Longitudinal Analysis of the ASES and Constant–Murley Scores, and the Internal Rotation/Shift and Jobe Tests Following Arthroscopic Repair of Supraspinatus Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The IRO/Shift test showed a stronger ability to distinguish between those with positive tests compared to negative tests with respect to ASES and CMS scores.
- The average for all tools did not improve to acceptable levels until approximately 6 months post-surgery, with improvements in the CMS scores and Jobe test being slower at all time periods compared to the ASES and IRO/Shift test.
- The time required to return to activities of daily living and negative clinical tests was longer for the double-row repair patients compared to single-row and debridement.
- These results suggest that the ASES, CMS, IRO/Shift test, and Jobe test are useful, yet unique tools for determining the progress and clinical decision-making process among patients with supraspinatus repair.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roquelaure, Y.; Ha, C.; Leclerc, A.; Touranchet, A.; Sauteron, M.; Melchior, M.; Imbernon, E.; Goldberg, M. Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arthritis Rheum. 2006, 55, 765–778. [Google Scholar]
- Stevenson, J.H.; Trojian, T. Evaluation of shoulder pain. J. Fam. Pract. 2002, 51, 605–611. [Google Scholar]
- Chakravarty, K.; Webley, M. Shoulder joint movement and its relationship to disability in the elderly. J. Rheumatol. 1993, 20, 1359–1361. [Google Scholar]
- Sher, J.; Uribe, J.; Posada, A.; Murphy, B.; Zlatkin, M. Abnormal findings on magnetic resonance images of asymptomatic shoulders. J. Bone Jt. Surg. Am. 1995, 77, 10–15. [Google Scholar]
- Ensor, K.L.; Kwon, Y.W.; DiBeneditto, M.R.; Zuckerman, J.D.; Rokito, A.S. The rising incidence of rotator cuff repairs. J. Shoulder Elb. Surg. 2013, 22, 1628–1632. [Google Scholar]
- Randelli, P.; Cucchi, D.; Ragone, V.; de Girolamo, L.; Cabitza, P.; Randelli, M. History of rotator cuff surgery. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 344–362. [Google Scholar] [PubMed]
- Deprés-Tremblay, G.; Chevrier, A.; Snow, M.; Hurtig, M.B.; Rodeo, S.; Buschmann, M.D. Rotator cuff repair: A review of surgical techniques, animal models, and new technologies under development. J. Shoulder Elb. Surg. 2016, 25, 2078–2085. [Google Scholar]
- Dines, J.S.; Bedi, A.; ElAttrache, N.S.; Dines, D.M. Single-row versus double-row rotator cuff repair: Techniques and outcomes. J. Am. Acad. Orthop. Surg. 2010, 18, 83–93. [Google Scholar]
- Kim, D.H.; ElAttrache, N.S.; Tibone, J.E.; Jun, B.-J.; DeLaMora, S.N.; Kvitne, R.S.; Lee, T.Q. Biomechanical comparison of a single-row versus double-row suture anchor technique for rotator cuff repair. Am. J. Sports Med. 2006, 34, 407–414. [Google Scholar]
- Mazzocca, A.D.; Millett, P.J.; Guanche, C.A.; Santangelo, S.A.; Arciero, R.A. Arthroscopic single-row versus double-row suture anchor rotator cuff repair. Am. J. Sports Med. 2005, 33, 1861–1868. [Google Scholar]
