TNFα rs1800629 Polymorphism and Response to Anti-TNFα Treatment in Behçet Syndrome: Data from an Italian Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrolment
2.2. Genotyping
2.3. Statistics
3. Results
Response to TNFα Therapies and Pharmacogenetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kłak, A.; Paradowska-Gorycka, A.; Kwiatkowska, B.; Raciborski, F. Personalized medicine in rheumatology. Reumatologia 2016, 54, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Padula, M.C.; Leccese, P.; Lascaro, N.; Radice, R.P.; Limongi, A.R.; Sorrento, G.G.; Carbone, T.; Padula, A.A.; Martelli, G.; D’Angelo, S. Correlation of Tumor Necrosis Factor-α-308G>A Polymorphism with Susceptibility, Clinical Manifestations, and Severity in Behçet Syndrome: Evidences from an Italian Genetic Case-Control Study. DNA Cell Biol. 2020, 39, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.F.; Ho, Y.C. SARS-CoV-2: A storm is raging. J. Clin. Investig. 2020, 130, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Salomon, B.L. Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat. Rev. Rheumatol. 2021, 17, 487–504. [Google Scholar] [CrossRef]
- Jarrot, P.A.; Kaplanski, G. Anti-TNF-alpha therapy and systemic vasculitis. Mediat. Inflamm. 2014, 2014, 493593. [Google Scholar] [CrossRef]
- Lee, E.B.; Kim, J.Y.; Lee, Y.J.; Park, M.H.; Song, Y.W. TNF and TNF receptor polymorphisms in Korean Behcet’s disease patients. Hum. Immunol. 2003, 64, 614–620. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, W.D.; Zhang, M.; Qiu, L.J.; Ni, J.; Wang, X.S.; Wen, P.F.; Cen, H.; Leng, R.X.; Pan, H.F.; et al. Meta-analysis of association between cytokine gene polymorphisms and Behcet’s disease risk. Int. J. Rheum. Dis. 2013, 16, 616–624. [Google Scholar] [CrossRef]
- Bettiol, A.; Hatemi, G.; Vannozzi, L.; Barilaro, A.; Prisco, D.; Emmi, G. Treating the Different Phenotypes of Behçet’s Syndrome. Front. Immunol. 2019, 16, 2830. [Google Scholar] [CrossRef]
- Padula, M.C.; Leccese, P.; Lascaro, N.; Padula, A.A.; Carbone, T.; Martelli, G.; D’Angelo, S. A First Step for the Molecular Characterization of Neurological Involvement of Behçet Syndrome: An Italian Pivotal Study. J. Mol. Neurosci. 2021, 71, 1284–1289. [Google Scholar] [CrossRef]
- Leccese, P.; Padula, M.C.; Santospirito, E.V.; Colucci, R.; Lascaro, N.; D’angelo, S. HLA-B*51 subtypes molecular analysis in a series of Italian patients with Behçet’s syndrome. Jt. Bone Spine 2019, 86, 807–808. [Google Scholar] [CrossRef]
- Ohno, S.; Ohguchi, M.; Hirose, S.; Matsuda, H.; Wakisaka, A.; Aizawa, M. Close association of HLA-Bw51 with Behçet’s disease. Arch. Ophthalmol. 1982, 100, 1455–1458. [Google Scholar] [CrossRef]
- Padula, M.C.; Leccese, P.; Pellizzieri, E.; Padula, A.A.; Gilio, M.; Carbone, T.; Lascaro, N.; Tramontano, G.; Martelli, G.; D’angelo, S. Distribution of rs17482078 and rs27044 ERAP1 polymorphisms in a group of Italian Behçet’s syndrome patients: A preliminary case-control study. Intern. Emerg. Med. 2019, 14, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Padula, M.C.; Leccese, P.; Lascaro, N.; Carbone, T.; Limongi, A.R.; Radice, R.P. From structure to function for the characterization of ERAP1 active site in Behçet syndrome. A novel polymorphism associated with known gene variations. Mol. Immunol. 2020, 117, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, G.; Christensen, R.; Bang, D.; Bodaghi, B.; Celik, A.F.; Fortune, F.; Gaudric, J.; Gul, A.; Kötter, I.; Leccese, P.; et al. 2018 update of the EULAR recommendations for the management of Behçet’s syndrome. Ann. Rheum. Dis. 2018, 77, 808–818. [Google Scholar] [CrossRef]
