The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine
Abstract
:1. Introduction
2. Materials and Methods
- The diagnosis of the infection was based on the results of the microbiological tests, corroborated with the symptoms, the clinical examination, and the results of other paraclinical investigations recorded in the database and in the hospital documents.
- The infection was present at the time of ED presentation or within 48 h from hospital admission.
- Patients over 18 years old.
- Multidrug-resistant (MDR) bacteria: with resistance to at least one antibiotic from three or more classes of antibiotics active for a given species [15].
- Extensively drug-resistant bacteria (XDR): with resistance to at least one agent from all antimicrobial classes except one or two classes [15].
- Difficult-to-treat resistance (DTR): bacteria resistant to all first-line antibiotics, represented by: carbapenems (imipenem, meropenem, ertapenem/doripenem), extended-spectrum cephalosporins (those relevant to the respective pathogens), fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin) [18].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, J.H.; Kasahara, K.; Edelstein, P.H.; Bilker, W.B.; Lautenbach, E. Risk factors for infection or colonization with CTX-M extended-spectrum-β-lactamase-positive Escherichia coli. Antimicrob. Agents Chemother. 2012, 56, 5575–5580. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D.A. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 2006, 355, 666–674. [Google Scholar] [CrossRef]
- Kroening-Roche, J.C.; Soroudi, A.; Castillo, E.M.; Vilke, G.M. Antibiotic and bronchodilator prescribing for acute bronchitis in the emergency department. J. Emerg. Med. 2012, 43, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, R.; Camargo, C.A.; MacKenzie, T.; Kersey, A.S.; Maselli, J.; Levin, S.K.; McCulloch, C.E.; Metlay, J.P. Antibiotic treatment of acute respiratory infections in acute care settings. Acad. Emerg. Med. 2006, 13, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Metlay, J.P.; Camargo, C.A.; MacKenzie, T.; McCulloch, C.; Maselli, J.; Levin, S.K.; Kersey, A.; Gonzales, R. Cluster-randomized trial to improve antibiotic use for adults with acute respiratory infections treated in emergency departments. Ann. Emerg. Med. 2007, 50, 221–230. [Google Scholar] [CrossRef] [PubMed]
- May, L.; Cosgrove, S.; L’Archeveque, M.; Talan, D.A.; Payne, P.; Jordan, J.; Rothman, R.E. A call to action for antimicrobial stewardship in the emergency department: Approaches and strategies. Ann. Emerg. Med. 2013, 62, 69–77. [Google Scholar] [CrossRef] [PubMed]
- May, L.; Martin-Quirós, A.; Ten Oever, J.; Hoogerwerf, J.; Schoffelen, T.; Schouten, J. Antimicrobial stewardship in the emergency department: Characteristics and evidence for effectiveness of interventions. Clin. Microbiol. Infect. 2021, 27, 204–209. [Google Scholar] [CrossRef]
- Lawton, R.M.; Fridkin, S.K.; Gaynes, R.P.; McGowan, J.E. Practices to improve antimicrobial use at 47 US hospitals: The status of the 1997 SHEA/IDSA position paper recommendations. Society for Healthcare Epidemiology of America/Infectious Diseases Society of America. Infect. Control Hosp. Epidemiol. 2000, 21, 256–259. [Google Scholar] [CrossRef]
- Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect. Control Hosp. Epidemiol. 2012, 33, 322–327. [CrossRef]
- Bishop, B.M. Antimicrobial Stewardship in the Emergency Department: Challenges, Opportunities, and a Call to Action for Pharmacists. J. Pharm. Pract. 2016, 29, 556–563. [Google Scholar] [CrossRef]
- Garner, J.S.; Jarvis, W.R.; Emori, T.G.; Horan, T.C.; Hughes, J.M. CDC definitions for nosocomial infections. Am. J. Infect. Control. 1988, 16, 128–140, Erratum in Am. J. Infect. Control 1988, 16, 177. [Google Scholar] [CrossRef] [PubMed]
- Dabar, G.; Harmouche, C.; Salameh, P.; Jaber, B.L.; Jamaleddine, G.; Waked, M.; Yazbeck, P. Community- and healthcare-associated infections in critically ill patients: A multicenter cohort study. Int. J. Infect. Dis. 2015, 37, 80–85. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021; Available online: https://clsi.org/media/z2uhcbmv/m100ed31_sample.pdf (accessed on 12 November 2023).
