Pharmacokinetic and Pharmacogenetic Predictors of Major Bleeding Events in Patients with an Acute Coronary Syndrome and Atrial Fibrillation Receiving Combined Antithrombotic Therapy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- One month—n = 48;
- Three months—n = 9;
- Six months—n = 14;
- Twelve months—n = 2.
3.1. TAT—Triple Antithrombotic Therapy
3.2. DAT—Dual Antithrombotic Therapy, TAT—Triple Antithrombotic Therapy
- For the ISTH scale:
- -
- A higher rivaroxaban concentration and Css min. greater than 137 pg/mL (5.94 OR (95% CI, 3.13–12.99; p < 0.004);
- -
- Carriage of the T allelic variant polymorphism ABCB1 rs4148738 (8.97 OR (95% CI, 1.48–14.49; p < 0.017).
- For the BARC scale:
- -
- The influence of the T allelic variant polymorphism ABCB1 rs4148738 (5.76 OR (95% CI, 2.36–9.87; p < 0.018).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desai, N.R.; Kennedy, K.F.; Cohen, D.J.; Connolly, T.; Diercks, D.B.; Moscucci, M.; Ramee, S.; Spertus, J.; Wang, T.Y.; McNamara, R.L. Contemporary risk model for inhospital major bleeding for patients with acute myocardial infarction: The acute coronary treatment and intervention outcomes network (ACTION) registry®—Get With The Guidelines (GWTG)®. Am. Heart J. 2017, 194, 16–24. [Google Scholar] [CrossRef]
- Hudzik, B.; Budaj, A.; Gierlotka, M.; Witkowski, A.; Wojakowski, W.; Dudek, D.; Gasior, M. P4801Antithrombotic management in patients with atrial fibrillation and acute coronary syndromes. Eur. Heart J. 2018, 39 (Suppl. 1), 1008. [Google Scholar] [CrossRef]
- Gibson, C.M.; Mehran, R.; Bode, C.; Halperin, J.; Verheugt, F.W.; Wildgoose, P.; Birmingham, M.; Ianus, J.; Burton, P.; van Eickels, M.; et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N. Engl. J. Med. 2016, 375, 2423–2434. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Bhatt, D.L.; Oldgren, J.; Lip, G.Y.; Ellis, S.G.; Kimura, T.; Maeng, M.; Merkely, B.; Zeymer, U.; Gropper, S.; et al. Dual Antithrombotic Therapy with Dabigatran after PCI in Atrial Fibrillation. N. Engl. J. Med. 2017, 377, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Windecker, S.; Lopes, R.D.; Massaro, T.; Jones-Burton, C.; Granger, C.B.; Aronson, R.; Heizer, G.; Goodman, S.G.; Darius, H.; Jones, W.S.; et al. Antithrombotic Therapy in Patients With Atrial Fibrillation and Acute Coronary Syndrome Treated Medically or With Percutaneous Coronary Intervention or Undergoing Elective Percutaneous Coronary Intervention: Insights From the AUGUSTUS Trial. Circulation 2019, 140, 1921–1932. [Google Scholar] [CrossRef] [PubMed]
- Dewilde, W.J.M.; Oirbans, T.; Verheugt, F.W.A.; Kelder, J.C.; De Smet, B.J.G.L.; Herrman, J.-P.; Adriaenssens, T.; Vrolix, M.; Heestermans, A.A.C.M.; Vis, M.M.; et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: An open-label, randomised, controlled trial. Lancet 2013, 381, 1107–1115. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for themanagement of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2020, 42, 1289–1367. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 5, 373–498. [Google Scholar] [CrossRef]
- Kumbhani, D.J.; Cannon, C.P.; Beavers, C.J.; Bhatt, D.L.; Cuker, A.; Gluckman, T.J.; Marine, J.E.; Mehran, R.; Messe, S.R.; Patel, N.S.; et al. 2020 ACC Expert Consensus Decision Pathway for Anticoagulant and Antiplatelet Therapy in Patients with Atrial Fibrillation or Venous Thromboembolism Undergoing Percutaneous Coronary Intervention or with Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 629–658. [Google Scholar]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar]