- Saridakis, P.; Jones, G. Outcomes of single-row and double-row arthroscopic rotator cuff repair: A systematic review. J. Bone Jt. Surg. Am. 2010, 92, 732–742. [Google Scholar]
- Wall, L.B.; Keener, J.D.; Brophy, R.H. Double-row vs single-row rotator cuff repair: A review of the biomechanical evidence. J. Shoulder Elb. Surg. 2009, 18, 933–941. [Google Scholar]
- Kocher, M.S.; Horan, M.P.; Briggs, K.K.; Richardson, T.R.; O’Holleran, J.; Hawkins, R.J. Reliability, validity, and responsiveness of the American Shoulder and Elbow Surgeons subjective shoulder scale in patients with shoulder instability, rotator cuff disease, and glenohumeral arthritis. J. Bone Jt. Surg. Am. 2005, 87, 2006–2011. [Google Scholar]
- Goldhahn, J.; Angst, F.; Drerup, S.; Pap, G.; Simmen, B.R.; Mannion, A.F. Lessons learned during the cross-cultural adaptation of the American Shoulder and Elbow Surgeons shoulder form into German. J. Shoulder Elb. Surg. 2008, 17, 248–254. [Google Scholar]
- Richards, R.R.; An, K.-N.; Bigliani, L.U.; Friedman, R.J.; Gartsman, G.M.; Gristina, A.G.; Iannotti, J.P.; Mow, V.C.; Sidles, J.A.; Zuckerman, J.D. A standardized method for the assessment of shoulder function. J. Shoulder Elb. Surg. 1994, 3, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Constant, C.R.; Gerber, C.; Emery, R.J.; Søjbjerg, J.O.; Gohlke, F.; Boileau, P. A review of the Constant score: Modifications and guidelines for its use. J. Shoulder Elb. Surg. 2008, 17, 355–361. [Google Scholar] [CrossRef]
- Malavolta, E.A.; Assunção, J.H.; Andrade-Silva, F.B.; Gracitelli, M.E.C.; Kiyomoto, H.D.; Neto, A.A.F. Prognostic Factors for Clinical Outcomes After Arthroscopic Rotator Cuff Repair. Orthop. J. Sports Med. 2023, 11, 23259671231160738. [Google Scholar]
- Bejer, A.; Płocki, J.; Probachta, M.; Kotela, I.; Kotela, A. A Comparison Study of the Western Ontario Rotator Cuff Index, and the Constant-Murley Score with Objective Assessment of External Rotator Muscle Strength and Pain in Patients after Arthroscopic Rotator Cuff Repair. Int. J. Environ. Res. Public Health 2023, 20, 6316. [Google Scholar]
- Jain, N.B.; Luz, J.; Higgins, L.D.; Dong, Y.; Warner, J.J.; Matzkin, E.; Katz, J.N. The Diagnostic Accuracy of Special Tests for Rotator Cuff Tear: The ROW Cohort Study. Am. J. Phys. Med. Rehabil. 2017, 96, 176–183. [Google Scholar]
- Lädermann, A.; Meynard, T.; Denard, P.J.; Ibrahim, M.; Saffarini, M.; Collin, P. Reliable diagnosis of posterosuperior rotator cuff tears requires a combination of clinical tests. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 2118–2133. [Google Scholar]
- Fieseler, G.; Laudner, K.; Sendler, J.; Cornelius, J.; Schulze, S.; Lehmann, W.; Hermassi, S.; Delank, K.-S.; Schwesig, R. The internal rotation and shift-test for the detection of superior lesions of the rotator cuff: Reliability and clinical performance. JSES Int. 2022, 6, 495–499. [Google Scholar] [PubMed]
