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Lam, C.S.P.; Lund, L.H.; Maurer, M.S.; Borlaug, B.A. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction: A hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur. J. Heart Fail. 2020, 22, 1551–1567. [Google Scholar] [CrossRef] [PubMed]
- Schiattarella, G.G.; Rodolico, D.; Hill, J.A. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc. Res. 2021, 117, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Hedman, Å.K.; Hage, C.; Sharma, A.; Brosnan, M.J.; Buckbinder, L.; Gan, L.-M.; Shah, S.J.; Linde, C.M.; Donal, E.; Daubert, J.-C.; et al. Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 2020, 106, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Tromp, J.; Tay, W.T.; Ouwerkerk, W.; Teng, T.K.; Yap, J.; MacDonald, M.R.; Leineweber, K.; McMurray, J.J.V.; Zile, M.R.; Anand, I.S.; et al. Multimorbidity in patients with heart failure from 11 Asian regions: A prospective cohort study using the ASIAN-HF registry. PLoS Med. 2018, 15, e1002541. [Google Scholar] [CrossRef]
- Nguyen, N.-T.-V.; Tran, D.T.; Le An, P.; Van Hoang, S.; Nguyen, H.-A.; Chau, H.N. Clinical Phenotypes and Age-Related Differences in Presentation, Treatment, and Outcome of Heart Failure with Preserved Ejection Fraction: A Vietnamese Multicenter Research. Cardiol. Res. Pract. 2021, 2021, 4587678. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [Green Version]
- Shim, C.Y. Heart Failure with Preserved Ejection Fraction: The Major Unmet Need in Cardiology. Korean Circ. J. 2020, 50, 1051–1061. [Google Scholar] [CrossRef]
- Packer, M. Differential Pathophysiological Mechanisms in Heart Failure with a Reduced or Preserved Ejection Fraction in Diabetes. J. Am. Coll. Cardiol. Heart Fail. 2021, 9, 535–549. [Google Scholar] [CrossRef]
- Packer, M.; Lam, C.S.P.; Lund, L.H.; Redfield, M.M. Interdependence of Atrial Fibrillation and Heart Failure with a Preserved Ejection Fraction Reflects a Common Underlying Atrial and Ventricular Myopathy. Circulation 2020, 141, 4–6. [Google Scholar] [CrossRef]
- Packer, M. HFpEF Is the Substrate for Stroke in Obesity and Diabetes Independent of Atrial Fibrillation. J. Am. Coll. Cardiol. Heart Fail. 2020, 8, 35–42. [Google Scholar] [CrossRef]
- Messerli, F.H.; Rimoldi, S.F.; Bangalore, S. The Transition from Hypertension to Heart Failure: Contemporary Update. J. Am. Coll. Cardiol. Heart Fail. 2017, 5, 543–551. [Google Scholar] [CrossRef]
- Marwick, T.H.; Ritchie, R.; Shaw, J.E.; Kaye, D. Implications of Underlying Mechanisms for the Recognition and Management of Diabetic Cardiomyopathy. J. Am. Coll. Cardiol. 2018, 71, 339–351. [Google Scholar] [CrossRef]
- Teo, L.Y.L.; Chan, L.L.; Lam, C.S.P. Heart failure with preserved ejection fraction in hypertension. Curr. Opin. Cardiol. 2016, 31, 410–416. [Google Scholar] [CrossRef]
