Intelligent Digital Twins for Personalized Migraine Care
Abstract
:1. The Digital Twin Concept
2. The Digital Twin Concept within Healthcare
3. Examples of Digital Twin Applications within Healthcare
4. Digital Twin Concept for Personalized Care for Migraines
5. Other Applications of Digital Twins for Migraines
6. Challenges of Utilizing Digital Twins in Migraine Care and Future Perspectives
7. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyes, H.; Watson, T. Digital twins: An analysis framework and open issues. Comput. Ind. 2022, 143, 103763. [Google Scholar] [CrossRef]
- Segovia, M.; Garcia-Alfaro, J. Design, Modeling and Implementation of Digital Twins. Sensors 2022, 22, 5396. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Suman, R. Digital Twin applications toward Industry 4.0: A Review. Cogn. Robot. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.-J., Flumerfelt, S., Alves, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Grieves, M.W. Virtually Intelligent Product Systems: Digital and Physical Twins; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Grieves, M. Intelligent digital twins and the development and management of complex systems. Digit. Twin 2022, 2, 8. [Google Scholar] [CrossRef]
- Grieves, M.W. Digital Twins: Past, Present, and Future. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 97–121. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, L.; Horn, B.K.P. Building a right digital twin with model engineering. J. Manuf. Syst. 2021, 59, 151–164. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, S.; Gu, M. Revisiting digital twins: Origins, fundamentals, and practices. Front. Eng. Manag. 2022, 9, 668–676. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Armeni, P.; Polat, I.; De Rossi, L.M.; Diaferia, L.; Meregalli, S.; Gatti, A. Digital Twins in Healthcare: Is It the Beginning of a New Era of Evidence-Based Medicine? A Critical Review. J. Pers. Med. 2022, 12, 1255. [Google Scholar] [CrossRef]
- Elkefi, S.; Asan, O. Digital Twins for Managing Health Care Systems: Rapid Literature Review. J. Med. Internet Res. 2022, 24, e37641. [Google Scholar] [CrossRef]
- James, L. Digital twins will revolutionise healthcare: Digital twin technology has the potential to transform healthcare in a variety of ways—Improving the diagnosis and treatment of patients, streamlining preventative care and facilitating new approaches for hospital planning. Eng. Technol. 2021, 16, 50–53. [Google Scholar] [CrossRef]
- Sun, T.; He, X.; Li, Z. Digital twin in healthcare: Recent updates and challenges. Digit. Health 2023, 9, 20552076221149651. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; He, X.; Song, X.; Shu, L.; Li, Z. The Digital Twin in Medicine: A Key to the Future of Healthcare? Front. Med. 2022, 9, 907066. [Google Scholar] [CrossRef] [PubMed]
- Cellina, M.; Cè, M.; Alì, M.; Irmici, G.; Ibba, S.; Caloro, E.; Fazzini, D.; Oliva, G.; Papa, S. Digital Twins: The New Frontier for Personalized Medicine? Appl. Sci. 2023, 13, 7940. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.P.; Raza, M.M.; Kvedar, J.C. Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation. Npj Digit. Med. 2022, 5, 150. [Google Scholar] [CrossRef]
- Lupton, D. Language matters: The ‘digital twin’ metaphor in health and medicine. J. Med. Ethics 2021, 47, 409. [Google Scholar] [CrossRef]
- Braun, M. Represent me: Please! Towards an ethics of digital twins in medicine. J. Med. Ethics 2021, 47, 394–400. [Google Scholar] [CrossRef]
- Subramanian, K. Digital twin for drug discovery and development—The virtual liver. J. Indian Inst. Sci. 2020, 100, 653–662. [Google Scholar] [CrossRef]
- Gkouskou, K.; Vlastos, I.; Karkalousos, P.; Chaniotis, D.; Sanoudou, D.; Eliopoulos, A.G. The “Virtual Digital Twins” Concept in Precision Nutrition. Adv. Nutr. 2020, 11, 1405–1413. [Google Scholar] [CrossRef]