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
- Yi, S.; Ramachandran, A.; Epps, L.; Mayah, A.; Burkholder, T.W.; Jaung, M.S.; Haider, A.; Whesseh, P.; Shakpeh, J.; Enriquez, K.; et al. Emergency department antimicrobial use in a low-resource setting: Results from a retrospective observational study at a referral hospital in Liberia. BMJ Open 2022, 12, e056709. [Google Scholar] [CrossRef]
- Shankar, P.R. Medicines use in primary care in developing and transitional countries: Fact book summarizing results from studies reported between 1990 and 2006. Bull. World Health Organ. 2009, 87, 804–805. [Google Scholar] [CrossRef]
- Martínez, P.; Rosmalen, J.; Bustillos Huilca, R.; Natsch, S.; Mouton, J.; Verbon, A. Trends, seasonality and the association between outpatient antibiotic use and antimicrobial resistance among urinary bacteria in the Netherlands. J. Antimicrob. Chemother. 2020, 75, 2314–2325. [Google Scholar] [CrossRef]
- Zornitzki, L.; Anuk, L.; Frydman, S.; Morag-Koren, N.; Zahler, D.; Freund, O.; Biran, R.; Liron, Y.; Tau, L.; Tchebiner, J.Z.; et al. Rate and predictors of blood culture positivity after antibiotic administration: A prospective single-center study. Infection 2023. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-I.; Kim, J.-S.; Kim, Y.-J.; Seo, D.-W.; Kang, H.; Kim, S.J.; Han, K.S.; Lee, S.W.; Kim, W.Y. Characteristics of Patients Who Visited Emergency Department: A Nationwide Population-Based Study in South Korea (2016–2018). Int. J. Environ. Res. Public Health 2022, 19, 8578. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, G.J.; Kim, S.C.; Kim, H.; Lee, S.W. Characteristics of frequent adult emergency department users: A Korean tertiary hospital observational study. Medicine 2020, 99, e20123. [Google Scholar] [CrossRef] [PubMed]
- Licker, M.; Musuroi, C.; Muntean, D.; Crainiceanu, Z. Updates in the management of multidrug-resistant bacterial infections in burn patients. In Proceedings of the 16th National Conference on Microbiology and Epidemiology, Bucharest, Romania, 9–11 November 2023; Available online: https://www.srm.ro/media/2023/11/volum-rezumate-cnme-1.pdf (accessed on 12 November 2023).
- Percival, S.L.; McCarty, S.M.; Lipsky, B. Biofilms and Wounds: An Overview of the Evidence. Adv. Wound Care 2015, 4, 373–381. [Google Scholar] [CrossRef]
- Schultz, G.; Bjarnsholt, T.; James, G.A.; Leaper, D.J.; McBain, A.J.; Malone, M.; Stoodley, P.; Swanson, T.; Tachi, M.; Wolcott, R.D.; et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017, 25, 744–757. [Google Scholar] [CrossRef]
- Di Lodovico, S.; Bacchetti, T.; D’ercole, S.; Covone, S.; Petrini, M.; Di Giulio, M.; Di Fermo, P.; Diban, F.; Ferretti, G.; Cellini, L. Complex Chronic Wound Biofilms Are Inhibited in vitro by the Natural Extract of Capparis spinose. Front. Microbiol. 2022, 13, 832919. [Google Scholar] [CrossRef]
- Roy, S.; Santra, S.; Das, A.; Dixith, S.; Sinha, M.; Ghatak, S.; Ghosh, N.; Banerjee, P.; Khanna, S.; Mathew-Steiner, S.; et al. Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann. Surg. 2020, 271, 1174–1185. [Google Scholar] [CrossRef]
- Moreau-Marquis, S.; Stanton, B.A.; O’Toole, G.A. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther. 2008, 21, 595–599. [Google Scholar] [CrossRef]
- Jennings, L.K.; Dreifus, J.E.; Reichhardt, C.; Storek, K.M.; Secor, P.R.; Wozniak, D.J.; Hisert, K.B.; Parsek, M.R. Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. Cell Rep. 2021, 34, 108782. [Google Scholar] [CrossRef]
- Nauclér, P.; Huttner, A.; van Werkhoven, C.; Singer, M.; Tattevin, P.; Einav, S.; Tängdén, T. Impact of time to antibiotic therapy on clinical outcome in patients with bacterial infections in the emergency department: Implications for antimicrobial stewardship. Clin. Microbiol. Infect. 2021, 27, 175–181. [Google Scholar] [CrossRef]