- Collet, J.-P.; Hulot, J.-S.; Pena, A.; Villard, E.; Esteve, J.-B.; Silvain, J.; Payot, L.; Brugier, D.; Cayla, G.; Beygui, F.; et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: A cohort study. Lancet 2009, 373, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Giusti, B.; Gori, A.M.; Marcucci, R.; Saracini, C.; Sestini, I.; Paniccia, R.; Buonamici, P.; Antoniucci, D.; Abbate, R.; Gensini, G.F. Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am. J. Cardiol. 2009, 103, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.; Close, S.; Wiviott, S. Cytochrome P-450 polymorphisms and response to clopidogre. N. Engl. J. Med. 2009, 360, 354–362. [Google Scholar] [CrossRef]
- Sibbing, D.; Stegherr, J.; Latz, W. Cytochrome P450 2C19 loss-of- function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur. Heart J. 2009, 30, 916–922. [Google Scholar] [CrossRef]
- Simon, T.; Verstuyft, C.; Mary-Krause, M. French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction (FAST-MI) Investigators. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 2009, 360, 363–375. [Google Scholar] [CrossRef]
- Steinhubl, S.R. Genotyping, clopidogrel metabolism, and the search for the therapeutic window of thienopyridines. Circulation 2010, 121, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Trenk, D.; Hochholzer, W.; Fromm, M.F.; Chialda, L.-E.; Pahl, A.; Valina, C.M.; Stratz, C.; Schmiebusch, P.; Bestehorn, H.-P.; Büttner, H.J.; et al. Cytochrome P450 2C19 681G>A Polymorphism and High On-Clopidogrel Platelet Reactivity Associated with Adverse 1-Year Clinical Outcome of Elective Percutaneous Coronary Intervention with Drug-Eluting or Bare-Metal Stents. J. Am. Coll. Cardiol. 2008, 20, 1925–1934. [Google Scholar] [CrossRef]
- Scott, S.A.; Sangkuhl, K.; Stein, C.M.; Hulot, J.-S.; Mega, J.L.; Roden, D.M.; Klein, T.E.; Sabatine, M.S.; Johnson, J.A.; Shuldiner, A.R. Clinical pharmacogenetics implementation consortium. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 2013, 94, 317–323. [Google Scholar] [CrossRef]
- Sibbing, D.; Koch, W.; Gebhard, D.; Braun, S.; Stegherr, J.; Morath, T.; Schömig, A.; von Beckerath, N.; Kastrati, A.; Schuster, T. Cytochrome 2c19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 2010, 121, 512–518. [Google Scholar] [CrossRef]
- Rozhkov, A.; Sychev, D.A.; Kazakov, R.E. ABCB1 polymorphism and acenocoumarol safety in patients with valvular atrial fibrillation. Int. J. Risk Saf. Med. 2015, 27 (Suppl. 1), S15–S16. [Google Scholar] [CrossRef]
- Ing Lorenzini, K.; Daali, Y.; Fontana, P.; Desmeules, J.; Samer, C. Rivaroxaban-induced hemorrhage associated with ABCB1 genetic defect. Front. Pharmacol. 2016, 7, 494. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Maeda, K.; Imano, H.; Ohira, T.; Kitamura, A.; Kiyama, M.; Okada, T.; Ishikawa, Y.; Shimamoto, T.; Yamagishi, K.; et al. Chronic Kidney Disease and Drinking Status in Relation to Risks of Stroke and Its Subtypes. Stroke 2011, 9, 2531–2537. [Google Scholar] [CrossRef] [PubMed]
- Dimatteo, C.; D’Andrea, G.; Vecchione, G.; Paoletti, O.; Tiscia, G.L.; Santacroce, R.; Correale, M.; Brunetti, N.; Grandone, E.; Testa, S.; et al. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability. Thromb. Res. 2016, 145, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Gnoth, M.J.; Buetehorn, U.; Muenster, U.; Schwarz, T.; Sandmann, S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J. Pharmacol. Exp. Ther. 2011, 1, 372–380. [Google Scholar] [CrossRef]