- Aksoy, A.; Yazici, A.; Omma, A.; Cefle, A.; Onen, F.; Tasdemir, U.; Ergun, T.; Direskeneli, H.; Alibaz-Oner, F. Efficacy of TNFα inhibitors for refractory vascular Behçet’s disease: A multicenter observational study of 27 patients and a review of the literature. Int. J. Rheum. Dis. 2020, 23, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Touma, Z.; Farra, C.; Hamdan, A.; Shamseddeen, W.; Uthman, I.; Hourani, H.; Arayssi, T. TNF polymorphisms in patients with Behçet disease: A meta-analysis. Arch. Med. Res. 2010, 41, 142–146. [Google Scholar] [CrossRef]
- Zhan, S.; Liu, C.; Li, N.; Li, T.; Tian, Z.; Zhao, M.; Wu, D.; Chen, M.; Zeng, Z.; Zhuang, X. Anti-TNF-α agents for refractory intestinal Behçet’s disease: Case series and meta-analysis. Ther. Adv. Gastroenterol. 2022, 15, 17562848221116666. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammadi, R.; Bonyadi, M. Polymorphisms of Promoter Region of TNF-α Gene in Iranian Azeri Turkish Patients with Behçet’s Disease. J. Korean Med. Sci. 2017, 32, 33–37. [Google Scholar] [CrossRef]
- Al-Okaily, F.; Arfin, M.; Al-Rashidi, S.; Al-Balawi, M.; Al-Asmari, A. Inflammation-related cytokine gene polymorphisms in Behçet’s disease. J. Inflamm. Res. 2015, 8, 173–180. [Google Scholar]
- Ateş, A.; Kinikli, G.; Düzgün, N.; Duman, M. Lack of association of tumor necrosis factor-alpha gene polymorphisms with disease susceptibility and severity in Behçet’s disease. Rheumatol. Int. 2006, 26, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Bonyadi, M.; Abdolmohammadi, R.; Jahanafrooz, Z.; Somy, M.H.; Khoshbaten, M. TNF-alpha gene polymorphisms in Iranian Azari Turkish patients with inflammatory bowel diseases. Saudi J. Gastroenterol. 2014, 20, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Duymaz-Tozkir, J.; Gül, A.; Uyar, F.A.; Ozbek, U.; Saruhan-Direskeneli, G. Tumour necrosis factor-alpha gene promoter region -308 and -376 G-->A polymorphisms in Behçet’s disease. Clin. Exp. Rheumatol. 2003, 21, S15–S18. [Google Scholar] [PubMed]
- Kamoun, M.; Chelbi, H.; Houman, M.H.; Lacheb, J.; Hamzaoui, K. Tumor necrosis factor gene polymorphisms in Tunisian patients with Behcet’s disease. Hum. Immunol. 2007, 68, 201–205. [Google Scholar] [CrossRef]
- Radouane, A.; Oudghiri, M.; Chakib, A.; Bennani, S.; Touitou, I.; Barat-Houari, M. SNPs in the TNF-α gene promoter associated with Behcet’s disease in Moroccan patients. Rheumatology 2012, 51, 1595–1599. [Google Scholar] [CrossRef]
- International Study Group for Behcet’s Disease. Criteria for diagnosis of Behcet’s disease. Lancet 1990, 335, 1078–1080. [Google Scholar]
- Van der Houwen, T.B.; van Hagen, P.M.; van Laar, J.A.M. Immunopathogenesis of Behçet’s disease and treatment modalities. Semin. Arthritis Rheum. 2022, 52, 151956. [Google Scholar] [CrossRef]
- Vallet, H.; Riviere, S.; Sanna, A.; Deroux, A.; Moulis, G.; Addimanda, O.; Salvarani, C.; Lambert, M.; Bielefeld, P.; Seve, P.; et al. Efficacy of anti-TNF alpha in severe and/or refractory Behçet’s disease: Multicenter study of 124 patients. J. Autoimmun. 2015, 62, 67–74. [Google Scholar] [CrossRef]