- Fieseler, G.; Schwesig, R.; Sendler, J.; Cornelius, J.; Schulze, S.; Lehmann, W.; Hermassi, S.; Delank, K.-S.; Laudner, K. IRO/Shift Test Is Comparable to the Jobe Test for Detection of Supraspinatus Lesions. J. Pers. Med. 2022, 12, 1422. [Google Scholar] [CrossRef]
- Piatti, M.; Gorla, M.; Alberio, F.; Omeljaniuk, R.J.; Rigamonti, L.; Gaddi, D.; Turati, M.; Bigoni, M. Comparison of all-suture anchors with metallic anchors in arthroscopic cuff repair: Structural and functional properties and clinical suitability. J. Orthop. 2023, 39, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Sallay, P.I.; Reed, L. The measurement of normative American Shoulder and Elbow Surgeons scores. J. Shoulder Elb. Surg. 2003, 12, 622–627. [Google Scholar]
- Roy, J.S.; MacDermid, J.C.; Woodhouse, L.J. A systematic review of the psychometric properties of the Constant-Murley score. J. Shoulder Elb. Surg. 2010, 19, 157–164. [Google Scholar]
- Yian, E.H.; Ramappa, A.J.; Arneberg, O.; Gerber, C. The Constant score in normal shoulders. J. Shoulder Elb. Surg. 2005, 14, 128–133. [Google Scholar] [CrossRef]
- Bortz, J. Basic Principle of One-Factorial Analysis of Variance. In Statistics for Social Scientists; Springer: New York, NY, USA, 1999; pp. 237–249. [Google Scholar]
- Richardson, J.T.E. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Stratford, P. Getting More from the Literature: Estimating the Standard Error of Measurement from Relibility Studies. Physiother. Can. 2004, 56, 27–30. [Google Scholar] [CrossRef]
- Haunschild, E.D.; Gilat, R.; Lavoie-Gagne, O.; Fu, M.C.; Tauro, T.; Forsythe, B.; Cole, B.J. Return to Work After Primary Rotator Cuff Repair: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2021, 49, 2238–2247. [Google Scholar]
- Kukkonen, J.; Kauko, T.; Vahlberg, T.; Joukainen, A.; Äärimaa, V. Investigating minimal clinically important difference for Constant score in patients undergoing rotator cuff surgery. J. Shoulder Elb. Surg. 2013, 22, 1650–1655. [Google Scholar]
- Nabergoj, M.; Bagheri, N.; Bonnevialle, N.; Gallinet, D.; Barth, J.; Labattut, L.; Metais, P.; Godeneche, A.; Garret, J.; Clavert, P.; et al. Arthroscopic rotator cuff repair: Is healing enough? Orthop. Traumatol. Surg. Res. 2021, 107, 103100. [Google Scholar] [PubMed]
- Panattoni, N.; Longo, U.G.; De Salvatore, S.; Castaneda, N.S.C.; Ambrogioni, L.R.; Piredda, M.; De Marinis, M.G.; Denaro, V. The influence of psychosocial factors on patient-reported outcome measures in rotator cuff tears pre- and post-surgery: A systematic review. Qual. Life Res. 2022, 31, 91–116. [Google Scholar] [PubMed]
- Lavoie-Gagne, O.; Huddleston, H.P.; Fu, M.C.; Mehta, N.; Nwachukwu, B.; Forlenza, E.M.; Yanke, A.; Cole, B.J.; Verma, N.N.; Forsythe, B. PROMIS Upper Extremity underperforms psychometrically relative to American Shoulder and Elbow Surgeons score in patients undergoing primary rotator cuff repair. J. Shoulder Elb. Surg. 2022, 31, 718–725. [Google Scholar]