- Mueck, W.; Lensing, A.W.; Agnelli, G.; Decousus, H.; Prandoni, P.; Misselwitz, F. Rivaroxaban: Population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin. Pharmacokinet. 2011, 10, 675–686. [Google Scholar] [CrossRef]
- Mueck, W.; Kubitza, D.; Becka, M. Co-administration of rivaroxaban with drugs that share its elimination pathways: Pharmacokinetic effects in healthy subjects. Br. J. Clin. Pharmacol. 2013, 3, 455–466. [Google Scholar] [CrossRef]
- Al-Aieshy, F.; Malmström, R.E.; Antovic, J.; Pohanka, A.; Rönquist-Nii, Y.; Berndtsson, M.; Al-Khalili, F.; Skeppholm, M. Clinical evaluation of laboratory methods to monitor exposure of rivaroxaban at trough and peak in patients with atrial fibrillation. Eur. J. Clin. Pharmacol. 2016, 6, 671–679. [Google Scholar] [CrossRef]
- Sennesael, A.-L.; Larock, A.-S.; Douxfils, J.; Elens, L.; Stillemans, G.; Wiesen, M.; Taubert, M.; Dogné, J.-M.; Spinewine, A.; Mullier, F. Rivaroxaban plasma levels in patients admitted for bleeding events: Insights from a prospective study. Thromb. J. 2018, 16, 28. [Google Scholar] [CrossRef]
- Miklič, M.; Mavri, A.; Vene, N.; Söderblom, L.; Božič-Mijovski, M.; Pohanka, A.; Antovic, J.; Malmström, R.E. Intra- and inter-individual rivaroxaban concentrations and potential bleeding risk in patients with atrial fibrillation. Eur. J. Clin. Pharmacol. 2019, 8, 1069–1075. [Google Scholar] [CrossRef]
- Albaladejo, P.; Samama, C.M.; Sié, P.; Kauffmann, S.; Mémier, V.; Suchon, P.; Viallon, A.; David, J.S.; Gruel, Y.; Bellamy, L.; et al. Management of Severe Bleeding in patients treated with direct oral anticoagulants: An observational registry analysis. Anesthesiology 2017, 127, 111–120. [Google Scholar] [CrossRef]
- Seiffge, D.J.; Kägi, G.; Michel, P.; Fischer, U.; Béjot, Y.; Wegener, S.; Zedde, M.; Turc, G.; Cordonnier, C.; Sandor, P.S.; et al. Rivaroxaban plasma levels in acute ischemic stroke and intracerebral hemorrhage. Ann. Neurol. 2018, 83, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wu, S.; Li, L.; Xiang, J.; Wang, N.; Chen, W.; Zhang, J. The impact of ABCB1, CYP3A4/5 and ABCG2 gene polymorphisms on rivaroxaban trough concentrations and bleeding events in patients with non-valvular atrial fibrillation. Hum. Genom. 2023, 17, 59. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Chen, H.; Wang, F. Influence of ABCB1 Gene Polymorphism on Rivaroxaban Blood Concentration and Hemorrhagic Events in Patients with Atrial Fibrillation. Front. Pharmacol. 2021, 12, 639854. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, B.A.; Kamphuisen, P.W.; Wiviott, S.D.; Ruff, C.T.; Antman, E.M.; Nordio, F.; Kuder, J.F.; Mercuri, M.F.; Lanz, H.J.; Braunwald, E.; et al. Comparison of Events Across Bleeding Scales in the ENGAGE AF-TIMI 48. Trial Circ. 2019, 140, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Golwala, H. Dual versus triple antithrombotic therapy in patients with atrial fibrillation undergoing percutaneous coronary intervention. Cardiovasc. Drugs Ther. 2018, 32, 47–57. [Google Scholar]
- ClinicalTrials.gov. A Study of Ticagrelor and ASA in Patients with Stable Coronary Artery Disease (MASTER DAPT). Identifier: NCT03023020. Available online: https://clinicaltrials.gov/ct2/show/NCT03023020 (accessed on 20 August 2021).