- Fukawa, N.; Rindfleisch, A. Enhancing innovation via the digital twin. J. Prod. Innov. Manag. 2023, 40, 391–406. [Google Scholar] [CrossRef]
- Cheng, W.; Lian, W.; Tian, J. Building the hospital intelligent twins for all-scenario intelligence health care. Digit. Health 2022, 8, 20552076221107894. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M.; Pratap Singh, R.; Suman, R. Exploring the revolution in healthcare systems through the applications of digital twin technology. Biomed. Technol. 2023, 4, 28–38. [Google Scholar] [CrossRef]
- Bruynseels, K.; Santoni de Sio, F.; van den Hoven, J. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Drummond, D.; Coulet, A. Technical, Ethical, Legal, and Societal Challenges with Digital Twin Systems for the Management of Chronic Diseases in Children and Young People. J. Med. Internet Res. 2022, 24, e39698. [Google Scholar] [CrossRef]
- Popa, E.O.; van Hilten, M.; Oosterkamp, E.; Bogaardt, M.J. The use of digital twins in healthcare: Socio-ethical benefits and socio-ethical risks. Life Sci. Soc. Policy 2021, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Emmert-Streib, F.; Yli-Harja, O.; Dehmer, M. Explainable artificial intelligence and machine learning: A reality rooted perspective. WIREs Data Min. Knowl. Discov. 2020, 10, e1368. [Google Scholar] [CrossRef]
- Kelly, J.T.; Campbell, K.L.; Gong, E.; Scuffham, P. The Internet of Things: Impact and Implications for Health Care Delivery. J. Med. Internet Res. 2020, 22, e20135. [Google Scholar] [CrossRef] [PubMed]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Pratap Singh, R.; Suman, R. Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet Things Cyber-Phys. Syst. 2022, 2, 12–30. [Google Scholar] [CrossRef]
- Ali, O.; Abdelbaki, W.; Shrestha, A.; Elbasi, E.; Alryalat, M.A.A.; Dwivedi, Y.K. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. J. Innov. Knowl. 2023, 8, 100333. [Google Scholar] [CrossRef]
- Dang, V.A.; Vu Khanh, Q.; Nguyen, V.-H.; Nguyen, T.; Nguyen, D.C. Intelligent Healthcare: Integration of Emerging Technologies and Internet of Things for Humanity. Sensors 2023, 23, 4200. [Google Scholar] [CrossRef]
- Alnaim, A.K.; Alwakeel, A.M. Machine-Learning-Based IoT—Edge Computing Healthcare Solutions. Electronics 2023, 12, 1027. [Google Scholar] [CrossRef]
- Meier-Schellersheim, M.; Fraser, I.D.C.; Klauschen, F. Multiscale modeling for biologists. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009, 1, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.C.Y.; Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; et al. Multiscale Modeling Meets Machine Learning: What Can We Learn? Arch. Comput. Methods Eng. 2021, 28, 1017–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmert-Streib, F.; Yli-Harja, O. What Is a Digital Twin? Experimental Design for a Data-Centric Machine Learning Perspective in Health. Int. J. Mol. Sci. 2022, 23, 13149. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.-S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Möller, J.; Pörtner, R. Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes 2021, 9, 447. [Google Scholar] [CrossRef]
- Institute of Medicine Committee on Quality of Health Care in America. Crossing the Quality Chasm: A New Health System for the 21st Century; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- Nagaraj, D.; Khandelwal, P.; Steyaert, S.; Gevaert, O. Augmenting digital twins with federated learning in medicine. Lancet Digit. Health 2023, 5, e251–e253. [Google Scholar] [CrossRef]
- Sager, S. Digital twins in oncology. J. Cancer Res. Clin. Oncol. 2023, 149, 5475–5477. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, N.; Jayaraman, P.P.; Forkan, A.R.M.; Ulapane, N.; Kaul, R.; Vaughan, S.; Zelcer, J. A Vision for Leveraging the Concept of Digital Twins to Support the Provision of Personalized Cancer Care. IEEE Internet Comput. 2022, 26, 17–24. [Google Scholar] [CrossRef]