- Pulia, M.; Redwood, R.; May, L. Antimicrobial Stewardship in the Emergency Department. Emerg. Med. Clin. N. Am. 2018, 36, 853–872. [Google Scholar] [CrossRef] [PubMed]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Mathioudakis, A.G.; Chatzimavridou-Grigoriadou, V.; Corlateanu, A.; Vestbo, J. Procalcitonin to guide antibiotic administration in COPD exacerbations: A meta-analysis. Eur. Respir. Rev. 2017, 26, 160073. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst. Rev. 2017, 10, CD007498. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, L.; Du, S.; Liu, Y.; Cao, B. An evaluation of the Unyvero pneumonia system for rapid detection of microorganisms and resistance markers of lower respiratory infections-a multicenter prospective study on ICU patients. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.E.; Popowitch, E.B.; Miller, M.B. Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, 02013-19. [Google Scholar] [CrossRef]
- Pickens, C.; Wunderink, R.G.; Qi, C.; Mopuru, H.; Donnelly, H.; Powell, K.; Sims, M.D. A multiplex polymerase chain reaction assay for antibiotic stewardship in suspected pneumonia. Diagn. Microbiol. Infect. Dis. 2020, 98, 115179. [Google Scholar] [CrossRef]
- Klein, M.; Bacher, J.; Barth, S.; Atrzadeh, F.; Siebenhaller, K.; Ferreira, I.; Beisken, S.; Posch, A.E.; Carroll, K.C.; Wunderink, R.G.; et al. Multicenter Evaluation of the Unyvero Platform for Testing Bronchoalveolar Lavage Fluid. J. Clin. Microbiol. 2021, 59, e02497-20. [Google Scholar] [CrossRef]
- Benkő, R.; Gajdács, M.; Matuz, M.; Bodó, G.; Lázár, A.; Hajdú, E.; Papfalvi, E.; Hannauer, P.; Erdélyi, P.; Pető, Z. Prevalence and Antibiotic Resistance of ESKAPE Pathogens Isolated in the Emergency Department of a Tertiary Care Teaching Hospital in Hungary: A 5-Year Retrospective Survey. Antibiot 2020, 9, 624. [Google Scholar] [CrossRef]
- Grignon, O.; EDBAC Study Group; Montassier, E.; Corvec, S.; Lepelletier, D.; Hardouin, J.-B.; Caillon, J.; Batard, E. Escherichia coli antibiotic resistance in emergency departments. Do local resistance rates matter? Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 571–577. [Google Scholar] [CrossRef]
- Rothe, K.; Wantia, N.; Spinner, C.D.; Schneider, J.; Lahmer, T.; Waschulzik, B.; Schmid, R.M.; Busch, D.H.; Katchanov, J. Antimicrobial resistance of bacteraemia in the emergency department of a German university hospital (2013–2018): Potential carbapenem-sparing empiric treatment options in light of the new EUCAST recommendations. BMC Infect. Dis. 2019, 19, 1091. [Google Scholar] [CrossRef] [PubMed]
- El-Sokkary, R.; Uysal, S.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; et al. Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: An International ID-IRI survey. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2323–2334. [Google Scholar] [CrossRef] [PubMed]
- Baditoiu, L.; Axente, C.; Lungeanu, D.; Muntean, D.; Horhat, F.; Moldovan, R.; Hogea, E.; Bedreag, O.; Sandesc, D.; Licker, M. Intensive care antibiotic consumption and resistance patterns: A cross-correlation analysis. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Axente, C.; Licker, M.; Moldovan, R.; Hogea, E.; Muntean, D.; Horhat, F.; Bedreag, O.; Sandesc, D.; Papurica, M.; Dugaesescu, D.; et al. Antimicrobial consumption, costs and resistance patterns: A two year prospective study in a Romanian intensive care unit. BMC Infect. Dis. 2017, 17, 358. [Google Scholar] [CrossRef]
- Stanford Health Care. The SHC Antimicrobial Guidebook. Available online: https://med.stanford.edu/bugsanddrugs/guidebook.html (accessed on 12 November 2023).