- Elgendy, I.Y.; Mahtta, D.; Pepine, C.J. Medical Therapy for Heart Failure Caused by Ischemic Heart Disease. Circ. Res. 2019, 124, 1520–1535. [Google Scholar] [CrossRef]
- Law, J.P.; Pickup, L.; Pavlovic, D.; Townend, J.N.; Ferro, C.J. Hypertension and cardiomyopathy associated with chronic kidney disease: Epidemiology, pathogenesis and treatment considerations. J. Hum. Hypertens. 2023, 37, 1–19. [Google Scholar] [CrossRef]
- Lawson, C.A.; Tay, W.T.; Bernhardt, L.; Richards, A.M.; Zaccardi, F.; Tromp, J.; Katherine Teng, T.-H.; Hung, C.-L.; Chandramouli, C.; Wander, G.S.; et al. Association Between Diabetes, Chronic Kidney Disease, and Outcomes in People with Heart Failure from Asia. J. Am. Coll. Cardiol. Asia 2023. [Google Scholar] [CrossRef]
- Wouw, J.V.D.; Broekhuizen, M.; Sorop, O.; Joles, J.A.; Verhaar, M.C.; Duncker, D.J.; Danser, A.H.J.; Merkus, D. Chronic Kidney Disease as a Risk Factor for Heart Failure with Preserved Ejection Fraction: A Focus on Microcirculatory Factors and Therapeutic Targets. Front. Physiol. 2019, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Sartipy, U.; Dahlström, U.; Fu, M.; Lund, L.H. Atrial Fibrillation in Heart Failure with Preserved, Mid-Range, and Reduced Ejection Fraction. J. Am. Coll. Cardiol. Heart Fail. 2017, 5, 565–574. [Google Scholar] [CrossRef]
- John, J.E.; Claggett, B.; Skali, H.; Solomon, S.D.; Cunningham, J.W.; Matsushita, K.; Konety, S.H.; Kitzman, D.W.; Mosley, T.H.; Clark, D.; et al. Coronary Artery Disease and Heart Failure with Preserved Ejection Fraction: The ARIC Study. J. Am. Heart Assoc. 2022, 11, e021660. [Google Scholar] [CrossRef]
- Rush, C.J.; Berry, C.; Oldroyd, K.G.; Rocchiccioli, J.P.; Lindsay, M.M.; Touyz, R.M.; Murphy, C.L.; Ford, T.J.; Sidik, N.; McEntegart, M.B.; et al. Prevalence of Coronary Artery Disease and Coronary Microvascular Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2021, 6, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Rusinaru, D.; Houpe, D.; Szymanski, C.; Lévy, F.; Maréchaux, S.; Tribouilloy, C. Coronary Artery Disease and 10-year outcome after hospital admission for heart failure with preserved and with reduced ejection fraction. Eur. J. Heart Fail. 2014, 16, 967–976. [Google Scholar] [CrossRef]
- Majmundar, M.; Doshi, R.; Zala, H.; Shah, P.; Adalja, D.; Shariff, M.; Kumar, A. Prognostic role of anemia in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Indian Heart J. 2021, 73, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Yap, J.; Tay, W.T.; Teng, T.H.K.; Anand, I.; Richards, A.M.; Ling, L.H.; MacDonald, M.R.; Chandramouli, C.; Tromp, J.; Siswanto, B.B.; et al. Association of Diabetes Mellitus on Cardiac Remodeling, Quality of Life, and Clinical Outcomes in Heart Failure with Reduced and Preserved Ejection Fraction. J. Am. Heart Assoc. 2019, 8, e013114. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, M.R.; Tay, W.T.; Teng, T.H.K.; Anand, I.; Ling, L.H.; Yap, J.; Tromp, J.; Wander, G.S.; Naik, A.; Ngarmukos, T.; et al. Regional Variation of Mortality in Heart Failure with Reduced and Preserved Ejection Fraction Across Asia: Outcomes in the ASIAN-HF Registry. J. Am. Heart Assoc. 2020, 9, e012199. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, H.; Wang, J. Metabolism and Chronic Inflammation: The Links between Chronic Heart Failure and Comorbidities. Review. Front. Cardiovasc. Med. 2021, 8, 650278. [Google Scholar] [CrossRef]
- Minamisawa, M.; Claggett, B.; Suzuki, K.; Hegde, S.M.; Shah, A.M.; Desai, A.S.; Lewis, E.F.; Shah, S.J.; Sweitzer, N.K.; Fang, J.C.; et al. Association of Hyper-Polypharmacy with Clinical Outcomes in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2021, 14, e008293. [Google Scholar] [CrossRef]
- Martens, P.; Augusto, S.N.; Finet, J.E.; Tang, W.H.W. Distinct Impact of Noncardiac Comorbidities on Exercise Capacity and Functional Status in Chronic Heart Failure. J. Am. Coll. Cardiol. Heart Fail. 2023, in press. [Google Scholar] [CrossRef]
- Streng, K.W.; Nauta, J.F.; Hillege, H.L.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; Lang, C.C.; Metra, M.; Ng, L.L.; et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int. J. Cardiol. 2018, 271, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Desai, A.S.; Lam, C.S.P.; McMurray, J.J.V.; Redfield, M.M. How to Manage Heart Failure with Preserved Ejection Fraction: Practical Guidance for Clinicians. J. Am. Coll. Cardiol. Heart Fail. 2023, 11, 619–636. [Google Scholar] [CrossRef]
- Mark, P.B.; Mangion, K.; Rankin, A.J.; Rutherford, E.; Lang, N.N.; Petrie, M.C.; Stoumpos, S.; Patel, R.K. Left ventricular dysfunction with preserved ejection fraction: The most common left ventricular disorder in chronic kidney disease patients. Clin. Kidney J. 2022, 15, 2186–2199. [Google Scholar] [CrossRef]
- Yu, A.S.; Pak, K.J.; Zhou, H.; Shaw, S.F.; Shi, J.; Broder, B.I.; Sim, J.J. All-Cause and Cardiovascular-Related Mortality in CKD Patients with and without Heart Failure: A Population-Based Cohort Study in Kaiser Permanente Southern California. Kidney Med. 2023, 3, 100624. [Google Scholar] [CrossRef]
- Seferovic, P.M.; Paulus, W.J. Clinical diabetic cardiomyopathy: A two-faced disease with restrictive and dilated phenotypes. Eur. Heart J. 2015, 36, 1718–1727. [Google Scholar] [CrossRef]
- Mohan, M.; Dihoum, A.; Mordi, I.R.; Choy, A.-M.; Rena, G.; Lang, C.C. Left Ventricular Hypertrophy in Diabetic Cardiomyopathy: A Target for Intervention. Front. Cardiovasc. Med. 2021, 8, 746382. [Google Scholar] [CrossRef]
- Joseph, P.; Swedberg, K.; Leong, D.P.; Yusuf, S. The Evolution of β-Blockers in Coronary Artery Disease and Heart Failure. J. Am. Coll. Cardiol. 2019, 74, 672–682. [Google Scholar] [CrossRef]