- Hüffmeier, U.; Mössner, R. Complex role of TNF variants in psoriatic arthritis and treatment response to anti-TNF therapy: Evidence and concepts. J. Investig. Dermatol. 2014, 134, 2483–2485. [Google Scholar] [CrossRef]
- Murdaca, G.; Gulli, R.; Spanò, F.; Lantieri, F.; Burlando, M.; Parodi, A.; Mandich, P.; Puppo, F. TNF-α gene polymorphisms: Association with disease susceptibility and response to anti-TNF-α treatment in psoriatic arthritis. J. Investig. Dermatol. 2014, 134, 2503–2509. [Google Scholar] [CrossRef]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Reolid, A.; Saiz-Rodríguez, M.; Abad-Santos, F.; Daudén, E. Pharmacogenetics and Pharmacogenomics in Moderate-to-Severe Psoriasis. Am. J. Clin. Dermatol. 2018, 19, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Cabaleiro, T.; Daudén, E.; Abad-Santos, F. Gene polymorphisms that can predict response to anti-TNF therapy in patients with psoriasis and related autoimmune diseases. Pharmacogenom. J. 2013, 13, 297–305. [Google Scholar] [CrossRef]
- Wcisło-Dziadecka, D.; Zbiciak-Nylec, M.; Brzezińska-Wcisło, L.; Mazurek, U. TNF-α in a molecularly targeted therapy of psoriasis and psoriatic arthritis. Postgrad. Med. J. 2016, 92, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Duan, Z.; Zhang, T.; Wang, S.; Li, G.; Gao, J.; Ye, D.; Xu, S.; Xu, J.; Zhang, L.; et al. Association between tumor necrosis factor-α (TNF-α) promoter −308 G/A and response to TNF-α blockers in rheumatoid arthritis: A meta-analysis. Mod. Rheumatol. 2013, 23, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Aflatoonian, M.; Moghimi, M.; Akbarian-Bafghi, M.J.; Morovati-Sharifabad, M.; Jarahzadeh, M.H.; Neamatzadeh, H. Association of TNFα -308G>A polymorphism with susceptibility to celiac disease: A systematic review and meta-analysis. Arq. Gastroenterol. 2019, 56, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Marotte, H.; Miossec, P. Prevention of bone mineral density loss in patients with rheumatoid arthritis treated with anti-TNFalpha therapy. Biologics 2008, 2, 663–669. [Google Scholar] [PubMed]
- O’Rielly, D.D.; Roslin, N.M.; Beyene, J.; Pope, A.; Rahman, P. TNF-alpha-308 G/A polymorphism and responsiveness to TNF-alpha blockade therapy in moderate to severe rheumatoid arthritis: A systematic review and meta-analysis. Pharmacogenom. J. 2009, 9, 161–167. [Google Scholar] [CrossRef]
- Pavy, S.; Toonen, E.J.; Miceli-Richard, C.; Barrera, P.; van Riel, P.L.; Criswell, L.A.; Mariette, X.; Coenen, M.J. Tumour necrosis factor alpha −308G->A polymorphism is not associated with response to TNFalpha blockers in Caucasian patients with rheumatoid arthritis: Systematic review and meta-analysis. Ann. Rheum. Dis. 2010, 69, 1022–1028. [Google Scholar] [CrossRef]
- Qin, B.; Wang, J.; Liang, Y.; Yang, Z.; Zhong, R. The association between TNF-α, IL-10 gene poly-morphisms and primary Sjögren’s syndrome: A meta-analysis and systemic review. PLoS ONE 2013, 8, e63401. [Google Scholar]
- Bek, S.; Bojesen, A.B.; Nielsen, J.V.; Sode, J.; Bank, S.; Vogel, U.; Andersen, V. Systematic review and meta-analysis: Pharmacogenetics of anti-TNF treatment response in rheumatoid arthritis. Pharmacogenom. J. 2017, 17, 403–411. [Google Scholar] [CrossRef]