Score | Exam | RC-Lesion (n = 51) | No RC-Lesion (n = 36) | Variance Analysis (p/ηp2) | ||
---|---|---|---|---|---|---|
Time | Group | Time × Group | ||||
ASES | 1 | 45.4 ± 16.4 | 44.2 ± 18.4 | <0.001/0.653 | 0.828/0.001 | 0.913/0.001 |
2 | 65.0 ± 16.4 | 65.2 ± 15.6 | ||||
3 | 81.1 ± 16.3 | 80.3 ± 16.7 | ||||
CMS | 1 | 41.6 ± 17.5 | 42.4 ± 18.5 | <0.001/0.617 | 0.815/0.001 | 0.895/0.001 |
2 | 61.9 ± 17.7 | 61.6 ± 15.6 | ||||
3 | 77.5 ± 18.6 | 79.0 ± 21.6 |
Clinical Test | Exam 1 ASES Score | Exam 2 ASES Score | Exam 3 ASES Score | |
---|---|---|---|---|
IRO/Shift | negative | 50.1 ± 20.4 (n = 25) | 69.7 ± 15.3 (n = 50) | 82.6 ± 14.8 (n = 81) |
positive | 42.8 ± 15.3 (n = 62) | 58.8 ± 14.8 (n = 37) | 55.8 ± 17.2 (n = 6) | |
p/ηp2 | 0.072/0.04 | 0.001/0.12 | <0.001/0.18 | |
Jobe | negative | 45.2 ± 19.4 (n = 31) | 67.8 ± 14.6 (n = 45) | 82.0 ± 16.3 (n = 67) |
positive | 44.8 ± 16.0 (n = 56) | 62.2 ± 16.9 (n = 42) | 76.6 ± 16.2 (n = 20) | |
p/ηp2 | 0.902/0.00 | 0.100/0.03 | 0.193/0.02 |
Clinical Test | Exam 1 CMS Score | Exam 2 CMS Score | Exam 3 CMS Score | |
---|---|---|---|---|
IRO/Shift | negative | 45.2 ± 20.6 (n = 25) | 67.6 ± 16.2 (n = 50) | 80.3 ± 16.9 (n = 81) |
positive | 40.6 ± 16.5 (n = 62) | 54.0 ± 14.4 (n = 37) | 45.0 ± 21.8 (n = 6) | |
p/ηp2 | 0.279/0.01 | <0.001/0.16 | <0.001/0.22 | |
Jobe | negative | 42.1 ± 18.6 (n = 31) | 64.5 ± 16.9 (n = 45) | 79.3 ± 19.9 (n = 67) |
positive | 41.8 ± 17.5 (n = 56) | 58.9 ± 16.4 (n = 42) | 72.8 ± 16.6 (n = 20) | |
p/ηp2 | 0.958/0.00 | 0.125/0.03 | 0.188/0.20 |
Score | Examinations | Minimum Detectable Change (MDC) | Variance Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|
Exam 1 | Exam 2 | Exam 3 | ICC (95% CI) | SEM | MDC95 | Absolute Difference | (p/ηp2) | Comparison of Adjacent Exams (ηp2) | |
ASES | 45.4 ± 16.4 | 65.0 ± 16.4 | 81.1 ± 16.3 | 0.38 (0–0.65) | 16.4 | 43.8 | 1.6 | <0.001/0.66 | 1 vs. 2 (0.52) 2 vs. 3 (0.58) |
CMS | 41.6 ± 17.5 | 61.9 ± 17.7 | 77.5 ± 18.6 | 0.51 (0.1–0.76) | 12.6 | 42.8 | 1.2 | <0.001/0.68 | 1 vs. 2 (0.61) 2 vs. 3 (0.55) |
Clinical Test | Exam 1 | Exam 2 | Exam 3 | 1 vs. 2 Chi²/p | 2 vs. 3 Chi²/p |
---|---|---|---|---|---|
IRO/Shift | 92% | 61% | 10% | 2.33/0.127 | 3.58/0.059 |
Jobe | 94% | 71% | 35% | 7.65/0.006 | 11.59/<0.001 |
Score | Surgery | Examinations | Minimum Detectable Change (MDC) | Variance Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Exam 1 | Exam 2 | Exam 3 | ICC (95% CI) | SEM | MDC95 | Absolute Difference | (p/ηp2) | Comparison of Adjacent Exams (ηp2) | ||
ASES | Single (n = 22) | 42.1 ± 15.3 | 64.8 ± 17.3 | 81.8 ± 14.7 | 0.33 (0–0.66) | 9.19 | 31.2 | 10.9 | <0.001/0.72 | 1 vs. 2 (0.62) 2 vs. 3 (0.56) |
Double (n = 16) | 46.4 ± 15.6 | 58.9 ± 16.4 | 73.8 ± 19.0 | 0.62 (0.07–0.86) | 10.5 | 35.7 | 10.7 | <0.001/0.62 | 1 vs. 2 (0.51) 2 vs. 3 (0.50) | |