- Martínez-Milla, J.; Raposeiras-Roubín, S.; Pascual-Figal, D.A.; Ibáñez, B. Role of Beta-blockers in Cardiovascular Disease in 2019. Rev. Esp. Cardiol. 2019, 72, 844–852. [Google Scholar] [CrossRef]
- Park, C.S.; Yang, H.-M.; Ki, Y.-J.; Kang, J.; Han, J.-K.; Park, K.W.; Kang, H.-J.; Koo, B.-K.; Kim, C.-J.; Cho, M.C.; et al. Left Ventricular Ejection Fraction 1 Year after Acute Myocardial Infarction Identifies the Benefits of the Long-Term Use of β-Blockers Analysis of Data from the KAMIR-NIH Registry. Circ. Cardiovasc. Interv. 2021, 14, e010159. [Google Scholar] [CrossRef]
- Fukuta, H.; Goto, T.; Wakami, K.; Kamiya, T.; Ohte, N. Effect of beta-blockers on heart failure severity in patients with heart failure with preserved ejection fraction: A meta-analysis of randomized controlled trials. Heart Fail. Rev. 2021, 26, 165–171. [Google Scholar] [CrossRef]
- Becher, P.M.; Schrage, B.; Ferrannini, G.; Benson, L.; Butler, J.; Carrero, J.J.; Cosentino, F.; Dahlström, U.; Mellbin, L.; Rosano, G.M.C.; et al. Use of sodium-glucose co-transporter 2 inhibitors in patients with heart failure and type 2 diabetes mellitus: Data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 2021, 23, 1012–1022. [Google Scholar] [CrossRef]
All Patients | |||||
---|---|---|---|---|---|
Total (n = 233) | Phenotype 1 (n = 126) | Phenotype 2 (n = 62) | Phenotype 3 (n = 45) | p * | |
Demographics | |||||
Age year (SD) | 75 (10) | 75 (10) | 68 (10) | 74 (10) | <0.001 |
Female n (%) | 158 (67.8) | 126 (100) | 10 (16.1) | 22 (48.9) | <0.001 |
BMI kg/m2 (IQR) | 23.3 (21.3; 25.8) | 23.0 (21.1; 25.0) | 23.4 (21.5; 25.8) | 24.0 (21.6; 26.7) | 0.544 |
Obesity n (%) | 66 (28.3) | 31 (24.6) | 17 (27.4) | 18 (40) | 0.312 |
SBP mmHg (IQR) | 130.0 (120.0; 140.0) | 130.0 (115.0; 140.0) | 130.0 (120.0; 145.0) | 130.0 (125.0; 140.0) | 0.855 |
DBP mmHg (IQR) | 75.0 (70.0; 80.0) | 70.0 (70.0; 80.0) | 70.0 (65.0; 80.0) | 80.0 (70.0; 80.0) | 0.152 |
Heart rate bpm (IQR) | 78.0 (70; 85.0) | 78.0 (72.0; 85.0) | 79.0 (70.0; 84.0) | 75.0 (70.0; 85.0) | 0.855 |
Comorbidities | |||||
CAD n (%) | 180 (77.3) | 93 (73.8) | 54 (87.1) | 33 (73.3) | 0.229 |
Prior MI n (%) | 89 (32.8) | 37 (29.4) | 45 (72.6) | 7 (15.6) | <0.001 |
AF n (%) | 68 (29.2) | 24 (19.1) | 1 (1.6) | 43 (95.6) | <0.001 |
Stroke/TIA n (%) | 25 (10.7) | 10 (7.9) | 7 (11.3) | 8 (17.8) | 0.357 |
PAD n (%) | 20 (8.6) | 12 (9.5) | 5 (8.1) | 3 (6.7) | 0.855 |
COPD/asthma n (%) | 21 (9.0) | 6 (4.8) | 9 (14.5) | 6 (13.3) | 0.144 |
CKD n (%) | 89 (38.2) | 60 (47.6) | 19 (30.7) | 10 (22.2) | 0.017 |
Anemia n (%) | 149 (64.0) | 110 (87.3) | 24 (38.7) | 15 (33.3) | <0.001 |
Dyslipidemia n (%) | 232 (99.6) | 125 (99.2) | 62 (100) | 45 (100) | 0.798 |
≥4 comorbidities (including hypertension, diabetes) n (%) | 191 (82.0) | 115 (91.3) | 37 (59.7) | 39 (86.7) | <0.001 |
Investigations | |||||