ED Admissions by Ward of Total ED Admissions (%), January–June 2021 | |||||
---|---|---|---|---|---|
Ward | No. | % | Ward | No. | % |
Surgery (SUR) | 1293 | 16.88 | Orthopedics-Traumatology (OT) | 629 | 8.21 |
Neurology (NEUR) | 1092 | 14.25 | Nephrology (NEF) | 469 | 6.12 |
Gastroenterology (GE) | 790 | 10.31 | Neurosurgery (NSUR) | 542 | 5.63 |
Vascular Surgery (VS) | 717 | 9.36 | Diabetes and Nutrition (DN) | 338 | 4.41 |
Cardiology (CD) | 652 | 8.51 | Plastic and Reconstructive Surgery (PS) | 311 | 4.06 |
Urology (URO) | 623 | 8.13 | Other | 205 | 4.13 |
Total 7661 (100%) |
Variable | N = 657 | 95% CI |
---|---|---|
M (n(%)) | 355 (54.03) | 50.21–57.81 |
F (n (%)) | 302 (45.97) | 42.19–49.79 |
Average age (average (IQR)) | 62.38 (53–73) | / |
Comorbid conditions | ||
Peripheral artery disease (n (%)) | 61 (9.28) | 7.30–11.75 |
Hypertensive patients (n (%)) | 112 (17.04) | 14.37–20.11 |
SARS-CoV2 (n (%)) | 106 (16.13) | 13.52–19.14 |
Diabetes mellitus (n (%)) | 69 (10.5) | 8.38–13.08 |
Coronary artery disease (n (%)) | 43 (6.54) | 4.90–8.70 |
Ischemic stroke (n (%)) | 41 (6.24) | 4.63–8.36 |
Kidney stones (n (%)) | 9 (1.37) | 0.72–2.58 |
Chronic kidney disease (CKD) (n (%)) | 47 (7.15) | 5.42–9.38 |
Acute kidney injury (AKI) (n (%)) | 39 (5.93) | 4.37–8.01 |
Renal neoplasia (n (%)) | 7 (1.06) | 0.52–2.18 |
Cirrhosis (n (%)) | 61 (9.28) | 7.30–11.75 |
Biliary lithiasis (n (%)) | 50 (7.61) | 5.82–9.89 |
GI tract neoplasia (n (%)) | 53 (8.06) | 6.22–10.40 |
903 Isolates | EC | KB | SA | EnC | CNS | STR | PSE | CAN | PRO | EnB | AcB | CIT | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nr. | 219 | 124 | 96 | 85 | 79 | 49 | 62 | 45 | 37 | 22 | 17 | 17 | 51 |
% from 903 | 24.25 | 13.73 | 10.63 | 9.41 | 8.75 | 5.43 | 6.87 | 4.98 | 4.1 | 2.44 | 1.88 | 1.88 | 5.65 |
Bacterial Species (n) | Urine (%) | Wound Drainage (%) | Blood Culture (%) | Sputum (%) | Bronchial Aspirate (%) | Abscess (%) | Bile (%) | Peritoneal Fluid (%) |
---|---|---|---|---|---|---|---|---|
E. coli (219) | 47.03 | 12.32 | 7.76 | 3.2 | 2.28 | 7.76 | 9.59 | 8.68 |
K.pneumoniae (124) | 24.2 | 8.87 | 7.26 | 16.93 | 7.25 | 10.48 | 6.45 | 0 |
S. aureus (96) | 6.25 | 53.12 | 9.37 | 10.42 | 10.42 | 6.25 | 0 | 0 |
Pseudomonas spp. (62) | 12.9 | 40.32 | 6.45 | 12.9 | 6.45 | 1.61 | 12.9 | 3.22 |
Acinetobacter spp. (17) | 0 | 58.83 | 5.88 | 5.88 | 11.7 | 0 | 5.88 | 11.76 |
Bacterial Species | DTR | MDR | XDR | ESBL | CR-GNB | R-AG | R-FQ | R-SXT | R-TE |
---|---|---|---|---|---|---|---|---|---|
E. coli (%) | 0.5 | 9 | 0 | 6.4 | 0.45 | 1.8 | 17.8 | 25.2 | 1.8 |
Klebsiella spp. (%) | 7.28 | 12.09 | 2.50 | 11.30 | 7.28 | 4.84 | 15.32 | 14.51 | 2.5 |
Pseudomonas spp. (%) | 11.29 | 24.19 | 6.45 | / | 19.35 | 11.29 | 17.74 | / | / |
Acinetobacter spp. (%) | 52.94 | 58.82 | 23.50 | / | 52.94 | 52.94 | 47.05 | 52.94 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musuroi, S.I.; Voinescu, A.; Musuroi, C.; Baditoiu, L.M.; Muntean, D.; Izmendi, O.; Jumanca, R.; Licker, M. The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine. J. Pers. Med. 2024, 14, 46. https://doi.org/10.3390/jpm14010046
Musuroi SI, Voinescu A, Musuroi C, Baditoiu LM, Muntean D, Izmendi O, Jumanca R, Licker M. The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine. Journal of Personalized Medicine. 2024; 14(1):46. https://doi.org/10.3390/jpm14010046
Chicago/Turabian StyleMusuroi, Silvia Ioana, Adela Voinescu, Corina Musuroi, Luminita Mirela Baditoiu, Delia Muntean, Oana Izmendi, Romanita Jumanca, and Monica Licker. 2024. "The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine" Journal of Personalized Medicine 14, no. 1: 46. https://doi.org/10.3390/jpm14010046
APA StyleMusuroi, S. I., Voinescu, A., Musuroi, C., Baditoiu, L. M., Muntean, D., Izmendi, O., Jumanca, R., & Licker, M. (2024). The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine. Journal of Personalized Medicine, 14(1), 46. https://doi.org/10.3390/jpm14010046