Characteristics | Patients with MI/UA and AF, n = 100 |
---|---|
Age, years, Me [25;75] | 74 [64;81] |
Men/women, n (%) | 56/44; (56/44) |
Active smoking, n (%) | 12 (12) |
ST-segment elevation myocardial infarction/non-ST-elevation myocardial infarction Unstable angina | 27/51 (27/51) 22 (22) |
Percutaneous coronary intervention at current admission, n (%) | 73 (73) |
CRUSADE score, M ± SD GRACE score, M ± SD Acute heart failure, KILLIP score: Class I–II, n (%) Class III–IV, n (%) | 43 ± 13 173 ± 34 91/(91) 9/(9) |
Concomitant and previous diseases: Hypertension, n (%) Obesity, n (%) Diabetes, n (%) Coronary revascularization, n (%) Chronic heart failure, n (%) Acute cerebrovascular event, n (%) Peripheral arterial disease, n (%) Chronic obstructive lung disease, n (%) Active cancer, n (%) Erosive and ulcerative diseases of the gastrointestinal tract, n (%) History of major bleedings, n (%) Anemia at discharge, n (%): ● Mild (129/119–110 g/dL), n (%) ● Moderate (109–80 g/dL), n (%) ● Severe (<80 g/dL), n (%) Chronic kidney disease: ● Stage 3Aa, n (%) ● Stages 3B–4, n (%) ● Stage 5, n (%) | 99 (99) 53 (53) 31 (31) 36 (36) 34 (34) 17 (17) 26 (26) 22 (22) 2 (2) 11 (11) 11 (11) 32 (32) 24 (24) 6 (6) 2 (2) 37 (37) 23 (23) 5 (5) |
CHA2DS2-VASc, Me [25;75] | 5 [4;6] |
HAS-BLED, Me [25;75] | 2.5 [2;3] |
Bleeding Point | N | % (n = 38) |
---|---|---|
Nose | 9 | 23.7 |
Skin | 9 | 23.7 |
Gastrointestinal tract | 6 | 15.8 |
Lungs | 4 | 10.5 |
Bleeding in the mouth | 3 | 7.9 |
Urogenital | 3 | 7.9 |
Source unknown | 3 | 7.8 |
At tooth extraction | 1 | 2.6 |
Genetic Polymorphism | Genotype | n | % | χ2 |
---|---|---|---|---|
CYP3A4*22 C>T rs 35599367 | CC CT | 99 1 | 99.0 1.0 | 0.003 |
CYP3A5*3 rs776746 | GG AG | 82 18 | 82.0 18.0 | 0.978 |
ABCB1 rs418738 | CC CT TT | 18 45 37 | 18.0 45.0 37.0 | 0.532 |
ABCB1 rs1045642 | CC CT TT | 31 43 26 | 31.0 43.0 26.0 | 1.90 |
CYP2C19*2 rs4244285 | AA GA GG | 2 29 69 | 2.0 29.0 69.0 | 0.275 |
CYP2C19*17 rs12248560 | CC CT TT | 58 38 4 | 58.0 38.0 4.0 | 0.531 |
CYP2C19*3 | GG | 100 | 100.0 | 0 |
Characteristics | Without Bleeding (n = 62) | With Bleeding (n = 38) | p-Value |
---|---|---|---|
Age, years, Me [25;75] | 70.5 [64;79.5] | 77 [65;86] | 0.057 |
Men/women, n (%) | 35/27 (56.5/43.5) | 21/17 (55.3/44.7) | NS |
Active smoking, n (%) | 8 (12.9) | 4 (10.5) | NS |
CHA2DS2-VASc score, Me [25;75] | 5.0 [4;6] | 5.5 [4;6] | NS |
HAS-BLED score, Me [25;75] | 2 [2;3] | 3 [2;3] | NS |
Acute coronary syndrome, n, % | |||