LDL-c mmol/L (IQR) | 2.3 (1.8; 3.2) | 2.3 (1.8; 3.2) | 2.5 (1.9; 3.2) | 1.9 (1.6; 2.8) | 0.480 |
Triglyceride mmol/L (IQR) | 1.7 (1.2; 2.4) | 1.8 (1.2; 2.5) | 1.7 (1.2; 2.5) | 1.4 (1.2; 2.1) | 0.129 |
HDL-c (IQR) | 1.1 (0.9; 1.2) | 1.1 (0.9; 1.2) | 1.1 (0.9; 1.1) | 1.0 (0.8; 1.2) | 0.968 |
Total cholesterol (IQR) | 3.9 (3.3; 4.9) | 3.8 (3.3; 4.9) | 4.1 (3.4; 4.9) | 3.7 (2.7; 4.4) | 0.357 |
HbA1c % (IQR) | 7.5 (6.6; 8.8) | 7.5 (6.7; 8.8) | 7.4 (6.5; 9.0) | 7.3 (6.6; 8.6) | 0.581 |
NTproBNP pg/mL (IQR) | 866.0 (313.0; 3000.0) | 763.5 (282.0; 3634.0) | 821.0 (342.3; 2466.5) | 1418.0 (643.0; 2208) | 0.480 |
EF % (IQR) | 61.0 (56.0; 66.0) | 61.5 (57.0,64.0) | 60 (55.0; 64.0) | 59.0 (56.0; 63.0) | 0.855 |
LVH n (%) | 132 (56.7) | 74 (58.7) | 37 (59.7) | 21 (46.7) | 0.480 |
CH n (%) | 94 (40.3) | 63 (50.0) | 20 (32.3) | 11 (24.4) | 0.017 |
LAE n (%) | 155 (66.5) | 74 (58.7) | 43 (69.4) | 38 (84.4) | 0.022 |
E/e’ > 9 n (%) | 220 (94.4) | 117 (92.9) | 53 (85.5) | 44 (97.8) | 0.152 |
Treatments | |||||
SGLT2 inhibitor n (%) | 43 (18.5) | 19 (15.1) | 16 (25.8) | 8 (17.8) | 0.370 |
RAAS inhibitor n (%) | 179 (76.8) | 95 (75.4) | 46 (74.2) | 38 (84.4) | 0.545 |
Beta blocker n (%) | 162 (69.5) | 82 (65.1) | 46 (74.2) | 34 (75.6) | 0.476 |
MRA n (%) | 55 (23.6) | 26 (20.6) | 18 (29.0) | 11 (24.4) | 0.579 |
Furosemide n (%) | 64 (27.5) | 37 (29.4) | 15 (24.2) | 12 (26.7) | 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.-T.-V.; Nguyen, H.-A.; Nguyen, H.H.; Truong, B.Q.; Chau, H.N. Phenotype-Specific Outcome and Treatment Response in Heart Failure with Preserved Ejection Fraction with Comorbid Hypertension and Diabetes: A 12-Month Multicentered Prospective Cohort Study. J. Pers. Med. 2023, 13, 1218. https://doi.org/10.3390/jpm13081218
Nguyen N-T-V, Nguyen H-A, Nguyen HH, Truong BQ, Chau HN. Phenotype-Specific Outcome and Treatment Response in Heart Failure with Preserved Ejection Fraction with Comorbid Hypertension and Diabetes: A 12-Month Multicentered Prospective Cohort Study. Journal of Personalized Medicine. 2023; 13(8):1218. https://doi.org/10.3390/jpm13081218
Chicago/Turabian StyleNguyen, Ngoc-Thanh-Van, Hoai-An Nguyen, Hai Hoang Nguyen, Binh Quang Truong, and Hoa Ngoc Chau. 2023. "Phenotype-Specific Outcome and Treatment Response in Heart Failure with Preserved Ejection Fraction with Comorbid Hypertension and Diabetes: A 12-Month Multicentered Prospective Cohort Study" Journal of Personalized Medicine 13, no. 8: 1218. https://doi.org/10.3390/jpm13081218
APA StyleNguyen, N. -T. -V., Nguyen, H. -A., Nguyen, H. H., Truong, B. Q., & Chau, H. N. (2023). Phenotype-Specific Outcome and Treatment Response in Heart Failure with Preserved Ejection Fraction with Comorbid Hypertension and Diabetes: A 12-Month Multicentered Prospective Cohort Study. Journal of Personalized Medicine, 13(8), 1218. https://doi.org/10.3390/jpm13081218