- Leccese, P.; Padula, M.C.; Lascaro, N.; Padula, A.A.; D’Angelo, S. Clinical phenotypes of Behçet’s syndrome in a large cohort of Italian patients: Focus on gender differences. Scand J. Rheumatol. 2021, 50, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, Z.; Zhu, Q.; He, D.; Ma, Y.; Du, A.; He, F.; Zhao, D.; Xu, X.; Zhang, H.; et al. TNF-α Promoter Polymorphisms Predict the Response to Etanercept More Powerfully than that to Infliximab/Adalimumab in Spondyloarthritis. Sci. Rep. 2016, 6, 32202. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Zalzala, M.; Gorial, F. Association of tumor necrosis factor-alpha promoter region gene polymorphism at positions −308G/A, −857C/T, and −863C/A with etanercept response in Iraqi rheumatoid arthritis patients. Arch. Rheumatol. 2022, 37, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Negrini, S.; Magnani, O.; Penza, E.; Pellecchio, M.; Puppo, F. Impact of pharmacogenomics upon the therapeutic response to etanercept in psoriasis and psoriatic arthritis. Expert. Opin. Drug Saf. 2017, 16, 1173–1179. [Google Scholar] [CrossRef]
- Schmeling, H.; Horneff, G. Tumour necrosis factor alpha promoter polymorphisms and etanercept therapy in juvenile idiopathic arthritis. Rheumatol. Int. 2007, 27, 383–386. [Google Scholar] [CrossRef]
- Seitz, M.; Wirthmüller, U.; Möller, B.; Villiger, P.M. The −308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to TNFalpha-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology 2007, 46, 93–96. [Google Scholar] [CrossRef]
- Curry, P.D.K.; Morris, A.P.; Barton, A.; Bluett, J. Do genetics contribute to TNF inhibitor response prediction in Psoriatic Arthritis? Pharmacogenom. J. 2023, 23, 1–7. [Google Scholar] [CrossRef]
- De Simone, C.; Farina, M.; Maiorino, A.; Fanali, C.; Perino, F.; Flamini, A.; Caldarola, G.; Sgambato, A. TNF-alpha gene polymorphisms can help to predict response to etanercept in psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1786–1790. [Google Scholar] [CrossRef]
- Horiuchi, T.; Mitoma, H.; Harashima, S.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-alpha: Structure, function and interaction with anti-TNF agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef]
- Atiqi, S.; Hooijberg, F.; Loeff, F.C.; Rispens, T.; Wolbink, G.J. Immunogenicity of TNF-Inhibitors. Front. Immunol. 2020, 11, 312. [Google Scholar] [CrossRef]
- Chen, A.Y.; Wolchok, J.D.; Bass, A.R. TNF in the era of immune checkpoint inhibitors: Friend or foe? Nat. Rev. Rheumatol. 2021, 17, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Minnema, L.A.; Giezen, T.J.; Hoekman, J.; Egberts, T.C.; Leufkens, H.G.; Gardarsdottir, H. Regulatory Safety Learning Driven by the Mechanism of Action: The Case of TNF-α Inhibitors. Clin. Pharmacol. Ther. 2021, 110, 123–131. [Google Scholar] [CrossRef] [PubMed]
Responders (n = 58) | Non-Responders (n = 16) | p-Value | OR | 95% CI | |
---|---|---|---|---|---|
Clinical Manifestations | |||||
Oral ulcers | |||||
with | 58 (100.0%) | 16 (100.0%) | 0.7585 | 3.63 | 0.00–NA |
without | 0 (0.0%) | 0 (0.0%) | |||
Genital ulcers | |||||
with (n = 37) | 26 (44.8%) | 11 (68.8%) | 0.0902 | 0.37 | 0.11–1.20 |
without (n = 37) | 32 (55.2%) | 5 (31.2%) | |||
Papulopustular lesions | |||||