- Hussain, I.; Hossain, M.A.; Park, S.J. A Healthcare Digital Twin for Diagnosis of Stroke. In Proceedings of the 2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON), Dhaka, Bangladesh, 4–5 December 2021; pp. 18–21. [Google Scholar]
- Voigt, I.; Inojosa, H.; Dillenseger, A.; Haase, R.; Akgün, K.; Ziemssen, T. Digital Twins for Multiple Sclerosis. Front. Immunol. 2021, 12, 669811. [Google Scholar] [CrossRef]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, A.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef] [Green Version]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Kaul, R.; Ossai, C.; Forkan, A.R.M.; Jayaraman, P.P.; Zelcer, J.; Vaughan, S.; Wickramasinghe, N. The role of AI for developing digital twins in healthcare: The case of cancer care. WIREs Data Min. Knowl. Discov. 2023, 13, e1480. [Google Scholar] [CrossRef]
- Thiong’o, G.M.; Rutka, J.T. Digital Twin Technology: The Future of Predicting Neurological Complications of Pediatric Cancers and Their Treatment. Front. Oncol. 2021, 11, 781499. [Google Scholar] [CrossRef]
- Kamel Boulos, M.N.; Zhang, P. Digital Twins: From Personalised Medicine to Precision Public Health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Wickramasinghe, N.; Ulapane, N.; Andargoli, A.; Ossai, C.; Shuakat, N.; Nguyen, T.; Zelcer, J. Digital twins to enable better precision and personalized dementia care. JAMIA Open 2022, 5, ooac072. [Google Scholar] [CrossRef]
- Dang, J.; Lal, A.; Montgomery, A.; Flurin, L.; Litell, J.; Gajic, O.; Rabinstein, A.; Cervantes-Arslanian, A.; Marcellino, C.; Robinson, C.; et al. Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit. BMC Neurol. 2023, 23, 161. [Google Scholar] [CrossRef] [PubMed]
- Saghiri, A.M.; Gholizadeh HamlAbadi, K.; Vahdati, M. Chapter 14—Applications of Digital Twins to migraine. In Digital Twin for Healthcare; El Saddik, A., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 283–304. [Google Scholar] [CrossRef]
- Zhang, L.M.; Dong, Z.; Yu, S.Y. Migraine in the era of precision medicine. Ann. Transl. Med. 2016, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Eigenbrodt, A.K.; Ashina, H.; Khan, S.; Diener, H.-C.; Mitsikostas, D.D.; Sinclair, A.J.; Pozo-Rosich, P.; Martelletti, P.; Ducros, A.; Lantéri-Minet, M.; et al. Diagnosis and management of migraine in ten steps. Nat. Rev. Neurol. 2021, 17, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.D.; Goadsby, P.J.; Burstein, R.; Kurth, T.; Ayata, C.; Charles, A.; Ashina, M.; van den Maagdenberg, A.; Dodick, D.W. Migraine. Nat. Rev. Dis. Prim. 2022, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Amiri, P.; Kazeminasab, S.; Nejadghaderi, S.A.; Mohammadinasab, R.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.A.; Safiri, S. Migraine: A Review on Its History, Global Epidemiology, Risk Factors, and Comorbidities. Front. Neurol. 2021, 12, 800605. [Google Scholar] [CrossRef]
- Steiner, T.J.; Stovner, L.J.; Jensen, R.; Uluduz, D.; Katsarava, Z.; on behalf of Lifting The Burden: The Global Campaign against Headache. Migraine remains second among the world’s causes of disability, and first among young women: Findings from GBD2019. J. Headache Pain 2020, 21, 137. [Google Scholar] [CrossRef]
- Snoer, A.H.; Høst, C.; Dømgaard, M.; Hansen, J.M. Frequent or chronic migraine negatively impacts personal, social and professional life. Dan. Med. J. 2021, 68, A08200592. [Google Scholar] [PubMed]
- Khan, J.; Asoom, L.I.A.; Sunni, A.A.; Rafique, N.; Latif, R.; Saif, S.A.; Almandil, N.B.; Almohazey, D.; AbdulAzeez, S.; Borgio, J.F. Genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. Biomed. Pharmacother. 2021, 139, 111557. [Google Scholar] [CrossRef] [PubMed]