ST-segment elevation myocardial infarction | 13 (21.0) | 14 (36.8) | NS |
Non-ST-elevation myocardial infarction | 33 (53.2) | 18 (47.4) | NS |
Unstable angina | 16 (25.8) | 6 (15.8) | NS |
CRUSADE score, M ± SD | 34 ± 13.4 | 42.5 ± 12.2 | NS |
GRACE score, M ± SD | 168 ± 34 | 180 ± 33 | 0.069 |
SYNTAX score, Me [25;75] | 15 [9;24] | 23.7 [14;36.4] | 0.005 * |
Acute heart failure, KILLIP score: | |||
Class I–II, n (%) | 58 (93.5) | 33 (86.8) | NS |
Class III–IV, n (%) | 4 (6.5) | 5 (13.2) | NS |
Concomitant and previous diseases | |||
Hypertension, n (%) | 61 (98.4) | 38 (100) | NS |
Obesity, n (%) | 36 (58.1) | 17 (44.7) | NS |
Body mass index, kg/cm2, Me [25;75] | 30 ± 5.2 | 28.3 ± 4.2 | 0.087 |
Diabetes, n (%) | 25 (40.3) | 6 (15.8) | 0.01 * |
Coronary revascularization, n (%) | 26 (42) | 10 (26.4) | NS |
Chronic heart failure, n (%) | 20 (32.3) | 14 (36.8) | NS |
Acute cerebrovascular event, n (%) | 9 (14.5) | 8 (21.1) | NS |
Peripheral arterial disease, n (%) | 15 (24.2) | 11 (28.9) | NS |
Chronic obstructive lung disease, n (%) | 14 (22.6) | 8 (21.1) | NS |
Active cancer, n (%) | 0 | 2 (5.3) | 0.068 |
Erosive and ulcerative diseases of the gastrointestinal tract, n (%) | 6 (9.7) | 5 (13.2) | NS |
History of major bleedings, n (%) | 5 (8.1) | 6 (15.8) | NS |
Anemia at discharge, n (%): | 16 (25.8) | 16 (42.1) | 0.09 |
Mild (129/119–110 g/L), n (%) | 11 (17.7) | 13 (34.2) | 0.061 |
Moderate (109–80 g/L), n (%) | 4 (6.5) | 2 (5.3) | NS |
Severe (<80 g/L), n (%) | 1 (1.6) | 1 (2.6) | NS |
Dementia, n (%) | 21 (33.9) | 15 (39.5) | NS |
Chronic kidney disease: | |||
Stage 3a, n (%) | 18 (29.0) | 19 (50.0) | |
Stages 3b-4, n (%) | 17 (27.4) | 10 (26.4) | 0.035 * |
Stage 5, n (%) | 0 | 0 | NS |
Discharge therapy | |||
Double antithrombotic therapy/triple antithrombotic therapy, n (%) | 17/45 (27.4/72.6) | 10/28 (26.3/73.7) | NS |
Triple antithrombotic therapy duration, n (%) | NS | ||
1 month | 29 (46.8) | 19 (50) | |
3 months | 6 (9.7) | 3 (7.9) | |
6 months | 10 (16.1) | 4 (10.5) | |
12 months | 0 | 2 (5.3) | |
Pharmacogenetic study findings | |||
ABCB1 3435 C>T, n (%) | NS | ||
CC | 16 (25.8) | 13 (34.2) | |
CT + TT | 46 (74.2) | 25 (65.8) | |
ABCB1 rs4148738, n (%) | NS | ||
CC | 13 (21.0) | 5 (13.2) | |
CT + TT | 49 (79.0) | 33 (86.8) | |
CYP3A5*3, n (%) | 0.09 | ||
GG | 54 (87.1) | 28 (73.7) | |
AG + AA | 8 (12.9) | 10 (26.3) | |
CYP2C19*2 rs4244285, n (%) | NS | ||
GG | 43 (69.4) | 26 (68.4) | |
AA + GA | 19 (30.6) | 12 (31.6) | |
CYP2C19*17 rs12248560, n (%) | NS | ||
CC | 36 (58.1) | 22 (57.9) | |