with (n = 51) | 42 (72.4%) | 9 (56.3%) | 0.2162 | 2.04 | 0.65–6.41 |
without (n = 23) | 16 (27.6%) | 7 (43.7%) | |||
Erythema nodosum | |||||
with | 23 (39.7%) | 5 (31.2%) | 0.5394 | 1.45 | 0.44–4.71 |
without | 35 (60.3%) | 11 (68.8%) | |||
Follicolitis | |||||
with | 8 (13.8%) | 2 (12.5%) | 0.8934 | 1.12 | 0.21–5.88 |
without | 50 (86.2%) | 14 (87.5%) | |||
Anterior uveitis | |||||
with | 20 (34.5%) | 6 (37.5%) | 0.8229 | 0.88 | 0.28–2.76 |
without | 38 (65.5%) | 10 (62.5%) | |||
Posterior uveitis | |||||
with | 34 (58.6%) | 8 (50.0%) | 0.5378 | 1.42 | 0.47–4.30 |
without | 24 (41.4%) | 8 (50.0%) | |||
Arthritis | |||||
with | 14 (24.1%) | 2 (12.5%) | 0.3168 | 2.23 | 0.45–11.2 |
without | 44 (75.9%) | 14 (87.5%) | |||
CNS involvement | |||||
with | 15 (25.9%) | 4 (25.0%) | 0.9443 | 1.05 | 0.29–3.75 |
without | 43 (74.1%) | 12 (75.0%) | |||
Superficial venous thrombosis | |||||
with | 6 (10.3%) | 2 (12.5%) | 0.8058 | 0.81 | 0.15–4.45 |
without | 52 (89.7%) | 14 (87.5%) | |||
Deep venous thrombosis | |||||
with | 4 (6.9%) | 2 (12.5%) | 0.4672 | 0.52 | 0.09–3.13 |
without | 54 (93.1%) | 14 (87.5%) | |||
GI involvement | |||||
with | 14 (24.1%) | 2 (12.5%) | 0.9433 | 0.95 | 0.27–3.44 |
without | 44 (75.9%) | 14 (87.5%) |
Genotypes | Responders (n = 58) | Non-Responders (n = 16) | p-Value | OR (95% CI) |
---|---|---|---|---|
GG (n = 59) | 50 (86.2%) | 9 (56.3%) | 0.008 * | 4.86 (1.41–16.76) |
GA (n = 15) | 8 (13.8%) | 7 (43.7%) |
Total (n = 74) | Responders (n = 58) | Non-Responders (n = 16) | p-Value | |
---|---|---|---|---|
Demographics | ||||
Female | 30 (40.5%) | 19 (32.8%) | 11 (68.8%) | 0.009 * |
Male | 44 (59.5%) | 39 (67.2%) | 5 (31.2%) | |
Age | 43.1 ± 11.3 | 42.8 ± 12.3 | 45.6 ± 10.2 | |
Anti-TNFα drugs | ||||
Infliximab | 60 (81.8%) | 45 (77.6%) | 15 (93.75%) | 0.1439 |
Adalimumab | 12 (16.2%) | 11 (19.0%) | 1 (6.25%) | 0.1957 |
Certiluzumab Pergol | 1 (1.35%) | 1 (1.7%) | 0 (0.0%) | 0.3494 |
Golimumab | 1 (1.35%) | 1 (1.7%) | 0 (0.0%) | 0.3494 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padula, M.C.; Padula, A.A.; D’Angelo, S.; Lascaro, N.; Radice, R.P.; Martelli, G.; Leccese, P. TNFα rs1800629 Polymorphism and Response to Anti-TNFα Treatment in Behçet Syndrome: Data from an Italian Cohort Study. J. Pers. Med. 2023, 13, 1347. https://doi.org/10.3390/jpm13091347
Padula MC, Padula AA, D’Angelo S, Lascaro N, Radice RP, Martelli G, Leccese P. TNFα rs1800629 Polymorphism and Response to Anti-TNFα Treatment in Behçet Syndrome: Data from an Italian Cohort Study. Journal of Personalized Medicine. 2023; 13(9):1347. https://doi.org/10.3390/jpm13091347
Chicago/Turabian StylePadula, Maria Carmela, Angela Anna Padula, Salvatore D’Angelo, Nancy Lascaro, Rosa Paola Radice, Giuseppe Martelli, and Pietro Leccese. 2023. "TNFα rs1800629 Polymorphism and Response to Anti-TNFα Treatment in Behçet Syndrome: Data from an Italian Cohort Study" Journal of Personalized Medicine 13, no. 9: 1347. https://doi.org/10.3390/jpm13091347
APA StylePadula, M. C., Padula, A. A., D’Angelo, S., Lascaro, N., Radice, R. P., Martelli, G., & Leccese, P. (2023). TNFα rs1800629 Polymorphism and Response to Anti-TNFα Treatment in Behçet Syndrome: Data from an Italian Cohort Study. Journal of Personalized Medicine, 13(9), 1347. https://doi.org/10.3390/jpm13091347