- Puledda, F.; Silva, E.M.; Suwanlaong, K.; Goadsby, P.J. Migraine: From pathophysiology to treatment. J. Neurol. 2023, 270, 3654–3666. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.H.; Younis, S.; Thuraiaiyah, J.; Ashina, M. The chronobiology of migraine: A systematic review. J. Headache Pain 2021, 22, 76. [Google Scholar] [CrossRef]
- Serrano, D.; Lipton, R.B.; Scher, A.I.; Reed, M.L.; Stewart, W.B.F.; Adams, A.M.; Buse, D.C. Fluctuations in episodic and chronic migraine status over the course of 1 year: Implications for diagnosis, treatment and clinical trial design. J. Headache Pain 2017, 18, 101. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Albury, C.L.; Griffiths, L.R. Advances in genetics of migraine. J. Headache Pain 2019, 20, 72. [Google Scholar] [CrossRef]
- Zobdeh, F.; Eremenko, I.I.; Akan, M.A.; Tarasov, V.V.; Chubarev, V.N.; Schiöth, H.B.; Mwinyi, J. The Epigenetics of Migraine. Int. J. Mol. Sci. 2023, 24, 9127. [Google Scholar] [CrossRef]
- Gazerani, P. Current Evidence on the Role of Epigenetic Mechanisms in Migraine: The Way Forward to Precision Medicine. OBM Genet. 2018, 02, 040. [Google Scholar] [CrossRef]
- Seng, E.K.; Martin, P.R.; Houle, T.T. Lifestyle factors and migraine. Lancet Neurol. 2022, 21, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P. Migraine and Diet. Nutrients 2020, 12, 1658. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P. A Bidirectional View of Migraine and Diet Relationship. Neuropsychiatr. Dis. Treat. 2021, 17, 435–451. [Google Scholar] [CrossRef]
- Ashina, M.; Terwindt, G.M.; Al-Karagholi, M.A.; de Boer, I.; Lee, M.J.; Hay, D.L.; Schulte, L.H.; Hadjikhani, N.; Sinclair, A.J.; Ashina, H.; et al. Migraine: Disease characterisation, biomarkers, and precision medicine. Lancet 2021, 397, 1496–1504. [Google Scholar] [CrossRef]
- Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Facchetti, S.; De Icco, R.; Martinelli, D.; Allena, M.; Greco, R.; Tassorelli, C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int. J. Mol. Sci. 2023, 24, 5334. [Google Scholar] [CrossRef] [PubMed]
- Grodzka, O.; Słyk, S.; Domitrz, I. The Role of MicroRNA in Migraine: A Systemic Literature Review. Cell. Mol. Neurobiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, W.K.; Ashina, H.; Cullum, C.K.; Christensen, R.H.; Al-Khazali, H.M.; Amin, F.M.; Ashina, M.; Iljazi, A.; Thomsen, A.V.; Chaudhry, B.A.; et al. The Registry for Migraine (REFORM) study: Methodology, demographics, and baseline clinical characteristics. J. Headache Pain 2023, 24, 70. [Google Scholar] [CrossRef] [PubMed]
- Andreou, A.P.; Fuccaro, M.; Lambru, G. The role of erenumab in the treatment of migraine. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420927119. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K.; Ferner, R.E. Biomarkers—A General Review. Curr. Protoc. Pharmacol. 2017, 76, 9.23.1–9.23.17. [Google Scholar] [CrossRef] [PubMed]
- Butcher, C.J.; Hussain, W. Digital healthcare: The future. Future Healthc. J. 2022, 9, 113–117. [Google Scholar] [CrossRef]
- Ingvaldsen, S.H.; Tronvik, E.; Brenner, E.; Winnberg, I.; Olsen, A.; Gravdahl, G.B.; Stubberud, A. A Biofeedback App for Migraine: Development and Usability Study. JMIR Form. Res. 2021, 5, e23229. [Google Scholar] [CrossRef]
- Babrak, L.M.; Menetski, J.; Rebhan, M.; Nisato, G.; Zinggeler, M.; Brasier, N.; Baerenfaller, K.; Brenzikofer, T.; Baltzer, L.; Vogler, C.; et al. Traditional and Digital Biomarkers: Two Worlds Apart? Digit. Biomark. 2019, 3, 92–102. [Google Scholar] [CrossRef]
- Fagherazzi, G. Deep Digital Phenotyping and Digital Twins for Precision Health: Time to Dig Deeper. J. Med. Internet Res. 2020, 22, e16770. [Google Scholar] [CrossRef]
- Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J. Healthc. Eng. 2022, 2022, 4653923. [Google Scholar] [CrossRef]
- Koskimäki, H.; Mönttinen, H.; Siirtola, P.; Huttunen, H.-L.; Halonen, R.; Röning, J. Early detection of migraine attacks based on wearable sensors: Experiences of data collection using Empatica E4. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, Hawaii, 11–15 September 2017; pp. 506–511. [Google Scholar]
- Cao, Z.; Lin, C.-T.; Lai, K.-L.; Ko, L.-W.; King, J.-T.; Liao, K.-K.; Fuh, J.-L.; Wang, S.-J. Extraction of SSVEPs-based inherent fuzzy entropy using a wearable headband EEG in migraine patients. IEEE Trans. Fuzzy Syst. 2019, 28, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.S.; Dave, R. MyGraine: Predicting Migraines Through Various Machine Learning Models Utilizing User-Inputted Data. Int. J. High Sch. Res. 2020, 2, 65–71. [Google Scholar] [CrossRef]
- Mohan, S.; Mukherjee, A. MigraineCloud. In Proceedings of the SoutheastCon 2018, St. Petersburg, FL, USA, 19–22 April 2018; pp. 1–7. [Google Scholar]
- Stubberud, A.; Ingvaldsen, S.H.; Brenner, E.; Winnberg, I.; Olsen, A.; Gravdahl, G.B.; Matharu, M.S.; Nachev, P.; Tronvik, E. Forecasting migraine with machine learning based on mobile phone diary and wearable data. Cephalalgia 2023, 43, 3331024231169244. [Google Scholar] [CrossRef] [PubMed]
- Stubberud, A.; Gray, R.; Tronvik, E.; Matharu, M.; Nachev, P. Machine prescription for chronic migraine. Brain Commun. 2022, 4, fcac059. [Google Scholar] [CrossRef] [PubMed]
- Rahul, M.; Shukla, R.; Singh, S.; Yadav, V.; Mishra, A. A survey on state-of-the-art of cloud computing: Its challenges and solutions. In Recent Trends in Communication and Electronics; CRC Press: Boca Raton, FL, USA, 2021; pp. 562–567. [Google Scholar]
- Wortmann, F.; Flüchter, K. Internet of Things Internet of Things. Bus. Inf. Syst. Eng. 2015, 57, 221–224. [Google Scholar] [CrossRef]
- Yin, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.Y.H.; Zheng, P.; Chen, C.-H. A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle management and business innovation perspectives. J. Intell. Manuf. 2020, 31, 1313–1337. [Google Scholar] [CrossRef]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res. 2020, 58, 1927–1949. [Google Scholar] [CrossRef]
- Ganguli, R.; Adhikari, S. The digital twin of discrete dynamic systems: Initial approaches and future challenges. Appl. Math. Model. 2020, 77, 1110–1128. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Biller, B.; Biller, S. Implementing Digital Twins That Learn: AI and Simulation Are at the Core. Machines 2023, 11, 425. [Google Scholar] [CrossRef]
- Connelly, M.; Boorigie, M.; McCabe, K. Acceptability and Tolerability of Extended Reality Relaxation Training with and without Wearable Neurofeedback in Pediatric Migraine. Children 2023, 10, 329. [Google Scholar] [CrossRef] [PubMed]
- Cuneo, A.; Yang, R.; Zhou, H.; Wang, K.; Goh, S.; Wang, Y.; Raiti, J.; Krashin, D.; Murinova, N. The Utility of a Novel, Combined Biofeedback-Virtual Reality Device as Add-on Treatment for Chronic Migraine: A Randomized Pilot Study. Clin. J. Pain 2023, 39, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Akben, S.B.; Tuncel, D.; Alkan, A. Classification of multi-channel EEG signals for migraine detection. Biomed. Res. 2016, 27, 743–748. [Google Scholar]
- Cao, Z.; Lin, C.-T.; Chuang, C.-H.; Lai, K.-L.; Yang, A.C.; Fuh, J.-L.; Wang, S.-J. Resting-state EEG power and coherence vary between migraine phases. J. Headache Pain 2016, 17, 102. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Lee, H.; Cho, S.; Chung, C.-S.; Lee, M.J.; Park, H. Machine learning-based automated classification of headache disorders using patient-reported questionnaires. Sci. Rep. 2020, 10, 14062. [Google Scholar] [CrossRef]