Debride (n = 13) | 49.9 ± 19.0 | 73.1 ± 11.4 | 88.9 ± 11.9 | 0 | 14.1 | 47.9 | 2.0 | <0.001/0.65 | 1 vs. 2 (0.48) 2 vs. 3 (0.79) | |
CMS | Single (n = 22) | 42.1 ± 16.2 | 64.3 ± 15.7 | 78.7 ± 15.0 | 0.47 (0–0.77) | 11.4 | 38.7 | 3.4 | <0.001/0.76 | 1 vs. 2 (0.68) 2 vs. 3 (0.62) |
Double (n = 16) | 38.1 ± 19.9 | 53.3 ± 16.9 | 68.8 ± 22.5 | 0.56 (0.05–0.83) | 13.1 | 44.5 | 6.4 | <0.001/0.55 | 1 vs. 2 (0.55) 2 vs. 3 (0.41) | |
Debride (n = 13) | 44.8 ± 17.0 | 68.5 ± 19.0 | 86.1 ± 15.3 | 0.38 (0–0.74) | 13.5 | 45.8 | 1.0 | <0.001/0.73 | 1 vs. 2 (0.62) 2 vs. 3 (0.70) |
Test | Surgery | Exam 1 | Exam 2 | Exam 3 | |||
---|---|---|---|---|---|---|---|
Pos/Neg | % Positive | Pos/Neg | % Positive | Pos/Neg | % Positive | ||
IRO/Shift | Single (n = 22) | 22/0 | 100 | 13/9 | 59 | 1/21 | 5 |
Double (n = 16) | 14/2 | 88 | 12/4 | 75 | 4/12 | 25 | |
Debridement (n = 13) | 11/2 | 85 | 6/7 | 46 | 0/13 | 0 | |
Jobe | Single (n = 22) | 21/1 | 95 | 16/6 | 73 | 10/12 | 45 |
Double (n = 16) | 16/0 | 100 | 13/3 | 81 | 6/10 | 38 | |
Debridement (n = 13) | 11/2 | 85 | 6/7 | 46 | 2/11 | 15 |
Study | Pre-Operative CMS Score | 3-Month Post- Operative CMS Score | 6-Month Post- Operative CMS Score | 12-Month Post- Operative CMS Score | Time to Return to ADL |
---|---|---|---|---|---|
Haunschild et al. [31] | -------- | -------- | -------- | -------- | 8 months |
Kukkonen et al. [32] | 53 | 62 | -------- | 76 | -------- |
Nabergoj et al. [33] | 54 | 54 | -------- | 80 | -------- |
Current study | 42 | 62 | 76 | -------- | 6 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fieseler, G.; Laudner, K.; Cornelius, J.; Schulze, S.; Delank, K.-S.; Schwesig, R. Longitudinal Analysis of the ASES and Constant–Murley Scores, and the Internal Rotation/Shift and Jobe Tests Following Arthroscopic Repair of Supraspinatus Lesions. J. Pers. Med. 2023, 13, 1304. https://doi.org/10.3390/jpm13091304
Fieseler G, Laudner K, Cornelius J, Schulze S, Delank K-S, Schwesig R. Longitudinal Analysis of the ASES and Constant–Murley Scores, and the Internal Rotation/Shift and Jobe Tests Following Arthroscopic Repair of Supraspinatus Lesions. Journal of Personalized Medicine. 2023; 13(9):1304. https://doi.org/10.3390/jpm13091304
Chicago/Turabian StyleFieseler, George, Kevin Laudner, Jakob Cornelius, Stephan Schulze, Karl-Stefan Delank, and René Schwesig. 2023. "Longitudinal Analysis of the ASES and Constant–Murley Scores, and the Internal Rotation/Shift and Jobe Tests Following Arthroscopic Repair of Supraspinatus Lesions" Journal of Personalized Medicine 13, no. 9: 1304. https://doi.org/10.3390/jpm13091304
APA StyleFieseler, G., Laudner, K., Cornelius, J., Schulze, S., Delank, K. -S., & Schwesig, R. (2023). Longitudinal Analysis of the ASES and Constant–Murley Scores, and the Internal Rotation/Shift and Jobe Tests Following Arthroscopic Repair of Supraspinatus Lesions. Journal of Personalized Medicine, 13(9), 1304. https://doi.org/10.3390/jpm13091304