CT + TT | 26 (41.9) | 16 (42.1) | |
% of platelet inhibition, Me [25;75] | 26.5 [7.8;48.5] | 22 [8.8.37.3] | NS |
RPR (PRU), Me [25;75] | 137 [91.5; 181.3] | 158.5 [114.3;191.3] | NS |
Css min, pg/mL, Me [25;75] | 54.8 [35.5;96.3] | 60.1 [44.3;128.8] | NS |
Risk Factors | OR | 95% CI | p-Value |
---|---|---|---|
Genotype TT ABCB1 rs4148738 | 16.12 | 3.34–77.88 | 0.001 |
Genotype CC ABCB1 3435 | 3.78 | 1.12–13.32 | 0.032 |
Residual platelet reactivity (PRU < 159) | 7.27 | 1.95–27.13 | 0.003 |
Risk Factors | OR | 95% CI | p-Value |
---|---|---|---|
Css min. of rivaroxaban in blood plasma of more than 137 ng/mL | 5.14 | 1.40–18.87 | 0.014 |
Genotype TT ABCB1 rs4148738 | 7.08 | 2.17–23.05 | 0.001 |
Genotype CC ABCB1 3435 | 3.13 | 1.03–9.52 | 0.044 |
Residual platelet reactivity (PRU < 159) | 2.99 | 1.02–8.14 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baturina, O.; Chashkina, M.; Andreev, D.; Mirzaev, K.; Bykova, A.; Suvorov, A.; Yeryshova, D.; Suchkova, S.; Sychev, D.; Syrkin, A. Pharmacokinetic and Pharmacogenetic Predictors of Major Bleeding Events in Patients with an Acute Coronary Syndrome and Atrial Fibrillation Receiving Combined Antithrombotic Therapy. J. Pers. Med. 2023, 13, 1371. https://doi.org/10.3390/jpm13091371
Baturina O, Chashkina M, Andreev D, Mirzaev K, Bykova A, Suvorov A, Yeryshova D, Suchkova S, Sychev D, Syrkin A. Pharmacokinetic and Pharmacogenetic Predictors of Major Bleeding Events in Patients with an Acute Coronary Syndrome and Atrial Fibrillation Receiving Combined Antithrombotic Therapy. Journal of Personalized Medicine. 2023; 13(9):1371. https://doi.org/10.3390/jpm13091371
Chicago/Turabian StyleBaturina, Olga, Maria Chashkina, Denis Andreev, Karin Mirzaev, Alexandra Bykova, Alexandr Suvorov, Daria Yeryshova, Svetlana Suchkova, Dmitry Sychev, and Abram Syrkin. 2023. "Pharmacokinetic and Pharmacogenetic Predictors of Major Bleeding Events in Patients with an Acute Coronary Syndrome and Atrial Fibrillation Receiving Combined Antithrombotic Therapy" Journal of Personalized Medicine 13, no. 9: 1371. https://doi.org/10.3390/jpm13091371
APA StyleBaturina, O., Chashkina, M., Andreev, D., Mirzaev, K., Bykova, A., Suvorov, A., Yeryshova, D., Suchkova, S., Sychev, D., & Syrkin, A. (2023). Pharmacokinetic and Pharmacogenetic Predictors of Major Bleeding Events in Patients with an Acute Coronary Syndrome and Atrial Fibrillation Receiving Combined Antithrombotic Therapy. Journal of Personalized Medicine, 13(9), 1371. https://doi.org/10.3390/jpm13091371