- Mitrović, K.; Petrušić, I.; Radojičić, A.; Daković, M.; Savić, A. Migraine with aura detection and subtype classification using machine learning algorithms and morphometric magnetic resonance imaging data. Front. Neurol. 2023, 14, 1106612. [Google Scholar] [CrossRef]
- Ashina, S.; Terwindt, G.M.; Steiner, T.J.; Lee, M.J.; Porreca, F.; Tassorelli, C.; Schwedt, T.J.; Jensen, R.H.; Diener, H.-C.; Lipton, R.B. Medication overuse headache. Nat. Rev. Dis. Prim. 2023, 9, 5. [Google Scholar] [CrossRef]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Spila, A.; Fofi, L.; Egeo, G.; Rullo, A.; Palmirotta, R.; Barbanti, P.; Guadagni, F. Machine learning approach to predict medication overuse in migraine patients. Comput. Struct. Biotechnol. J. 2020, 18, 1487–1496. [Google Scholar] [CrossRef]
- Sayyari, E.; Farzi, M.; Estakhrooeieh, R.R.; Samiee, F.; Shamsollahi, M.B. Migraine analysis through EEG signals with classification approach. In Proceedings of the 2012 11th International Conference on Information Science, Signal Processing and Their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012; pp. 859–863. [Google Scholar]
- Yang, H.; Zhang, J.; Liu, Q.; Wang, Y. Multimodal MRI-based classification of migraine: Using deep learning convolutional neural network. Biomed. Eng. Online 2018, 17, 138. [Google Scholar] [CrossRef] [Green Version]
- Day, R.J.; Salehi, H.; Javadi, M. Iot environmental analyzer using sensors and machine learning for migraine occurrence prevention. In Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 1460–1465. [Google Scholar]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear Discriminant Analysis. In Robust Data Mining; Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B., Eds.; Springer: New York, NY, USA, 2013; pp. 27–33. [Google Scholar] [CrossRef]
- Misztal, S.; Carbonell, G.; Zander, L.; Schild, J. Simulating Illness: Experiencing Visual Migraine Impairments in Virtual Reality. In Proceedings of the 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), Vancouver, BC, Canada, 12–14 August 2020; pp. 1–8. [Google Scholar]
- Doh, H. Augmented Reality and Presence in Health Communication and Their Influence on the Empathy of Healthcare Professionals. Ph.D. Thesis, Temple University, Philadelphia, PA, USA, 2021. [Google Scholar]
- Coorey, G.; Figtree, G.A.; Fletcher, D.F.; Redfern, J. The health digital twin: Advancing precision cardiovascular medicine. Nat. Rev. Cardiol. 2021, 18, 803–804. [Google Scholar] [CrossRef]
- Vincent, M.; Viktrup, L.; Nicholson, R.A.; Ossipov, M.H.; Vargas, B.B. The not so hidden impact of interictal burden in migraine: A narrative review. Front. Neurol. 2022, 13, 1032103. [Google Scholar] [CrossRef]
- Sahal, R.; Alsamhi, S.H.; Brown, K.N. Personal Digital Twin: A Close Look into the Present and a Step towards the Future of Personalised Healthcare Industry. Sensors 2022, 22, 5918. [Google Scholar] [CrossRef]
- Saghiri, A.M.; HamlAbadi, K.G.; Vahdati, M. The Internet of Things, Artificial Intelligence, and Blockchain: Implementation Perspectives. In Advanced Applications of Blockchain Technology; Kim, S., Deka, G.C., Eds.; Springer: Singapore, 2020; pp. 15–54. [Google Scholar] [CrossRef]
- Wang, X. Design and Implementation of a Data Sharing Model for Improving Blockchain Technology. Adv. Multimed. 2022, 2022, 4578525. [Google Scholar] [CrossRef]
- Erol, T.; Mendi, A.F.; Doğan, D. The Digital Twin Revolution in Healthcare. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–7. [Google Scholar]
- Mulder, S.T.; Omidvari, A.H.; Rueten-Budde, A.J.; Huang, P.H.; Kim, K.H.; Bais, B.; Rousian, M.; Hai, R.; Akgun, C.; van Lennep, J.R.; et al. Dynamic Digital Twin: Diagnosis, Treatment, Prediction, and Prevention of Disease During the Life Course. J. Med. Internet Res. 2022, 24, e35675. [Google Scholar] [CrossRef]
- Lea, R.; Christian, M.; Jens, M.; Marcus, C.; Tim, W. Addressing User Resistance Would Have Prevented a Healthcare AI Project Failure. MIS Q. Exec. 2020, 19, 279–296. [Google Scholar] [CrossRef]
- Shaban-Nejad, A.; Michalowski, M.; Peek, N.; Brownstein, J.S.; Buckeridge, D.L. Seven pillars of precision digital health and medicine. Artif. Intell. Med. 2020, 103, 101793. [Google Scholar] [CrossRef]
- Schwartz, S.M.; Wildenhaus, K.; Bucher, A.; Byrd, B. Digital Twins and the Emerging Science of Self: Implications for Digital Health Experience Design and “Small” Data. Front. Comput. Sci. 2020, 2, 31. [Google Scholar] [CrossRef]
- Huang, P.H.; Kim, K.H.; Schermer, M. Ethical Issues of Digital Twins for Personalized Health Care Service: Preliminary Mapping Study. J. Med. Internet Res. 2022, 24, e33081. [Google Scholar] [CrossRef]
Domain | Potential Applications |
---|---|
Safety | Digital twins allow the testing of various interventions on identical digital models of patients; hence, any risk can be predicted or detected before real-world interventions with patients. This capability offers safer procedures and interventions and minimizes potential harm. |
Effectiveness | Digital twins allow an examination of the latest treatments, medical devices, and technologies to provide evidence regarding the effectiveness of a treatment choice and optimize disease management among patients. Decision trees and algorithms embedded in digital twins and advanced deep learning can help provide appropriate individualized choices and personalized care. |
Patient-centered care | Digital twins are aligned with the concept of recognizing the uniqueness of each patient and providing personalized care. Individual aspects are taken into consideration to ensure personalized holistic decision making with the aid of digital twins. Patients’ own data are used for their own care, reflecting active patient involvement in treatment plans based on individual needs. |
Timeliness | Digital twins, particularly intelligent digital twins, can provide timely actionable information for decision making due to their continuous monitoring capability and provision of real-time feedback or even early timing feedback. It is expected that intelligent digital twins can facilitate treatment plans and preventative care. |
Equity | Digital twins are expected to influence equity in healthcare. Both their risks and benefits have been discussed in relation to health equity. Digital twins can close or widen the gap of equitable acts during the delivery of care. This domain is currently unknown. |
Efficiency | Digital twins are speculated to reduce costs (a proper assessment and cost analysis are required) and enhance efficiency within healthcare systems in terms of workflow, waste, and long-term costs and consequences. A more efficient healthcare system can save resources by integrating digital twins and personalized care, thus reducing unsafe and/or inefficient care, complications, and readmissions. This domain is a dynamic feature and requires continuous review and monitoring to adjust to the needs for optimal efficiency. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazerani, P. Intelligent Digital Twins for Personalized Migraine Care. J. Pers. Med. 2023, 13, 1255. https://doi.org/10.3390/jpm13081255
Gazerani P. Intelligent Digital Twins for Personalized Migraine Care. Journal of Personalized Medicine. 2023; 13(8):1255. https://doi.org/10.3390/jpm13081255
Chicago/Turabian StyleGazerani, Parisa. 2023. "Intelligent Digital Twins for Personalized Migraine Care" Journal of Personalized Medicine 13, no. 8: 1255. https://doi.org/10.3390/jpm13081255
APA StyleGazerani, P. (2023). Intelligent Digital Twins for Personalized Migraine Care. Journal of Personalized Medicine, 13(8), 1255. https://doi.org/10.3390/jpm13081255